1 | #include "molecules.hpp"
|
---|
2 | #include "boundary.hpp"
|
---|
3 |
|
---|
4 |
|
---|
5 |
|
---|
6 |
|
---|
7 | // ======================================== Points on Boundary =================================
|
---|
8 |
|
---|
9 | BoundaryPointSet::BoundaryPointSet()
|
---|
10 | {
|
---|
11 | LinesCount = 0;
|
---|
12 | Nr = -1;
|
---|
13 | };
|
---|
14 |
|
---|
15 | BoundaryPointSet::BoundaryPointSet(atom *Walker)
|
---|
16 | {
|
---|
17 | node = Walker;
|
---|
18 | LinesCount = 0;
|
---|
19 | Nr = Walker->nr;
|
---|
20 | };
|
---|
21 |
|
---|
22 | BoundaryPointSet::~BoundaryPointSet()
|
---|
23 | {
|
---|
24 | cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
|
---|
25 | node = NULL;
|
---|
26 | };
|
---|
27 |
|
---|
28 | void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
|
---|
29 | {
|
---|
30 | cout << Verbose(6) << "Adding line " << *line << " to " << *this << "." << endl;
|
---|
31 | if (line->endpoints[0] == this) {
|
---|
32 | lines.insert ( LinePair( line->endpoints[1]->Nr, line) );
|
---|
33 | } else {
|
---|
34 | lines.insert ( LinePair( line->endpoints[0]->Nr, line) );
|
---|
35 | }
|
---|
36 | LinesCount++;
|
---|
37 | };
|
---|
38 |
|
---|
39 | ostream & operator << (ostream &ost, BoundaryPointSet &a)
|
---|
40 | {
|
---|
41 | ost << "[" << a.Nr << "|" << a.node->Name << "]";
|
---|
42 | return ost;
|
---|
43 | };
|
---|
44 |
|
---|
45 | // ======================================== Lines on Boundary =================================
|
---|
46 |
|
---|
47 | BoundaryLineSet::BoundaryLineSet()
|
---|
48 | {
|
---|
49 | for (int i=0;i<2;i++)
|
---|
50 | endpoints[i] = NULL;
|
---|
51 | TrianglesCount = 0;
|
---|
52 | Nr = -1;
|
---|
53 | };
|
---|
54 |
|
---|
55 | BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
|
---|
56 | {
|
---|
57 | // set number
|
---|
58 | Nr = number;
|
---|
59 | // set endpoints in ascending order
|
---|
60 | SetEndpointsOrdered(endpoints, Point[0], Point[1]);
|
---|
61 | // add this line to the hash maps of both endpoints
|
---|
62 | Point[0]->AddLine(this);
|
---|
63 | Point[1]->AddLine(this);
|
---|
64 | // clear triangles list
|
---|
65 | TrianglesCount = 0;
|
---|
66 | cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
|
---|
67 | };
|
---|
68 |
|
---|
69 | BoundaryLineSet::~BoundaryLineSet()
|
---|
70 | {
|
---|
71 | for (int i=0;i<2;i++) {
|
---|
72 | cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
|
---|
73 | endpoints[i]->lines.erase(Nr);
|
---|
74 | LineMap::iterator tester = endpoints[i]->lines.begin();
|
---|
75 | tester++;
|
---|
76 | if (tester == endpoints[i]->lines.end()) {
|
---|
77 | cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
|
---|
78 | delete(endpoints[i]);
|
---|
79 | } else
|
---|
80 | cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
|
---|
81 | }
|
---|
82 | };
|
---|
83 |
|
---|
84 | void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
|
---|
85 | {
|
---|
86 | cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
|
---|
87 | triangles.insert ( TrianglePair( TrianglesCount, triangle) );
|
---|
88 | TrianglesCount++;
|
---|
89 | };
|
---|
90 |
|
---|
91 | ostream & operator << (ostream &ost, BoundaryLineSet &a)
|
---|
92 | {
|
---|
93 | ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
|
---|
94 | return ost;
|
---|
95 | };
|
---|
96 |
|
---|
97 | // ======================================== Triangles on Boundary =================================
|
---|
98 |
|
---|
99 |
|
---|
100 | BoundaryTriangleSet::BoundaryTriangleSet()
|
---|
101 | {
|
---|
102 | for (int i=0;i<3;i++) {
|
---|
103 | endpoints[i] = NULL;
|
---|
104 | lines[i] = NULL;
|
---|
105 | }
|
---|
106 | Nr = -1;
|
---|
107 | };
|
---|
108 |
|
---|
109 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
|
---|
110 | {
|
---|
111 | // set number
|
---|
112 | Nr = number;
|
---|
113 | // set lines
|
---|
114 | cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
|
---|
115 | for (int i=0;i<3;i++) {
|
---|
116 | lines[i] = line[i];
|
---|
117 | lines[i]->AddTriangle(this);
|
---|
118 | }
|
---|
119 | // get ascending order of endpoints
|
---|
120 | map <int, class BoundaryPointSet * > OrderMap;
|
---|
121 | for(int i=0;i<3;i++) // for all three lines
|
---|
122 | for (int j=0;j<2;j++) { // for both endpoints
|
---|
123 | OrderMap.insert ( pair <int, class BoundaryPointSet * >( line[i]->endpoints[j]->Nr, line[i]->endpoints[j]) );
|
---|
124 | // and we don't care whether insertion fails
|
---|
125 | }
|
---|
126 | // set endpoints
|
---|
127 | int Counter = 0;
|
---|
128 | cout << Verbose(6) << " with end points ";
|
---|
129 | for (map <int, class BoundaryPointSet * >::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
|
---|
130 | endpoints[Counter] = runner->second;
|
---|
131 | cout << " " << *endpoints[Counter];
|
---|
132 | Counter++;
|
---|
133 | }
|
---|
134 | if (Counter < 3) {
|
---|
135 | cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
|
---|
136 | //exit(1);
|
---|
137 | }
|
---|
138 | cout << "." << endl;
|
---|
139 | };
|
---|
140 |
|
---|
141 | BoundaryTriangleSet::~BoundaryTriangleSet()
|
---|
142 | {
|
---|
143 | for (int i=0;i<3;i++) {
|
---|
144 | cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
