source: src/boundary.cpp@ 69eb71

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 69eb71 was 69eb71, checked in by Christian Neuen <neuen@…>, 16 years ago

Multiple changes to boundary, currently not fully operational.
Molecules has a new routine to create adjacency lists, reading bonds from a dbond file instead of looking for the distances by itself.
Vector function Project onto plane has been updated.

  • Property mode set to 100644
File size: 60.1 KB
Line 
1#include "molecules.hpp"
2#include "boundary.hpp"
3
4
5
6
7// ======================================== Points on Boundary =================================
8
9BoundaryPointSet::BoundaryPointSet()
10{
11 LinesCount = 0;
12 Nr = -1;
13};
14
15BoundaryPointSet::BoundaryPointSet(atom *Walker)
16{
17 node = Walker;
18 LinesCount = 0;
19 Nr = Walker->nr;
20};
21
22BoundaryPointSet::~BoundaryPointSet()
23{
24 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
25 node = NULL;
26};
27
28void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
29{
30 cout << Verbose(6) << "Adding line " << *line << " to " << *this << "." << endl;
31 if (line->endpoints[0] == this) {
32 lines.insert ( LinePair( line->endpoints[1]->Nr, line) );
33 } else {
34 lines.insert ( LinePair( line->endpoints[0]->Nr, line) );
35 }
36 LinesCount++;
37};
38
39ostream & operator << (ostream &ost, BoundaryPointSet &a)
40{
41 ost << "[" << a.Nr << "|" << a.node->Name << "]";
42 return ost;
43};
44
45// ======================================== Lines on Boundary =================================
46
47BoundaryLineSet::BoundaryLineSet()
48{
49 for (int i=0;i<2;i++)
50 endpoints[i] = NULL;
51 TrianglesCount = 0;
52 Nr = -1;
53};
54
55BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
56{
57 // set number
58 Nr = number;
59 // set endpoints in ascending order
60 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
61 // add this line to the hash maps of both endpoints
62 Point[0]->AddLine(this);
63 Point[1]->AddLine(this);
64 // clear triangles list
65 TrianglesCount = 0;
66 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
67};
68
69BoundaryLineSet::~BoundaryLineSet()
70{
71 for (int i=0;i<2;i++) {
72 cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
73 endpoints[i]->lines.erase(Nr);
74 LineMap::iterator tester = endpoints[i]->lines.begin();
75 tester++;
76 if (tester == endpoints[i]->lines.end()) {
77 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
78 delete(endpoints[i]);
79 } else
80 cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
81 }
82};
83
84void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
85{
86 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
87 triangles.insert ( TrianglePair( TrianglesCount, triangle) );
88 TrianglesCount++;
89};
90
91ostream & operator << (ostream &ost, BoundaryLineSet &a)
92{
93 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
94 return ost;
95};
96
97// ======================================== Triangles on Boundary =================================
98
99
100BoundaryTriangleSet::BoundaryTriangleSet()
101{
102 for (int i=0;i<3;i++) {
103 endpoints[i] = NULL;
104 lines[i] = NULL;
105 }
106 Nr = -1;
107};
108
109BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
110{
111 // set number
112 Nr = number;
113 // set lines
114 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
115 for (int i=0;i<3;i++) {
116 lines[i] = line[i];
117 lines[i]->AddTriangle(this);
118 }
119 // get ascending order of endpoints
120 map <int, class BoundaryPointSet * > OrderMap;
121 for(int i=0;i<3;i++) // for all three lines
122 for (int j=0;j<2;j++) { // for both endpoints
123 OrderMap.insert ( pair <int, class BoundaryPointSet * >( line[i]->endpoints[j]->Nr, line[i]->endpoints[j]) );
124 // and we don't care whether insertion fails
125 }
126 // set endpoints
127 int Counter = 0;
128 cout << Verbose(6) << " with end points ";
129 for (map <int, class BoundaryPointSet * >::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
130 endpoints[Counter] = runner->second;
131 cout << " " << *endpoints[Counter];
132 Counter++;
133 }
134 if (Counter < 3) {
135 cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
136 //exit(1);
137 }
138 cout << "." << endl;
139};
140
141BoundaryTriangleSet::~BoundaryTriangleSet()
142{
143 for (int i=0;i<3;i++) {
144 cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
145 lines[i]->triangles.erase(Nr);
146 TriangleMap::iterator tester = lines[i]->triangles.begin();
147 tester++;
148 if (tester == lines[i]->triangles.end()) {
149 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
150 delete(lines[i]);
151 } else
152 cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
153 }
154};
155
156void BoundaryTriangleSet::GetNormalVector(Vector &NormalVector)
157{
158 // get normal vector
159 NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x);
160
161 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
162 if (endpoints[0]->node->x.Projection(&NormalVector) > 0)
163 NormalVector.Scale(-1.);
164};
165
166ostream & operator << (ostream &ost, BoundaryTriangleSet &a)
167{
168 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
169 return ost;
170};
171
172// ========================================== F U N C T I O N S =================================
173
174/** Finds the endpoint two lines are sharing.
175 * \param *line1 first line
176 * \param *line2 second line
177 * \return point which is shared or NULL if none
178 */
179class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
180{
181 class BoundaryLineSet * lines[2] = {line1, line2};
182 class BoundaryPointSet *node = NULL;
183 map <int, class BoundaryPointSet * > OrderMap;
184 pair < map <int, class BoundaryPointSet * >::iterator, bool > OrderTest;
185 for(int i=0;i<2;i++) // for both lines
186 for (int j=0;j<2;j++) { // for both endpoints
187 OrderTest = OrderMap.insert ( pair <int, class BoundaryPointSet * >( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]) );
188 if (!OrderTest.second) { // if insertion fails, we have common endpoint
189 node = OrderTest.first->second;
190 cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
191 j=2;
192 i=2;
193 break;
194 }
195 }
196 return node;
197};
198
199/** Determines the boundary points of a cluster.
200 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
201 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
202 * center and first and last point in the triple, it is thrown out.