|
---|
145 | lines[i]->triangles.erase(Nr);
|
---|
146 | TriangleMap::iterator tester = lines[i]->triangles.begin();
|
---|
147 | tester++;
|
---|
148 | if (tester == lines[i]->triangles.end()) {
|
---|
149 | cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
|
---|
150 | delete(lines[i]);
|
---|
151 | } else
|
---|
152 | cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
|
---|
153 | }
|
---|
154 | };
|
---|
155 |
|
---|
156 | void BoundaryTriangleSet::GetNormalVector(Vector &NormalVector)
|
---|
157 | {
|
---|
158 | // get normal vector
|
---|
159 | NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x);
|
---|
160 |
|
---|
161 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
|
---|
162 | if (endpoints[0]->node->x.Projection(&NormalVector) > 0)
|
---|
163 | NormalVector.Scale(-1.);
|
---|
164 | };
|
---|
165 |
|
---|
166 | ostream & operator << (ostream &ost, BoundaryTriangleSet &a)
|
---|
167 | {
|
---|
168 | ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
|
---|
169 | return ost;
|
---|
170 | };
|
---|
171 |
|
---|
172 | // ========================================== F U N C T I O N S =================================
|
---|
173 |
|
---|
174 | /** Finds the endpoint two lines are sharing.
|
---|
175 | * \param *line1 first line
|
---|
176 | * \param *line2 second line
|
---|
177 | * \return point which is shared or NULL if none
|
---|
178 | */
|
---|
179 | class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
|
---|
180 | {
|
---|
181 | class BoundaryLineSet * lines[2] = {line1, line2};
|
---|
182 | class BoundaryPointSet *node = NULL;
|
---|
183 | map <int, class BoundaryPointSet * > OrderMap;
|
---|
184 | pair < map <int, class BoundaryPointSet * >::iterator, bool > OrderTest;
|
---|
185 | for(int i=0;i<2;i++) // for both lines
|
---|
186 | for (int j=0;j<2;j++) { // for both endpoints
|
---|
187 | OrderTest = OrderMap.insert ( pair <int, class BoundaryPointSet * >( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]) );
|
---|
188 | if (!OrderTest.second) { // if insertion fails, we have common endpoint
|
---|
189 | node = OrderTest.first->second;
|
---|
190 | cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
|
---|
191 | j=2;
|
---|
192 | i=2;
|
---|
193 | break;
|
---|
194 | }
|
---|
195 | }
|
---|
196 | return node;
|
---|
197 | };
|
---|
198 |
|
---|
199 | /** Determines the boundary points of a cluster.
|
---|
200 | * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
|
---|
201 | * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
|
---|
202 | * center and first and last point in the triple, it is thrown out.
|
---|
203 | * \param *out output stream for debugging
|
---|
204 | * \param *mol molecule structure representing the cluster
|
---|
205 | */
|
---|
206 | Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol)
|
---|
207 | {
|
---|
208 | atom *Walker = NULL;
|
---|
209 | PointMap PointsOnBoundary;
|
---|
210 | LineMap LinesOnBoundary;
|
---|
211 | TriangleMap TrianglesOnBoundary;
|
---|
212 |
|
---|
213 | *out << Verbose(1) << "Finding all boundary points." << endl;
|
---|
214 | Boundaries *BoundaryPoints = new Boundaries [NDIM]; // first is alpha, second is (r, nr)
|
---|
215 | BoundariesTestPair BoundaryTestPair;
|
---|
216 | Vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
|
---|
217 | double radius, angle;
|
---|
218 | // 3a. Go through every axis
|
---|
219 | for (int axis=0; axis<NDIM; axis++) {
|
---|
220 | AxisVector.Zero();
|
---|
221 | AngleReferenceVector.Zero();
|
---|
222 | AngleReferenceNormalVector.Zero();
|
---|
223 | AxisVector.x[axis] = 1.;
|
---|
224 | AngleReferenceVector.x[(axis+1)%NDIM] = 1.;
|
---|
225 | AngleReferenceNormalVector.x[(axis+2)%NDIM] = 1.;
|
---|
226 | // *out << Verbose(1) << "Axisvector is ";
|
---|
227 | // AxisVector.Output(out);
|
---|
228 | // *out << " and AngleReferenceVector is ";
|
---|
229 | // AngleReferenceVector.Output(out);
|
---|
230 | // *out << "." << endl;
|
---|
231 | // *out << " and AngleReferenceNormalVector is ";
|
---|
232 | // AngleReferenceNormalVector.Output(out);
|
---|
233 | // *out << "." << endl;
|
---|
234 | // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
|
---|
235 | Walker = mol->start;
|
---|
236 | while (Walker->next != mol->end) {
|
---|
237 | Walker = Walker->next;
|
---|
238 | Vector ProjectedVector;
|
---|
239 | ProjectedVector.CopyVector(&Walker->x);
|
---|
240 | ProjectedVector.ProjectOntoPlane(&AxisVector);
|
---|
241 | // correct for negative side
|
---|
242 | //if (Projection(y) < 0)
|
---|
243 | //angle = 2.*M_PI - angle;
|
---|
244 | radius = ProjectedVector.Norm();
|
---|
245 | if (fabs(radius) > MYEPSILON)
|
---|
246 | angle = ProjectedVector.Angle(&AngleReferenceVector);
|
---|
247 | else
|
---|
248 | angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
|
---|
249 |
|
---|
250 | //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
|
---|
251 | if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) {
|
---|
252 | angle = 2.*M_PI - angle;
|
---|
253 | }
|
---|
254 | //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
|
---|
255 | //ProjectedVector.Output(out);
|
---|
256 | //*out << endl;
|
---|
257 | BoundaryTestPair = BoundaryPoints[axis].insert( BoundariesPair (angle, DistancePair (radius, Walker) ) );
|
---|
258 | if (BoundaryTestPair.second) { // successfully inserted
|
---|
259 | } else { // same point exists, check first r, then distance of original vectors to center of gravity
|
---|
260 | *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl;
|
---|
261 | *out << Verbose(2) << "Present vector: ";
|
---|
262 | BoundaryTestPair.first->second.second->x.Output(out);
|
---|
263 | *out << endl;
|
---|
264 | *out << Verbose(2) << "New vector: ";
|
---|
265 | Walker->x.Output(out);
|
---|
266 | *out << endl;
|
---|
267 | double tmp = ProjectedVector.Norm();
|
---|
268 | if (tmp > BoundaryTestPair.first->second.first) {
|
---|
269 | BoundaryTestPair.first->second.first = tmp;
|
---|
270 | BoundaryTestPair.first->second.second = Walker;
|
---|
271 | *out << Verbose(2) << "Keeping new vector." << endl;
|
---|
272 | } else if (tmp == BoundaryTestPair.first->second.first) {
|
---|
273 | if (BoundaryTestPair.first->second.second->x.ScalarProduct(&BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower
|
---|
274 | BoundaryTestPair.first->second.second = Walker;
|
---|
275 | *out << Verbose(2) << "Keeping new vector." << endl;
|
---|
276 | } else {
|
---|
277 | *out << Verbose(2) << "Keeping present vector." << endl;
|
---|
278 | }
|
---|
279 | } else {
|
---|
280 | *out << Verbose(2) << "Keeping present vector." << endl;
|
---|
281 | }
|
---|
282 | }
|
---|
283 | }
|
---|
284 | // printing all inserted for debugging
|
---|
285 | // {
|
---|
286 | // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
|
---|
287 | // int i=0;
|
---|
288 | // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
289 | // if (runner != BoundaryPoints[axis].begin())
|
---|
290 | // *out << ", " << i << ": " << *runner->second.second;
|
---|
291 | // else
|
---|
292 | // *out << i << ": " << *runner->second.second;
|
---|
293 | // i++;
|
---|
294 | // }
|
---|
295 | // *out << endl;
|
---|
296 | // }
|
---|
297 | // 3c. throw out points whose distance is less than the mean of left and right neighbours
|
---|
298 | bool flag = false;
|
---|
299 | do { // do as long as we still throw one out per round
|
---|
300 | *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl;
|
---|
301 | flag = false;
|
---|
302 | Boundaries::iterator left = BoundaryPoints[axis].end();
|
---|
303 | Boundaries::iterator right = BoundaryPoints[axis].end();
|
---|
304 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
305 | // set neighbours correctly
|
---|
306 | if (runner == BoundaryPoints[axis].begin()) {
|
---|
307 | left = BoundaryPoints[axis].end();
|
---|
308 | } else {
|
---|
309 | left = runner;
|
---|
310 | }
|
---|
311 | left--;
|
---|
312 | right = runner;
|
---|
313 | right++;
|
---|
314 | if (right == BoundaryPoints[axis].end()) {
|
---|
315 | right = BoundaryPoints[axis].begin();
|
---|
316 | }
|
---|
317 | // check distance
|
---|
318 |
|
---|
319 | // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
|
---|
320 | {
|
---|
321 | Vector SideA, SideB, SideC, SideH;
|
---|
322 | SideA.CopyVector(&left->second.second->x);
|
---|
323 | SideA.ProjectOntoPlane(&AxisVector);
|
---|
324 | // *out << "SideA: ";
|
---|
325 | // SideA.Output(out);
|
---|
326 | // *out << endl;
|
---|
327 |
|
---|
328 | SideB.CopyVector(&right->second.second->x);
|
---|
329 | SideB.ProjectOntoPlane(&AxisVector);
|
---|
330 | // *out << "SideB: ";
|
---|
331 | // SideB.Output(out);
|
---|
332 | // *out << endl;
|
---|
333 |
|
---|
334 | SideC.CopyVector(&left->second.second->x);
|
---|
335 | SideC.SubtractVector(&right->second.second->x);
|
---|
336 | SideC.ProjectOntoPlane(&AxisVector);
|
---|
337 | // *out << "SideC: ";
|
---|
338 | // SideC.Output(out);
|
---|
339 | // *out << endl;
|
---|
340 |
|
---|
341 | SideH.CopyVector(&runner->second.second->x);
|
---|
342 | SideH.ProjectOntoPlane(&AxisVector);
|
---|
343 | // *out << "SideH: ";
|
---|
344 | // SideH.Output(out);
|
---|
345 | // *out << endl;
|
---|
346 |
|
---|
347 | // calculate each length
|
---|
348 | double a = SideA.Norm();
|
---|
349 | //double b = SideB.Norm();
|
---|
350 | //double c = SideC.Norm();
|
---|
351 | double h = SideH.Norm();
|
---|
352 | // calculate the angles
|
---|
353 | double alpha = SideA.Angle(&SideH);
|
---|
354 | double beta = SideA.Angle(&SideC);
|
---|
355 | double gamma = SideB.Angle(&SideH);
|
---|
356 | double delta = SideC.Angle(&SideH);
|
---|
357 | double MinDistance = a * sin(beta)/(sin(delta)) * (((alpha < M_PI/2.) || (gamma < M_PI/2.)) ? 1. : -1.);
|
---|
358 | // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
|
---|
359 | //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
|
---|
360 | if ((fabs(h/fabs(h) - MinDistance/fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) {
|
---|
361 | // throw out point
|
---|
362 | //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
|
---|
363 | BoundaryPoints[axis].erase(runner);
|
---|
364 | flag = true;
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|
368 | } while (flag);
|
---|
369 | }
|
---|
370 | return BoundaryPoints;
|
---|
371 | };
|
---|
372 |
|
---|
373 | /** Determines greatest diameters of a cluster defined by its convex envelope.