203 * \param *out output stream for debugging
204 * \param *mol molecule structure representing the cluster
205 */
206Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol)
207{
208 atom *Walker = NULL;
209 PointMap PointsOnBoundary;
210 LineMap LinesOnBoundary;
211 TriangleMap TrianglesOnBoundary;
212
213 *out << Verbose(1) << "Finding all boundary points." << endl;
214 Boundaries *BoundaryPoints = new Boundaries [NDIM]; // first is alpha, second is (r, nr)
215 BoundariesTestPair BoundaryTestPair;
216 Vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
217 double radius, angle;
218 // 3a. Go through every axis
219 for (int axis=0; axis<NDIM; axis++) {
220 AxisVector.Zero();
221 AngleReferenceVector.Zero();
222 AngleReferenceNormalVector.Zero();
223 AxisVector.x[axis] = 1.;
224 AngleReferenceVector.x[(axis+1)%NDIM] = 1.;
225 AngleReferenceNormalVector.x[(axis+2)%NDIM] = 1.;
226 // *out << Verbose(1) << "Axisvector is ";
227 // AxisVector.Output(out);
228 // *out << " and AngleReferenceVector is ";
229 // AngleReferenceVector.Output(out);
230 // *out << "." << endl;
231 // *out << " and AngleReferenceNormalVector is ";
232 // AngleReferenceNormalVector.Output(out);
233 // *out << "." << endl;
234 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
235 Walker = mol->start;
236 while (Walker->next != mol->end) {
237 Walker = Walker->next;
238 Vector ProjectedVector;
239 ProjectedVector.CopyVector(&Walker->x);
240 ProjectedVector.ProjectOntoPlane(&AxisVector);
241 // correct for negative side
242 //if (Projection(y) < 0)
243 //angle = 2.*M_PI - angle;
244 radius = ProjectedVector.Norm();
245 if (fabs(radius) > MYEPSILON)
246 angle = ProjectedVector.Angle(&AngleReferenceVector);
247 else
248 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
249
250 //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
251 if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) {
252 angle = 2.*M_PI - angle;
253 }
254 //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
255 //ProjectedVector.Output(out);
256 //*out << endl;
257 BoundaryTestPair = BoundaryPoints[axis].insert( BoundariesPair (angle, DistancePair (radius, Walker) ) );
258 if (BoundaryTestPair.second) { // successfully inserted
259 } else { // same point exists, check first r, then distance of original vectors to center of gravity
260 *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl;
261 *out << Verbose(2) << "Present vector: ";
262 BoundaryTestPair.first->second.second->x.Output(out);
263 *out << endl;
264 *out << Verbose(2) << "New vector: ";
265 Walker->x.Output(out);
266 *out << endl;
267 double tmp = ProjectedVector.Norm();
268 if (tmp > BoundaryTestPair.first->second.first) {
269 BoundaryTestPair.first->second.first = tmp;
270 BoundaryTestPair.first->second.second = Walker;
271 *out << Verbose(2) << "Keeping new vector." << endl;
272 } else if (tmp == BoundaryTestPair.first->second.first) {
273 if (BoundaryTestPair.first->second.second->x.ScalarProduct(&BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower
274 BoundaryTestPair.first->second.second = Walker;
275 *out << Verbose(2) << "Keeping new vector." << endl;
276 } else {
277 *out << Verbose(2) << "Keeping present vector." << endl;
278 }
279 } else {
280 *out << Verbose(2) << "Keeping present vector." << endl;
281 }
282 }
283 }
284 // printing all inserted for debugging
285 // {
286 // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
287 // int i=0;
288 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
289 // if (runner != BoundaryPoints[axis].begin())
290 // *out << ", " << i << ": " << *runner->second.second;
291 // else
292 // *out << i << ": " << *runner->second.second;
293 // i++;
294 // }
295 // *out << endl;
296 // }
297 // 3c. throw out points whose distance is less than the mean of left and right neighbours
298 bool flag = false;
299 do { // do as long as we still throw one out per round
300 *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl;
301 flag = false;
302 Boundaries::iterator left = BoundaryPoints[axis].end();
303 Boundaries::iterator right = BoundaryPoints[axis].end();
304 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
305 // set neighbours correctly
306 if (runner == BoundaryPoints[axis].begin()) {
307 left = BoundaryPoints[axis].end();
308 } else {
309 left = runner;
310 }
311 left--;
312 right = runner;
313 right++;
314 if (right == BoundaryPoints[axis].end()) {
315 right = BoundaryPoints[axis].begin();
316 }
317 // check distance
318
319 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
320 {
321 Vector SideA, SideB, SideC, SideH;
322 SideA.CopyVector(&left->second.second->x);
323 SideA.ProjectOntoPlane(&AxisVector);
324 // *out << "SideA: ";
325 // SideA.Output(out);
326 // *out << endl;
327
328 SideB.CopyVector(&right->second.second->x);
329 SideB.ProjectOntoPlane(&AxisVector);
330 // *out << "SideB: ";
331 // SideB.Output(out);
332 // *out << endl;
333
334 SideC.CopyVector(&left->second.second->x);
335 SideC.SubtractVector(&right->second.second->x);
336 SideC.ProjectOntoPlane(&AxisVector);
337 // *out << "SideC: ";
338 // SideC.Output(out);
339 // *out << endl;
340
341 SideH.CopyVector(&runner->second.second->x);
342 SideH.ProjectOntoPlane(&AxisVector);
343 // *out << "SideH: ";
344 // SideH.Output(out);
345 // *out << endl;
346
347 // calculate each length
348 double a = SideA.Norm();
349 //double b = SideB.Norm();
350 //double c = SideC.Norm();
351 double h = SideH.Norm();
352 // calculate the angles
353 double alpha = SideA.Angle(&SideH);
354 double beta = SideA.Angle(&SideC);
355 double gamma = SideB.Angle(&SideH);
356 double delta = SideC.Angle(&SideH);
357 double MinDistance = a * sin(beta)/(sin(delta)) * (((alpha < M_PI/2.) || (gamma < M_PI/2.)) ? 1. : -1.);
358 // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
359 //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
360 if ((fabs(h/fabs(h) - MinDistance/fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) {
361 // throw out point
362 //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
363 BoundaryPoints[axis].erase(runner);
364 flag = true;
365 }
366 }
367 }
368 } while (flag);
369 }
370 return BoundaryPoints;
371};
372
373/** Determines greatest diameters of a cluster defined by its convex envelope.