|
---|
374 | * Looks at lines parallel to one axis and where they intersect on the projected planes
|
---|
375 | * \param *out output stream for debugging
|
---|
376 | * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
|
---|
377 | * \param *mol molecule structure representing the cluster
|
---|
378 | * \param IsAngstroem whether we have angstroem or atomic units
|
---|
379 | * \return NDIM array of the diameters
|
---|
380 | */
|
---|
381 | double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol, bool IsAngstroem)
|
---|
382 | {
|
---|
383 | // get points on boundary of NULL was given as parameter
|
---|
384 | bool BoundaryFreeFlag = false;
|
---|
385 | Boundaries *BoundaryPoints = BoundaryPtr;
|
---|
386 | if (BoundaryPoints == NULL) {
|
---|
387 | BoundaryFreeFlag = true;
|
---|
388 | BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
389 | } else {
|
---|
390 | *out << Verbose(1) << "Using given boundary points set." << endl;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // determine biggest "diameter" of cluster for each axis
|
---|
394 | Boundaries::iterator Neighbour, OtherNeighbour;
|
---|
395 | double *GreatestDiameter = new double[NDIM];
|
---|
396 | for(int i=0;i<NDIM;i++)
|
---|
397 | GreatestDiameter[i] = 0.;
|
---|
398 | double OldComponent, tmp, w1, w2;
|
---|
399 | Vector DistanceVector, OtherVector;
|
---|
400 | int component, Othercomponent;
|
---|
401 | for(int axis=0;axis<NDIM;axis++) { // regard each projected plane
|
---|
402 | //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
|
---|
403 | for (int j=0;j<2;j++) { // and for both axis on the current plane
|
---|
404 | component = (axis+j+1)%NDIM;
|
---|
405 | Othercomponent = (axis+1+((j+1) & 1))%NDIM;
|
---|
406 | //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
|
---|
407 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
408 | //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
|
---|
409 | // seek for the neighbours pair where the Othercomponent sign flips
|
---|
410 | Neighbour = runner;
|
---|
411 | Neighbour++;
|
---|
412 | if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
|
---|
413 | Neighbour = BoundaryPoints[axis].begin();
|
---|
414 | DistanceVector.CopyVector(&runner->second.second->x);
|
---|
415 | DistanceVector.SubtractVector(&Neighbour->second.second->x);
|
---|
416 | do { // seek for neighbour pair where it flips
|
---|
417 | OldComponent = DistanceVector.x[Othercomponent];
|
---|
418 | Neighbour++;
|
---|
419 | if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
|
---|
420 | Neighbour = BoundaryPoints[axis].begin();
|
---|
421 | DistanceVector.CopyVector(&runner->second.second->x);
|
---|
422 | DistanceVector.SubtractVector(&Neighbour->second.second->x);
|
---|
423 | //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
|
---|
424 | } while ((runner != Neighbour) && ( fabs( OldComponent/fabs(OldComponent) - DistanceVector.x[Othercomponent]/fabs(DistanceVector.x[Othercomponent]) ) < MYEPSILON)); // as long as sign does not flip
|
---|
425 | if (runner != Neighbour) {
|
---|
426 | OtherNeighbour = Neighbour;
|
---|
427 | if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
|
---|
428 | OtherNeighbour = BoundaryPoints[axis].end();
|
---|
429 | OtherNeighbour--;
|
---|
430 | //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
|
---|
431 | // now we have found the pair: Neighbour and OtherNeighbour
|
---|
432 | OtherVector.CopyVector(&runner->second.second->x);
|
---|
433 | OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
|
---|
434 | //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
|
---|
435 | //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
|
---|
436 | // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
|
---|
437 | w1 = fabs(OtherVector.x[Othercomponent]);
|
---|
438 | w2 = fabs(DistanceVector.x[Othercomponent]);
|
---|
439 | tmp = fabs((w1*DistanceVector.x[component] + w2*OtherVector.x[component])/(w1+w2));
|
---|
440 | // mark if it has greater diameter
|
---|
441 | //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
|
---|
442 | GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp;
|
---|
443 | } //else
|
---|
444 | //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
|
---|
445 | }
|
---|
446 | }
|
---|
447 | }
|
---|
448 | *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl;
|
---|
449 |
|
---|
450 | // free reference lists
|
---|
451 | if (BoundaryFreeFlag)
|
---|
452 | delete[](BoundaryPoints);
|
---|
453 |
|
---|
454 | return GreatestDiameter;
|
---|
455 | };
|
---|
456 |
|
---|
457 |
|
---|
458 | /** Determines the volume of a cluster.
|
---|
459 | * Determines first the convex envelope, then tesselates it and calculates its volume.
|
---|
460 | * \param *out output stream for debugging
|
---|
461 | * \param *tecplot output stream for tecplot data
|
---|
462 | * \param *configuration needed for path to store convex envelope file
|
---|
463 | * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
|
---|
464 | * \param *mol molecule structure representing the cluster
|
---|
465 | * \return determined volume of the cluster in cubed config:GetIsAngstroem()
|
---|
466 | */
|
---|
467 | double VolumeOfConvexEnvelope(ofstream *out, ofstream *tecplot, config *configuration, Boundaries *BoundaryPtr, molecule *mol)
|
---|
468 | {
|
---|
469 | bool IsAngstroem = configuration->GetIsAngstroem();
|
---|
470 | atom *Walker = NULL;
|
---|
471 | struct Tesselation *TesselStruct = new Tesselation;
|
---|
472 | bool BoundaryFreeFlag = false;
|
---|
473 | Boundaries *BoundaryPoints = BoundaryPtr;
|
---|
474 | double volume = 0.;
|
---|
475 | double PyramidVolume = 0.;
|
---|
476 | double G,h;
|
---|
477 | Vector x,y;
|
---|
478 | double a,b,c;
|
---|
479 |
|
---|
480 | Find_non_convex_border(*TesselStruct, mol);
|
---|
481 | /*
|
---|
482 | // 1. calculate center of gravity
|
---|
483 | *out << endl;
|
---|
484 | Vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
|
---|
485 |
|
---|
486 | // 2. translate all points into CoG
|
---|
487 | *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
|
---|
488 | Walker = mol->start;
|
---|
489 | while (Walker->next != mol->end) {
|
---|
490 | Walker = Walker->next;
|
---|
491 | Walker->x.Translate(CenterOfGravity);
|
---|
492 | }
|
---|
493 |
|
---|
494 | // 3. Find all points on the boundary
|
---|
495 | if (BoundaryPoints == NULL) {
|
---|
496 | BoundaryFreeFlag = true;
|
---|
497 | BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
498 | } else {
|
---|
499 | *out << Verbose(1) << "Using given boundary points set." << endl;
|
---|
500 | }
|
---|
501 |
|
---|
502 | // 4. fill the boundary point list
|
---|
503 | for (int axis=0;axis<NDIM;axis++)
|
---|
504 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
505 | TesselStruct->AddPoint(runner->second.second);
|
---|
506 | }
|
---|
507 |
|
---|
508 | *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl;
|
---|
509 | // now we have the whole set of edge points in the BoundaryList
|
---|
510 |
|
---|
511 | // listing for debugging
|
---|
512 | // *out << Verbose(1) << "Listing PointsOnBoundary:";
|
---|
513 | // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
|
---|
514 | // *out << " " << *runner->second;
|
---|
515 | // }
|
---|
516 | // *out << endl;
|
---|
517 |
|
---|
518 | // 5a. guess starting triangle
|
---|
519 | TesselStruct->GuessStartingTriangle(out);
|
---|
520 |
|
---|
521 | // 5b. go through all lines, that are not yet part of two triangles (only of one so far)
|
---|
522 | TesselStruct->TesselateOnBoundary(out, configuration, mol);
|
---|
523 |
|
---|
524 | *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl;
|
---|
525 | */
|
---|
526 |
|
---|
527 |
|
---|
528 | // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
|
---|
529 | *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl;
|
---|
530 | for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak
|
---|
531 | x.CopyVector(&runner->second->endpoints[0]->node->x);
|
---|
532 | x.SubtractVector(&runner->second->endpoints[1]->node->x);
|
---|
533 | y.CopyVector(&runner->second->endpoints[0]->node->x);
|
---|
534 | y.SubtractVector(&runner->second->endpoints[2]->node->x);
|
---|
535 | a = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[1]->node->x));
|
---|
536 | b = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[2]->node->x));
|
---|
537 | c = sqrt(runner->second->endpoints[2]->node->x.Distance(&runner->second->endpoints[1]->node->x));
|
---|
538 | G = sqrt( ( (a*a+b*b+c*c)*(a*a+b*b+c*c) - 2*(a*a*a*a + b*b*b*b + c*c*c*c) )/16.); // area of tesselated triangle
|
---|
539 | x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x);
|
---|
540 | x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
|
---|
541 | h = x.Norm(); // distance of CoG to triangle
|
---|
542 | PyramidVolume = (1./3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
|
---|
543 | *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
544 | volume += PyramidVolume;
|
---|
545 | }
|
---|
546 | *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
547 |
|
---|
548 | /*
|
---|
549 | // 7. translate all points back from CoG
|
---|
550 | *out << Verbose(1) << "Translating system back from Center of Gravity." << endl;
|
---|
551 | CenterOfGravity->Scale(-1);
|
---|
552 | Walker = mol->start;
|
---|
553 | while (Walker->next != mol->end) {
|
---|
554 | Walker = Walker->next;
|
---|
555 | Walker->x.Translate(CenterOfGravity);
|
---|
556 | }
|
---|
557 | */
|
---|
558 |
|
---|
559 |
|
---|
560 |
|
---|
561 |
|
---|
562 |
|
---|
563 | // 8. Store triangles in tecplot file
|
---|
564 | if (tecplot != NULL) {
|
---|
565 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
566 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
|
---|
567 | *tecplot << "ZONE T=\"TRIANGLES\", N=" << TesselStruct->PointsOnBoundaryCount << ", E=" << TesselStruct->TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
568 | int *LookupList = new int[mol->AtomCount];
|
---|
569 | for (int i=0;i<mol->AtomCount;i++)
|
---|
570 | LookupList[i] = -1;
|
---|
571 |
|
---|
572 | // print atom coordinates
|
---|
573 | *out << Verbose(2) << "The following triangles were created:";
|
---|
574 | int Counter = 1;
|
---|
575 | atom *Walker = NULL;
|
---|
576 | for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
|
---|
577 | Walker = target->second->node;
|
---|