374 * Looks at lines parallel to one axis and where they intersect on the projected planes
375 * \param *out output stream for debugging
376 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
377 * \param *mol molecule structure representing the cluster
378 * \param IsAngstroem whether we have angstroem or atomic units
379 * \return NDIM array of the diameters
380 */
381double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol, bool IsAngstroem)
382{
383 // get points on boundary of NULL was given as parameter
384 bool BoundaryFreeFlag = false;
385 Boundaries *BoundaryPoints = BoundaryPtr;
386 if (BoundaryPoints == NULL) {
387 BoundaryFreeFlag = true;
388 BoundaryPoints = GetBoundaryPoints(out, mol);
389 } else {
390 *out << Verbose(1) << "Using given boundary points set." << endl;
391 }
392
393 // determine biggest "diameter" of cluster for each axis
394 Boundaries::iterator Neighbour, OtherNeighbour;
395 double *GreatestDiameter = new double[NDIM];
396 for(int i=0;i<NDIM;i++)
397 GreatestDiameter[i] = 0.;
398 double OldComponent, tmp, w1, w2;
399 Vector DistanceVector, OtherVector;
400 int component, Othercomponent;
401 for(int axis=0;axis<NDIM;axis++) { // regard each projected plane
402 //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
403 for (int j=0;j<2;j++) { // and for both axis on the current plane
404 component = (axis+j+1)%NDIM;
405 Othercomponent = (axis+1+((j+1) & 1))%NDIM;
406 //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
407 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
408 //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
409 // seek for the neighbours pair where the Othercomponent sign flips
410 Neighbour = runner;
411 Neighbour++;
412 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
413 Neighbour = BoundaryPoints[axis].begin();
414 DistanceVector.CopyVector(&runner->second.second->x);
415 DistanceVector.SubtractVector(&Neighbour->second.second->x);
416 do { // seek for neighbour pair where it flips
417 OldComponent = DistanceVector.x[Othercomponent];
418 Neighbour++;
419 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
420 Neighbour = BoundaryPoints[axis].begin();
421 DistanceVector.CopyVector(&runner->second.second->x);
422 DistanceVector.SubtractVector(&Neighbour->second.second->x);
423 //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
424 } while ((runner != Neighbour) && ( fabs( OldComponent/fabs(OldComponent) - DistanceVector.x[Othercomponent]/fabs(DistanceVector.x[Othercomponent]) ) < MYEPSILON)); // as long as sign does not flip
425 if (runner != Neighbour) {
426 OtherNeighbour = Neighbour;
427 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
428 OtherNeighbour = BoundaryPoints[axis].end();
429 OtherNeighbour--;
430 //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
431 // now we have found the pair: Neighbour and OtherNeighbour
432 OtherVector.CopyVector(&runner->second.second->x);
433 OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
434 //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
435 //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
436 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
437 w1 = fabs(OtherVector.x[Othercomponent]);
438 w2 = fabs(DistanceVector.x[Othercomponent]);
439 tmp = fabs((w1*DistanceVector.x[component] + w2*OtherVector.x[component])/(w1+w2));
440 // mark if it has greater diameter
441 //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
442 GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp;
443 } //else
444 //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
445 }
446 }
447 }
448 *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl;
449
450 // free reference lists
451 if (BoundaryFreeFlag)
452 delete[](BoundaryPoints);
453
454 return GreatestDiameter;
455};
456
457
458/** Determines the volume of a cluster.
459 * Determines first the convex envelope, then tesselates it and calculates its volume.
460 * \param *out output stream for debugging
461 * \param *tecplot output stream for tecplot data
462 * \param *configuration needed for path to store convex envelope file
463 * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
464 * \param *mol molecule structure representing the cluster
465 * \return determined volume of the cluster in cubed config:GetIsAngstroem()
466 */
467double VolumeOfConvexEnvelope(ofstream *out, ofstream *tecplot, config *configuration, Boundaries *BoundaryPtr, molecule *mol)
468{
469 bool IsAngstroem = configuration->GetIsAngstroem();
470 atom *Walker = NULL;
471 struct Tesselation *TesselStruct = new Tesselation;
472 bool BoundaryFreeFlag = false;
473 Boundaries *BoundaryPoints = BoundaryPtr;
474 double volume = 0.;
475 double PyramidVolume = 0.;
476 double G,h;
477 Vector x,y;
478 double a,b,c;
479
480 Find_non_convex_border(*TesselStruct, mol);
481 /*
482 // 1. calculate center of gravity
483 *out << endl;
484 Vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
485
486 // 2. translate all points into CoG
487 *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
488 Walker = mol->start;
489 while (Walker->next != mol->end) {
490 Walker = Walker->next;
491 Walker->x.Translate(CenterOfGravity);
492 }
493
494 // 3. Find all points on the boundary
495 if (BoundaryPoints == NULL) {
496 BoundaryFreeFlag = true;
497 BoundaryPoints = GetBoundaryPoints(out, mol);
498 } else {
499 *out << Verbose(1) << "Using given boundary points set." << endl;
500 }
501
502 // 4. fill the boundary point list
503 for (int axis=0;axis<NDIM;axis++)
504 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
505 TesselStruct->AddPoint(runner->second.second);
506 }
507
508 *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl;
509 // now we have the whole set of edge points in the BoundaryList
510
511 // listing for debugging
512// *out << Verbose(1) << "Listing PointsOnBoundary:";
513// for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
514// *out << " " << *runner->second;
515// }
516// *out << endl;
517
518 // 5a. guess starting triangle
519 TesselStruct->GuessStartingTriangle(out);
520
521 // 5b. go through all lines, that are not yet part of two triangles (only of one so far)
522 TesselStruct->TesselateOnBoundary(out, configuration, mol);
523
524 *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl;
525 */
526
527
528 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
529 *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl;
530 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak
531 x.CopyVector(&runner->second->endpoints[0]->node->x);
532 x.SubtractVector(&runner->second->endpoints[1]->node->x);
533 y.CopyVector(&runner->second->endpoints[0]->node->x);
534 y.SubtractVector(&runner->second->endpoints[2]->node->x);
535 a = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[1]->node->x));
536 b = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[2]->node->x));
537 c = sqrt(runner->second->endpoints[2]->node->x.Distance(&runner->second->endpoints[1]->node->x));
538 G = sqrt( ( (a*a+b*b+c*c)*(a*a+b*b+c*c) - 2*(a*a*a*a + b*b*b*b + c*c*c*c) )/16.); // area of tesselated triangle
539 x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x);
540 x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
541 h = x.Norm(); // distance of CoG to triangle
542 PyramidVolume = (1./3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
543 *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
544 volume += PyramidVolume;
545 }
546 *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
547
548 /*
549 // 7. translate all points back from CoG
550 *out << Verbose(1) << "Translating system back from Center of Gravity." << endl;
551 CenterOfGravity->Scale(-1);
552 Walker = mol->start;
553 while (Walker->next != mol->end) {
554 Walker = Walker->next;
555 Walker->x.Translate(CenterOfGravity);
556 }
557 */
558
559
560
561
562
563 // 8. Store triangles in tecplot file
564 if (tecplot != NULL) {
565 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
566 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
567 *tecplot << "ZONE T=\"TRIANGLES\", N=" << TesselStruct->PointsOnBoundaryCount << ", E=" << TesselStruct->TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
568 int *LookupList = new int[mol->AtomCount];
569 for (int i=0;i<mol->AtomCount;i++)
570 LookupList[i] = -1;
571
572 // print atom coordinates
573 *out << Verbose(2) << "The following triangles were created:";
574 int Counter = 1;
575 atom *Walker = NULL;
576 for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
577 Walker = target->second->node;
578 LookupList[Walker->nr] = Counter++;
579 *tecplot << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl;
580 }
581 *tecplot << endl;
582 // print connectivity
583 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
584 *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
585 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
586 }
587 delete[](LookupList);
588 *out << endl;
589 }
590
591 // free reference lists
592 if (BoundaryFreeFlag)
593 delete[](BoundaryPoints);
594
595 return volume;
596};
597
598
599/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
600 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
601 * \param *out output stream for debugging
602 * \param *configuration needed for path to store convex envelope file
603 * \param *mol molecule structure representing the cluster
604 * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
605 * \param celldensity desired average density in final cell
606 */
607void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, double ClusterVolume, double celldensity)
608{
609 // transform to PAS
610 mol->PrincipalAxisSystem(out, true);
611
612 // some preparations beforehand
613 bool IsAngstroem = configuration->GetIsAngstroem();
614 Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
615 double clustervolume;
616 if (ClusterVolume == 0)
617 clustervolume = VolumeOfConvexEnvelope(out, NULL, configuration, BoundaryPoints, mol);
618 else
619 clustervolume = ClusterVolume;
620 double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol, IsAngstroem);
621 Vector BoxLengths;
622 int repetition[NDIM] = {1, 1, 1};
623 int TotalNoClusters = 1;
624 for (int i=0;i<NDIM;i++)
625 TotalNoClusters *= repetition[i];
626
627 // sum up the atomic masses
628 double totalmass = 0.;
629 atom *Walker = mol->start;
630 while (Walker->next != mol->end) {
631 Walker = Walker->next;
632 totalmass += Walker->type->mass;
633 }
634 *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl;
635
636 *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass/clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
637
638 // solve cubic polynomial
639 *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl;
640 double cellvolume;
641 if (IsAngstroem)
642 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_A - (totalmass/clustervolume))/(celldensity-1);
643 else
644 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_a0 - (totalmass/clustervolume))/(celldensity-1);
645 *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
646
647 double minimumvolume = TotalNoClusters*(GreatestDiameter[0]*GreatestDiameter[1]*GreatestDiameter[2]);
648 *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
649 if (minimumvolume > cellvolume) {
650 cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl;
651 cout << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl;
652 for(int i=0;i<NDIM;i++)
653 BoxLengths.x[i] = GreatestDiameter[i];
654 mol->CenterEdge(out, &BoxLengths);
655 } else {
656 BoxLengths.x[0] = (repetition[0]*GreatestDiameter[0] + repetition[1]*GreatestDiameter[1] + repetition[2]*GreatestDiameter[2]);
657 BoxLengths.x[1] = (repetition[0]*repetition[1]*GreatestDiameter[0]*GreatestDiameter[1]
658 + repetition[0]*repetition[2]*GreatestDiameter[0]*GreatestDiameter[2]
659 + repetition[1]*repetition[2]*GreatestDiameter[1]*GreatestDiameter[2]);
660 BoxLengths.x[2] = minimumvolume - cellvolume;
661 double x0 = 0.,x1 = 0.,x2 = 0.;
662 if (gsl_poly_solve_cubic(BoxLengths.x[0],BoxLengths.x[1],BoxLengths.x[2],&x0,&x1,&x2) == 1) // either 1 or 3 on return
663 *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl;
664 else {
665 *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl;
666 x0 = x2; // sorted in ascending order
667 }
668
669 cellvolume = 1;
670 for(int i=0;i<NDIM;i++) {
671 BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]);
672 cellvolume *= BoxLengths.x[i];
673 }
674
675 // set new box dimensions
676 *out << Verbose(0) << "Translating to box with these boundaries." << endl;
677 mol->CenterInBox((ofstream *)&cout, &BoxLengths);
678 }
679 // update Box of atoms by boundary
680 mol->SetBoxDimension(&BoxLengths);
681 *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and " << BoxLengths.x[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
682};
683
684
685// =========================================================== class TESSELATION ===========================================
686
687/** Constructor of class Tesselation.
688 */
689Tesselation::Tesselation()
690{
691 PointsOnBoundaryCount = 0;
692 LinesOnBoundaryCount = 0;
693 TrianglesOnBoundaryCount = 0;
694};
695
696/** Constructor of class Tesselation.