578 | LookupList[Walker->nr] = Counter++;
|
---|
579 | *tecplot << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl;
|
---|
580 | }
|
---|
581 | *tecplot << endl;
|
---|
582 | // print connectivity
|
---|
583 | for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
|
---|
584 | *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
|
---|
585 | *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
586 | }
|
---|
587 | delete[](LookupList);
|
---|
588 | *out << endl;
|
---|
589 | }
|
---|
590 |
|
---|
591 | // free reference lists
|
---|
592 | if (BoundaryFreeFlag)
|
---|
593 | delete[](BoundaryPoints);
|
---|
594 |
|
---|
595 | return volume;
|
---|
596 | };
|
---|
597 |
|
---|
598 |
|
---|
599 | /** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
|
---|
600 | * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
|
---|
601 | * \param *out output stream for debugging
|
---|
602 | * \param *configuration needed for path to store convex envelope file
|
---|
603 | * \param *mol molecule structure representing the cluster
|
---|
604 | * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
|
---|
605 | * \param celldensity desired average density in final cell
|
---|
606 | */
|
---|
607 | void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, double ClusterVolume, double celldensity)
|
---|
608 | {
|
---|
609 | // transform to PAS
|
---|
610 | mol->PrincipalAxisSystem(out, true);
|
---|
611 |
|
---|
612 | // some preparations beforehand
|
---|
613 | bool IsAngstroem = configuration->GetIsAngstroem();
|
---|
614 | Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
615 | double clustervolume;
|
---|
616 | if (ClusterVolume == 0)
|
---|
617 | clustervolume = VolumeOfConvexEnvelope(out, NULL, configuration, BoundaryPoints, mol);
|
---|
618 | else
|
---|
619 | clustervolume = ClusterVolume;
|
---|
620 | double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol, IsAngstroem);
|
---|
621 | Vector BoxLengths;
|
---|
622 | int repetition[NDIM] = {1, 1, 1};
|
---|
623 | int TotalNoClusters = 1;
|
---|
624 | for (int i=0;i<NDIM;i++)
|
---|
625 | TotalNoClusters *= repetition[i];
|
---|
626 |
|
---|
627 | // sum up the atomic masses
|
---|
628 | double totalmass = 0.;
|
---|
629 | atom *Walker = mol->start;
|
---|
630 | while (Walker->next != mol->end) {
|
---|
631 | Walker = Walker->next;
|
---|
632 | totalmass += Walker->type->mass;
|
---|
633 | }
|
---|
634 | *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl;
|
---|
635 |
|
---|
636 | *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass/clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
637 |
|
---|
638 | // solve cubic polynomial
|
---|
639 | *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl;
|
---|
640 | double cellvolume;
|
---|
641 | if (IsAngstroem)
|
---|
642 | cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_A - (totalmass/clustervolume))/(celldensity-1);
|
---|
643 | else
|
---|
644 | cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_a0 - (totalmass/clustervolume))/(celldensity-1);
|
---|
645 | *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
646 |
|
---|
647 | double minimumvolume = TotalNoClusters*(GreatestDiameter[0]*GreatestDiameter[1]*GreatestDiameter[2]);
|
---|
648 | *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
649 | if (minimumvolume > cellvolume) {
|
---|
650 | cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl;
|
---|
651 | cout << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl;
|
---|
652 | for(int i=0;i<NDIM;i++)
|
---|
653 | BoxLengths.x[i] = GreatestDiameter[i];
|
---|
654 | mol->CenterEdge(out, &BoxLengths);
|
---|
655 | } else {
|
---|
656 | BoxLengths.x[0] = (repetition[0]*GreatestDiameter[0] + repetition[1]*GreatestDiameter[1] + repetition[2]*GreatestDiameter[2]);
|
---|
657 | BoxLengths.x[1] = (repetition[0]*repetition[1]*GreatestDiameter[0]*GreatestDiameter[1]
|
---|
658 | + repetition[0]*repetition[2]*GreatestDiameter[0]*GreatestDiameter[2]
|
---|
659 | + repetition[1]*repetition[2]*GreatestDiameter[1]*GreatestDiameter[2]);
|
---|
660 | BoxLengths.x[2] = minimumvolume - cellvolume;
|
---|
661 | double x0 = 0.,x1 = 0.,x2 = 0.;
|
---|
662 | if (gsl_poly_solve_cubic(BoxLengths.x[0],BoxLengths.x[1],BoxLengths.x[2],&x0,&x1,&x2) == 1) // either 1 or 3 on return
|
---|
663 | *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl;
|
---|
664 | else {
|
---|
665 | *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl;
|
---|
666 | x0 = x2; // sorted in ascending order
|
---|
667 | }
|
---|
668 |
|
---|
669 | cellvolume = 1;
|
---|
670 | for(int i=0;i<NDIM;i++) {
|
---|
671 | BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]);
|
---|
672 | cellvolume *= BoxLengths.x[i];
|
---|
673 | }
|
---|
674 |
|
---|
675 | // set new box dimensions
|
---|
676 | *out << Verbose(0) << "Translating to box with these boundaries." << endl;
|
---|
677 | mol->CenterInBox((ofstream *)&cout, &BoxLengths);
|
---|
678 | }
|
---|
679 | // update Box of atoms by boundary
|
---|
680 | mol->SetBoxDimension(&BoxLengths);
|
---|
681 | *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and " << BoxLengths.x[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
682 | };
|
---|
683 |
|
---|
684 |
|
---|
685 | // =========================================================== class TESSELATION ===========================================
|
---|
686 |
|
---|
687 | /** Constructor of class Tesselation.
|
---|
688 | */
|
---|
689 | Tesselation::Tesselation()
|
---|
690 | {
|
---|
691 | PointsOnBoundaryCount = 0;
|
---|
692 | LinesOnBoundaryCount = 0;
|
---|
693 | TrianglesOnBoundaryCount = 0;
|
---|
694 | };
|
---|
695 |
|
---|
696 | /** Constructor of class Tesselation.