697 * We have to free all points, lines and triangles.
698 */
699Tesselation::~Tesselation()
700{
701 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
702 delete(runner->second);
703 }
704};
705
706/** Gueses first starting triangle of the convex envelope.
707 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
708 * \param *out output stream for debugging
709 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
710 */
711void Tesselation::GuessStartingTriangle(ofstream *out)
712{
713 // 4b. create a starting triangle
714 // 4b1. create all distances
715 DistanceMultiMap DistanceMMap;
716 double distance, tmp;
717 Vector PlaneVector, TrialVector;
718 PointMap::iterator A, B, C; // three nodes of the first triangle
719 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
720
721 // with A chosen, take each pair B,C and sort
722 if (A != PointsOnBoundary.end()) {
723 B = A;
724 B++;
725 for (; B != PointsOnBoundary.end(); B++) {
726 C = B;
727 C++;
728 for (; C != PointsOnBoundary.end(); C++) {
729 tmp = A->second->node->x.Distance(&B->second->node->x);
730 distance = tmp*tmp;
731 tmp = A->second->node->x.Distance(&C->second->node->x);
732 distance += tmp*tmp;
733 tmp = B->second->node->x.Distance(&C->second->node->x);
734 distance += tmp*tmp;
735 DistanceMMap.insert( DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator>(B,C) ) );
736 }
737 }
738 }
739// // listing distances
740// *out << Verbose(1) << "Listing DistanceMMap:";
741// for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
742// *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
743// }
744// *out << endl;
745
746 // 4b2. pick three baselines forming a triangle
747 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
748 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
749 for (; baseline != DistanceMMap.end(); baseline++) {
750 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
751 // 2. next, we have to check whether all points reside on only one side of the triangle
752 // 3. construct plane vector
753 PlaneVector.MakeNormalVector(&A->second->node->x, &baseline->second.first->second->node->x, &baseline->second.second->second->node->x);
754 *out << Verbose(2) << "Plane vector of candidate triangle is ";
755 PlaneVector.Output(out);
756 *out << endl;
757 // 4. loop over all points
758 double sign = 0.;
759 PointMap::iterator checker = PointsOnBoundary.begin();
760 for (; checker != PointsOnBoundary.end(); checker++) {
761 // (neglecting A,B,C)
762 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
763 continue;
764 // 4a. project onto plane vector
765 TrialVector.CopyVector(&checker->second->node->x);
766 TrialVector.SubtractVector(&A->second->node->x);
767 distance = TrialVector.Projection(&PlaneVector);
768 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
769 continue;
770 *out << Verbose(3) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl;
771 tmp = distance/fabs(distance);
772 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
773 if ((sign != 0) && (tmp != sign)) {
774 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
775 *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " outside the convex hull." << endl;
776 break;
777 } else { // note the sign for later
778 *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl;
779 sign = tmp;
780 }
781 // 4d. Check whether the point is inside the triangle (check distance to each node
782 tmp = checker->second->node->x.Distance(&A->second->node->x);
783 int innerpoint = 0;
784 if ((tmp < A->second->node->x.Distance(&baseline->second.first->second->node->x))
785 && (tmp < A->second->node->x.Distance(&baseline->second.second->second->node->x)))
786 innerpoint++;
787 tmp = checker->second->node->x.Distance(&baseline->second.first->second->node->x);
788 if ((tmp < baseline->second.first->second->node->x.Distance(&A->second->node->x))
789 && (tmp < baseline->second.first->second->node->x.Distance(&baseline->second.second->second->node->x)))
790 innerpoint++;
791 tmp = checker->second->node->x.Distance(&baseline->second.second->second->node->x);
792 if ((tmp < baseline->second.second->second->node->x.Distance(&baseline->second.first->second->node->x))
793 && (tmp < baseline->second.second->second->node->x.Distance(&A->second->node->x)))
794 innerpoint++;
795 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
796 if (innerpoint == 3)
797 break;
798 }
799 // 5. come this far, all on same side? Then break 1. loop and construct triangle
800 if (checker == PointsOnBoundary.end()) {
801 *out << "Looks like we have a candidate!" << endl;
802 break;
803 }
804 }
805 if (baseline != DistanceMMap.end()) {
806 BPS[0] = baseline->second.first->second;
807 BPS[1] = baseline->second.second->second;
808 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
809 BPS[0] = A->second;
810 BPS[1] = baseline->second.second->second;
811 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
812 BPS[0] = baseline->second.first->second;
813 BPS[1] = A->second;
814 BLS[2] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
815
816 // 4b3. insert created triangle
817 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
818 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
819 TrianglesOnBoundaryCount++;
820 for(int i=0;i<NDIM;i++) {
821 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
822 LinesOnBoundaryCount++;
823 }
824
825 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
826 } else {
827 *out << Verbose(1) << "No starting triangle found." << endl;
828 exit(255);
829 }
830};
831
832
833/** Tesselates the convex envelope of a cluster from a single starting triangle.
834 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
835 * 2 triangles. Hence, we go through all current lines:
836 * -# if the lines contains to only one triangle
837 * -# We search all points in the boundary
838 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
839 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
840 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
841 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
842 * \param *out output stream for debugging
843 * \param *configuration for IsAngstroem
844 * \param *mol the cluster as a molecule structure
845 */
846void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol)
847{
848 bool flag;
849 PointMap::iterator winner;
850 class BoundaryPointSet *peak = NULL;
851 double SmallestAngle, TempAngle;
852 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector;
853 LineMap::iterator LineChecker[2];
854 do {
855 flag = false;
856 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
857 if (baseline->second->TrianglesCount == 1) {
858 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
859 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
860 SmallestAngle = M_PI;
861 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
862 // get peak point with respect to this base line's only triangle
863 for(int i=0;i<3;i++)
864 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
865 peak = BTS->endpoints[i];
866 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
867 // normal vector of triangle
868 BTS->GetNormalVector(NormalVector);
869 *out << Verbose(4) << "NormalVector of base triangle is ";
870 NormalVector.Output(out);
871 *out << endl;
872 // offset to center of triangle
873 CenterVector.Zero();
874 for(int i=0;i<3;i++)
875 CenterVector.AddVector(&BTS->endpoints[i]->node->x);
876 CenterVector.Scale(1./3.);
877 *out << Verbose(4) << "CenterVector of base triangle is ";
878 CenterVector.Output(out);
879 *out << endl;
880 // vector in propagation direction (out of triangle)
881 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
882 TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
883 TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
884 PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
885 TempVector.CopyVector(&CenterVector);
886 TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
887 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
888 if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
889 PropagationVector.Scale(-1.);
890 *out << Verbose(4) << "PropagationVector of base triangle is ";
891 PropagationVector.Output(out);
892 *out << endl;
893 winner = PointsOnBoundary.end();
894 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++)
895 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
896 *out << Verbose(3) << "Target point is " << *(target->second) << ":";
897 bool continueflag = true;
898
899 VirtualNormalVector.CopyVector(&baseline->second->endpoints[0]->node->x);
900 VirtualNormalVector.AddVector(&baseline->second->endpoints[0]->node->x);
901 VirtualNormalVector.Scale(-1./2.); // points now to center of base line
902 VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
903 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
904 continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
905 if (!continueflag) {
906 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
907 continue;
908 } else
909 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
910 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
911 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
912 // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
913 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
914 // else
915 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
916 // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
917 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
918 // else
919 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
920 // check first endpoint (if any connecting line goes to target or at least not more than 1)
921 continueflag = continueflag && (( (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1)));
922 if (!continueflag) {
923 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
924 continue;
925 }
926 // check second endpoint (if any connecting line goes to target or at least not more than 1)
927 continueflag = continueflag && (( (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1)));
928 if (!continueflag) {
929 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
930 continue;
931 }
932 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
933 continueflag = continueflag && (!(
934 ((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
935 && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak))
936 ));
937 if (!continueflag) {
938 *out << Verbose(4) << "Current target is peak!" << endl;
939 continue;
940 }
941 // in case NOT both were found
942 if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle
943 flag = true;
944 VirtualNormalVector.MakeNormalVector(&baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x);
945 // make it always point inward
946 if (baseline->second->endpoints[0]->node->x.Projection(&VirtualNormalVector) > 0)
947 VirtualNormalVector.Scale(-1.);
948 // calculate angle
949 TempAngle = NormalVector.Angle(&VirtualNormalVector);
950 *out << Verbose(4) << "NormalVector is ";
951 VirtualNormalVector.Output(out);
952 *out << " and the angle is " << TempAngle << "." << endl;
953 if (SmallestAngle > TempAngle) { // set to new possible winner
954 SmallestAngle = TempAngle;
955 winner = target;
956 }
957 }
958 }
959 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
960 if (winner != PointsOnBoundary.end()) {
961 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
962 // create the lins of not yet present
963 BLS[0] = baseline->second;
964 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
965 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
966 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
967 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
968 BPS[0] = baseline->second->endpoints[0];
969 BPS[1] = winner->second;
970 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
971 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[1]) );
972 LinesOnBoundaryCount++;
973 } else
974 BLS[1] = LineChecker[0]->second;
975 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
976 BPS[0] = baseline->second->endpoints[1];
977 BPS[1] = winner->second;
978 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
979 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[2]) );
980 LinesOnBoundaryCount++;
981 } else
982 BLS[2] = LineChecker[1]->second;
983 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
984 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
985 TrianglesOnBoundaryCount++;
986 } else {
987 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
988 }
989
990 // 5d. If the set of lines is not yet empty, go to 5. and continue
991 } else
992 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl;
993 } while (flag);
994
995};
996
997/** Adds an atom to the tesselation::PointsOnBoundary list.
998 * \param *Walker atom to add
999 */
1000void Tesselation::AddPoint(atom *Walker)
1001{
1002 PointTestPair InsertUnique;
1003 BPS[0] = new class BoundaryPointSet(Walker);
1004 InsertUnique = PointsOnBoundary.insert( PointPair(Walker->nr, BPS[0]) );
1005 if (InsertUnique.second) // if new point was not present before, increase counter
1006 PointsOnBoundaryCount++;
1007};
1008
1009
1010
1011
1012
1013
1014//====================================================================================================================
1015//
1016// ab hier habe ich das verzapft.
1017//
1018//====================================================================================================================
1019
1020/*!
1021 * This recursive function finds a third point, to form a triangle with two given ones.
1022 * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \
1023 * supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \
1024 * upon which we operate.
1025 * If the candidate is more fitting to support the sphere than the already stored atom is, then we write its id, its general \
1026 * direction and angle into Storage.
1027 * We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \
1028 * with all neighbours of the candidate.
1029 */
1030void Find_next_suitable_point(atom* a, atom* b, atom* Candidate, int n, Vector *Chord, Vector *d1, Vector *d2, double *Storage, const double RADIUS, molecule* mol)
1031{
1032 /* d2 is normal vector on the triangle
1033 * d1 is normal on the triangle line, from which we come, as well as on d2.
1034 */
1035 Vector dif_a; //Vector from a to candidate
1036 Vector dif_b; //Vector from b to candidate
1037 Vector AngleCheck; // Projection of a difference vector on plane orthogonal on triangle side.
1038 atom *Walker; // variable atom point
1039
1040 dif_a.CopyVector(&(a->x));
1041 dif_a.SubtractVector(&(Candidate->x));
1042 dif_b.CopyVector(&(b->x));
1043 dif_b.SubtractVector(&(Candidate->x));
1044 AngleCheck.CopyVector(&dif_a);
1045 AngleCheck.ProjectOntoPlane(Chord);
1046
1047 if (Chord->Norm()/(2*sin(dif_a.Angle(&dif_b)))<RADIUS) //Using Formula for relation of chord length with inner angle to find of Ball will touch atom
1048 {
1049
1050 if (dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1))>Storage[1]) //This will give absolute preference to those in "right-hand" quadrants
1051 {
1052 Storage[0]=(double)Candidate->nr;
1053 Storage[1]=dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1));
1054 Storage[2]=AngleCheck.Angle(d2);
1055 }
1056 else
1057 {
1058 if ((dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1)) == Storage[1] && Storage[1]>0 && Storage[2]< AngleCheck.Angle(d2)) or \
1059 (dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1)) == Storage[1] && Storage[1]<0 && Storage[2]> AngleCheck.Angle(d2)))
1060 //Depending on quadrant we prefer higher or lower atom with respect to Triangle normal first.