|
---|
697 | * We have to free all points, lines and triangles.
|
---|
698 | */
|
---|
699 | Tesselation::~Tesselation()
|
---|
700 | {
|
---|
701 | for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
|
---|
702 | delete(runner->second);
|
---|
703 | }
|
---|
704 | };
|
---|
705 |
|
---|
706 | /** Gueses first starting triangle of the convex envelope.
|
---|
707 | * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
|
---|
708 | * \param *out output stream for debugging
|
---|
709 | * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
|
---|
710 | */
|
---|
711 | void Tesselation::GuessStartingTriangle(ofstream *out)
|
---|
712 | {
|
---|
713 | // 4b. create a starting triangle
|
---|
714 | // 4b1. create all distances
|
---|
715 | DistanceMultiMap DistanceMMap;
|
---|
716 | double distance, tmp;
|
---|
717 | Vector PlaneVector, TrialVector;
|
---|
718 | PointMap::iterator A, B, C; // three nodes of the first triangle
|
---|
719 | A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
|
---|
720 |
|
---|
721 | // with A chosen, take each pair B,C and sort
|
---|
722 | if (A != PointsOnBoundary.end()) {
|
---|
723 | B = A;
|
---|
724 | B++;
|
---|
725 | for (; B != PointsOnBoundary.end(); B++) {
|
---|
726 | C = B;
|
---|
727 | C++;
|
---|
728 | for (; C != PointsOnBoundary.end(); C++) {
|
---|
729 | tmp = A->second->node->x.Distance(&B->second->node->x);
|
---|
730 | distance = tmp*tmp;
|
---|
731 | tmp = A->second->node->x.Distance(&C->second->node->x);
|
---|
732 | distance += tmp*tmp;
|
---|
733 | tmp = B->second->node->x.Distance(&C->second->node->x);
|
---|
734 | distance += tmp*tmp;
|
---|
735 | DistanceMMap.insert( DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator>(B,C) ) );
|
---|
736 | }
|
---|
737 | }
|
---|
738 | }
|
---|
739 | // // listing distances
|
---|
740 | // *out << Verbose(1) << "Listing DistanceMMap:";
|
---|
741 | // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
|
---|
742 | // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
|
---|
743 | // }
|
---|
744 | // *out << endl;
|
---|
745 |
|
---|
746 | // 4b2. pick three baselines forming a triangle
|
---|
747 | // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
748 | DistanceMultiMap::iterator baseline = DistanceMMap.begin();
|
---|
749 | for (; baseline != DistanceMMap.end(); baseline++) {
|
---|
750 | // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
751 | // 2. next, we have to check whether all points reside on only one side of the triangle
|
---|
752 | // 3. construct plane vector
|
---|
753 | PlaneVector.MakeNormalVector(&A->second->node->x, &baseline->second.first->second->node->x, &baseline->second.second->second->node->x);
|
---|
754 | *out << Verbose(2) << "Plane vector of candidate triangle is ";
|
---|
755 | PlaneVector.Output(out);
|
---|
756 | *out << endl;
|
---|
757 | // 4. loop over all points
|
---|
758 | double sign = 0.;
|
---|
759 | PointMap::iterator checker = PointsOnBoundary.begin();
|
---|
760 | for (; checker != PointsOnBoundary.end(); checker++) {
|
---|
761 | // (neglecting A,B,C)
|
---|
762 | if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
|
---|
763 | continue;
|
---|
764 | // 4a. project onto plane vector
|
---|
765 | TrialVector.CopyVector(&checker->second->node->x);
|
---|
766 | TrialVector.SubtractVector(&A->second->node->x);
|
---|
767 | distance = TrialVector.Projection(&PlaneVector);
|
---|
768 | if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
|
---|
769 | continue;
|
---|
770 | *out << Verbose(3) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl;
|
---|
771 | tmp = distance/fabs(distance);
|
---|
772 | // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
|
---|
773 | if ((sign != 0) && (tmp != sign)) {
|
---|
774 | // 4c. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
775 | *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " outside the convex hull." << endl;
|
---|
776 | break;
|
---|
777 | } else { // note the sign for later
|
---|
778 | *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl;
|
---|
779 | sign = tmp;
|
---|
780 | }
|
---|
781 | // 4d. Check whether the point is inside the triangle (check distance to each node
|
---|
782 | tmp = checker->second->node->x.Distance(&A->second->node->x);
|
---|
783 | int innerpoint = 0;
|
---|
784 | if ((tmp < A->second->node->x.Distance(&baseline->second.first->second->node->x))
|
---|
785 | && (tmp < A->second->node->x.Distance(&baseline->second.second->second->node->x)))
|
---|
786 | innerpoint++;
|
---|
787 | tmp = checker->second->node->x.Distance(&baseline->second.first->second->node->x);
|
---|
788 | if ((tmp < baseline->second.first->second->node->x.Distance(&A->second->node->x))
|
---|
789 | && (tmp < baseline->second.first->second->node->x.Distance(&baseline->second.second->second->node->x)))
|
---|
790 | innerpoint++;
|
---|
791 | tmp = checker->second->node->x.Distance(&baseline->second.second->second->node->x);
|
---|
792 | if ((tmp < baseline->second.second->second->node->x.Distance(&baseline->second.first->second->node->x))
|
---|
793 | && (tmp < baseline->second.second->second->node->x.Distance(&A->second->node->x)))
|
---|
794 | innerpoint++;
|
---|
795 | // 4e. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
796 | if (innerpoint == 3)
|
---|
797 | break;
|
---|
798 | }
|
---|
799 | // 5. come this far, all on same side? Then break 1. loop and construct triangle
|
---|
800 | if (checker == PointsOnBoundary.end()) {
|
---|
801 | *out << "Looks like we have a candidate!" << endl;
|
---|
802 | break;
|
---|
803 | }
|
---|
804 | }
|
---|
805 | if (baseline != DistanceMMap.end()) {
|
---|
806 | BPS[0] = baseline->second.first->second;
|
---|
807 | BPS[1] = baseline->second.second->second;
|
---|
808 | BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
809 | BPS[0] = A->second;
|
---|
810 | BPS[1] = baseline->second.second->second;
|
---|
811 | BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
812 | BPS[0] = baseline->second.first->second;
|
---|
813 | BPS[1] = A->second;
|
---|
814 | BLS[2] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
815 |
|
---|
816 | // 4b3. insert created triangle
|
---|
817 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
818 | TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
|
---|
819 | TrianglesOnBoundaryCount++;
|
---|
820 | for(int i=0;i<NDIM;i++) {
|
---|
821 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
|
---|
822 | LinesOnBoundaryCount++;
|
---|
823 | }
|
---|
824 |
|
---|
825 | *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
|
---|
826 | } else {
|
---|
827 | *out << Verbose(1) << "No starting triangle found." << endl;
|
---|
828 | exit(255);
|
---|
829 | }
|
---|
830 | };
|
---|
831 |
|
---|
832 |
|
---|
833 | /** Tesselates the convex envelope of a cluster from a single starting triangle.