1061 {
1062 Storage[0]=(double)Candidate->nr;
1063 Storage[1]=dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1));
1064 Storage[2]=AngleCheck.Angle(d2);
1065 }
1066 }
1067 }
1068
1069 if (n<5) // Five is the recursion level threshold.
1070 {
1071 for(int i=0; i<mol->NumberOfBondsPerAtom[Candidate->nr];i++) // go through all bond
1072 {
1073 Walker= mol->start; // go through all atoms
1074
1075 while (Walker->nr != (mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr ==Candidate->nr ? mol->ListOfBondsPerAtom[Candidate->nr][i]->rightatom->nr : mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr))
1076 { // until atom found which belongs to bond
1077 Walker = Walker->next;
1078 }
1079
1080
1081 Find_next_suitable_point(a, b, Walker, n+1, Chord, d1, d2, Storage, RADIUS, mol); //call function again
1082 }
1083 }
1084};
1085
1086/*!
1087 * this function fins a triangle to a line, adjacent to an existing one.
1088 */
1089void Tesselation::Find_next_suitable_triangle(molecule* mol, BoundaryLineSet Line, BoundaryTriangleSet T, const double& RADIUS)
1090{
1091 printf("Looking for next suitable triangle \n");
1092 Vector direction1;
1093 Vector helper;
1094 Vector Chord;
1095 atom* Walker;
1096
1097 double *Storage;
1098 Storage = new double[3];
1099 Storage[0]=-1.; // Id must be positive, we see should nothing be done
1100 Storage[1]=-1.; // This direction is either +1 or -1 one, so any result will take precedence over initial values
1101 Storage[2]=-10.; // This is also lower then any value produced by an eligible atom, which are all positive
1102
1103
1104 helper.CopyVector(&(Line.endpoints[0]->node->x));
1105 for (int i =0; i<3; i++)
1106 {
1107 if (T.endpoints[i]->node->nr != Line.endpoints[0]->node->nr && T.endpoints[i]->node->nr!=Line.endpoints[1]->node->nr)
1108 {
1109 helper.SubtractVector(&T.endpoints[i]->node->x);
1110 break;
1111 }
1112 }
1113
1114
1115 direction1.CopyVector(&Line.endpoints[0]->node->x);
1116 direction1.SubtractVector(&Line.endpoints[1]->node->x);
1117 direction1.VectorProduct(T.NormalVector);
1118
1119 if (direction1.ScalarProduct(&helper)>0)
1120 {
1121 direction1.Scale(-1);
1122 }
1123
1124 Chord.CopyVector(&(Line.endpoints[0]->node->x)); // bring into calling function
1125 Chord.SubtractVector(&(Line.endpoints[1]->node->x));
1126
1127printf("Looking for third point candidates for triangle \n");
1128 Find_next_suitable_point(Line.endpoints[0]->node, Line.endpoints[1]->node, Line.endpoints[0]->node, 0, &Chord, &direction1, T.NormalVector, Storage, RADIUS, mol);
1129
1130 // Konstruiere nun neues Dreieck am Ende der Liste der Dreiecke
1131 // Next Triangle is Line, atom with number in Storage[0]
1132
1133 Walker= mol->start;
1134 while (Walker->nr != (int)Storage[0])
1135 {
1136 Walker = Walker->next;
1137 }
1138
1139 AddPoint(Walker);
1140
1141 BPS[0] = new class BoundaryPointSet(Walker);
1142 BPS[1] = new class BoundaryPointSet(Line.endpoints[0]->node);
1143 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1144 BPS[0] = new class BoundaryPointSet(Walker);
1145 BPS[1] = new class BoundaryPointSet(Line.endpoints[1]->node);
1146 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1147 BLS[2] = new class BoundaryLineSet(Line);
1148
1149 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1150 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
1151 TrianglesOnBoundaryCount++;
1152
1153 for(int i=0;i<NDIM;i++) // sind Linien bereits vorhanden ???
1154 {
1155
1156
1157 if ( (LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]))).second);
1158 {
1159 LinesOnBoundaryCount++;
1160 }
1161 }
1162 BTS->GetNormalVector(*BTS->NormalVector);
1163
1164 if( (BTS->NormalVector->ScalarProduct(T.NormalVector)<0 && Storage[1]>0) || \
1165 (BTS->NormalVector->ScalarProduct(T.NormalVector)>0 && Storage[1]<0))
1166 {
1167 BTS->NormalVector->Scale(-1);
1168 }
1169
1170};
1171
1172
1173void Find_second_point_for_Tesselation(atom* a, atom* Candidate, int n, Vector Oben, double Storage[3], molecule* mol)
1174{
1175 printf("Looking for second point of starting triangle \n");
1176 int i;
1177 Vector *AngleCheck;
1178 atom* Walker;
1179
1180 AngleCheck->CopyVector(&(Candidate->x));
1181 AngleCheck->SubtractVector(&(a->x));
1182 if (AngleCheck->Angle(&Oben) < Storage[1])
1183 {
1184 //printf("Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
1185 Storage[0]=(double)(Candidate->nr);
1186 Storage[1]=AngleCheck->Angle(&Oben);
1187 //printf("Changing something in Storage: %lf %lf. \n", Storage[0], Storage[1]);
1188 };
1189 printf("%d \n", n);
1190 if (n<5)
1191 {
1192 for (i = 0; i< mol->NumberOfBondsPerAtom[Candidate->nr]; i++)
1193 {
1194 Walker = mol->start;
1195 while (Candidate->nr != (mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr ==Candidate->nr ? mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr : mol->ListOfBondsPerAtom[Candidate->nr][i]->rightatom->nr))
1196 {
1197 Walker = Walker->next;
1198 };
1199
1200 Find_second_point_for_Tesselation(a, Walker, n+1, Oben, Storage, mol);
1201 };
1202 };
1203
1204
1205};
1206
1207
1208void Tesselation::Find_starting_triangle(molecule* mol, const double RADIUS)
1209{
1210 printf("Looking for starting triangle \n");
1211 int i=0;
1212 atom* Walker;
1213 atom* Walker2;
1214 atom* Walker3;
1215 int max_index[3];
1216 double max_coordinate[3];
1217 Vector Oben;
1218 Vector helper;
1219 Vector Chord;
1220
1221 Oben.Zero();
1222
1223
1224 for(i =0; i<3; i++)
1225 {
1226 max_index[i] =-1;
1227 max_coordinate[i] =-1;
1228 }
1229printf("Molecule mol is there and has %d Atoms \n", mol->AtomCount);
1230 Walker = mol->start;
1231 while (Walker->next != mol->end)
1232 {
1233 Walker = Walker->next;
1234 for (i=0; i<3; i++)
1235 {
1236 if (Walker->x.x[i] > max_coordinate[i])
1237 {
1238 max_coordinate[i]=Walker->x.x[i];
1239 max_index[i]=Walker->nr;
1240 }
1241 }
1242 }
1243
1244printf("Found starting atom \n");
1245 //Koennen dies fuer alle Richtungen, legen hier erstmal Richtung auf k=0
1246 const int k=2;
1247
1248 Oben.x[k]=1.;
1249 Walker = mol->start;
1250 Walker = Walker->next;
1251 while (Walker->nr != max_index[k])
1252 {
1253 Walker = Walker->next;
1254 }
1255printf("%d \n", Walker->nr);
1256 double Storage[3];
1257 Storage[0]=-1.; // Id must be positive, we see should nothing be done
1258 Storage[1]=999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1259 Storage[2]=999999.; // This will be an angle looking for the third point.
1260printf("%d \n", mol->NumberOfBondsPerAtom[Walker->nr]);
1261
1262 for (i=1; i< (mol->NumberOfBondsPerAtom[Walker->nr]); i++)
1263 {
1264 Walker2 = mol->start;
1265 Walker2 = Walker2->next;
1266 while (Walker2->nr != (mol->ListOfBondsPerAtom[Walker->nr][i]->leftatom->nr == Walker->nr ? mol->ListOfBondsPerAtom[Walker->nr][i]->rightatom->nr : mol->ListOfBondsPerAtom[Walker->nr][i]->leftatom->nr) )
1267 {
1268 Walker2 = Walker2->next;
1269 }
1270
1271 Find_second_point_for_Tesselation(Walker, Walker2, 0, Oben, Storage, mol);
1272 }
1273
1274 Walker2 = mol->start;
1275
1276 while (Walker2->nr != int(Storage[0]))
1277 {
1278 Walker2 = Walker2->next;
1279 }
1280
1281 helper.CopyVector(&(Walker->x));
1282 helper.SubtractVector(&(Walker2->x));
1283 Oben.ProjectOntoPlane(&helper);
1284 helper.VectorProduct(&Oben);
1285 Storage[0]=-1.; // Id must be positive, we see should nothing be done
1286 Storage[1]=-2.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1287 Storage[2]= -10.; // This will be an angle looking for the third point.
1288
1289 Chord.CopyVector(&(Walker->x)); // bring into calling function
1290 Chord.SubtractVector(&(Walker2->x));
1291
1292printf("Looking for third point candidates \n");
1293 Find_next_suitable_point(Walker, Walker2, (mol->ListOfBondsPerAtom[Walker->nr][0]->leftatom->nr == Walker->nr ? mol->ListOfBondsPerAtom[Walker->nr][0]->rightatom : mol->ListOfBondsPerAtom[Walker->nr][0]->leftatom), 0, &Chord, &helper, &Oben, Storage, RADIUS, mol);
1294 Walker3 = mol->start;
1295 while (Walker3->nr != int(Storage[0]))
1296 {
1297 Walker3 = Walker3->next;
1298 }
1299
1300 //Starting Triangle is Walker, Walker2, index Storage[0]
1301
1302 AddPoint(Walker);
1303 AddPoint(Walker2);
1304 AddPoint(Walker3);
1305
1306 BPS[0] = new class BoundaryPointSet(Walker);
1307 BPS[1] = new class BoundaryPointSet(Walker2);
1308 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1309 BPS[0] = new class BoundaryPointSet(Walker);
1310 BPS[1] = new class BoundaryPointSet(Walker3);
1311 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1312 BPS[0] = new class BoundaryPointSet(Walker);
1313 BPS[1] = new class BoundaryPointSet(Walker2);
1314 BLS[2] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
1315
1316 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1317 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
1318 TrianglesOnBoundaryCount++;
1319
1320 for(int i=0;i<NDIM;i++)
1321 {
1322 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
1323 LinesOnBoundaryCount++;
1324 };
1325
1326 BTS->GetNormalVector(*BTS->NormalVector);
1327
1328 if( BTS->NormalVector->ScalarProduct(&Oben)<0)
1329 {
1330 BTS->NormalVector->Scale(-1);
1331 }
1332};
1333
1334
1335void Find_non_convex_border(Tesselation Tess, molecule* mol)
1336{
1337 printf("Entering finding of non convex hull. \n");
1338 const double RADIUS =6;
1339 Tess.Find_starting_triangle(mol, RADIUS);
1340
1341 for (LineMap::iterator baseline = Tess.LinesOnBoundary.begin(); baseline != Tess.LinesOnBoundary.end(); baseline++)
1342 if (baseline->second->TrianglesCount == 1)
1343 {
1344 Tess.Find_next_suitable_triangle(mol, *(baseline->second), *(baseline->second->triangles.begin()->second), RADIUS); //the line is there, so there is a triangle, but only one.
1345 }
1346 else
1347 {
1348 printf("There is a line with %d triangles adjacent", baseline->second->TrianglesCount);
1349 }
1350};
Note: See TracBrowser for help on using the repository browser.