|
---|
834 | * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
|
---|
835 | * 2 triangles. Hence, we go through all current lines:
|
---|
836 | * -# if the lines contains to only one triangle
|
---|
837 | * -# We search all points in the boundary
|
---|
838 | * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
|
---|
839 | * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
|
---|
840 | * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
|
---|
841 | * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
|
---|
842 | * \param *out output stream for debugging
|
---|
843 | * \param *configuration for IsAngstroem
|
---|
844 | * \param *mol the cluster as a molecule structure
|
---|
845 | */
|
---|
846 | void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol)
|
---|
847 | {
|
---|
848 | bool flag;
|
---|
849 | PointMap::iterator winner;
|
---|
850 | class BoundaryPointSet *peak = NULL;
|
---|
851 | double SmallestAngle, TempAngle;
|
---|
852 | Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector;
|
---|
853 | LineMap::iterator LineChecker[2];
|
---|
854 | do {
|
---|
855 | flag = false;
|
---|
856 | for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
|
---|
857 | if (baseline->second->TrianglesCount == 1) {
|
---|
858 | *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
|
---|
859 | // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
|
---|
860 | SmallestAngle = M_PI;
|
---|
861 | BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
|
---|
862 | // get peak point with respect to this base line's only triangle
|
---|
863 | for(int i=0;i<3;i++)
|
---|
864 | if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
|
---|
865 | peak = BTS->endpoints[i];
|
---|
866 | *out << Verbose(3) << " and has peak " << *peak << "." << endl;
|
---|
867 | // normal vector of triangle
|
---|
868 | BTS->GetNormalVector(NormalVector);
|
---|
869 | *out << Verbose(4) << "NormalVector of base triangle is ";
|
---|
870 | NormalVector.Output(out);
|
---|
871 | *out << endl;
|
---|
872 | // offset to center of triangle
|
---|
873 | CenterVector.Zero();
|
---|
874 | for(int i=0;i<3;i++)
|
---|
875 | CenterVector.AddVector(&BTS->endpoints[i]->node->x);
|
---|
876 | CenterVector.Scale(1./3.);
|
---|
877 | *out << Verbose(4) << "CenterVector of base triangle is ";
|
---|
878 | CenterVector.Output(out);
|
---|
879 | *out << endl;
|
---|
880 | // vector in propagation direction (out of triangle)
|
---|
881 | // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
|
---|
882 | TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
|
---|
883 | TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
|
---|
884 | PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
|
---|
885 | TempVector.CopyVector(&CenterVector);
|
---|
886 | TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
|
---|
887 | //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
|
---|
888 | if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
|
---|
889 | PropagationVector.Scale(-1.);
|
---|
890 | *out << Verbose(4) << "PropagationVector of base triangle is ";
|
---|
891 | PropagationVector.Output(out);
|
---|
892 | *out << endl;
|
---|
893 | winner = PointsOnBoundary.end();
|
---|
894 | for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++)
|
---|
895 | if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
|
---|
896 | *out << Verbose(3) << "Target point is " << *(target->second) << ":";
|
---|
897 | bool continueflag = true;
|
---|
898 |
|
---|
899 | VirtualNormalVector.CopyVector(&baseline->second->endpoints[0]->node->x);
|
---|
900 | VirtualNormalVector.AddVector(&baseline->second->endpoints[0]->node->x);
|
---|
901 | VirtualNormalVector.Scale(-1./2.); // points now to center of base line
|
---|
902 | VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
|
---|
903 | TempAngle = VirtualNormalVector.Angle(&PropagationVector);
|
---|
904 | continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
|
---|
905 | if (!continueflag) {
|
---|
906 | *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
|
---|
907 | continue;
|
---|
908 | } else
|
---|
909 | *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
|
---|
910 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
|
---|
911 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
|
---|
912 | // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
|
---|
913 | // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
|
---|
914 | // else
|
---|
915 | // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
|
---|
916 | // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
|
---|
917 | // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
|
---|
918 | // else
|
---|
919 | // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
|
---|
920 | // check first endpoint (if any connecting line goes to target or at least not more than 1)
|
---|
921 | continueflag = continueflag && (( (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1)));
|
---|
922 | if (!continueflag) {
|
---|
923 | *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
|
---|
924 | continue;
|
---|
925 | }
|
---|
926 | // check second endpoint (if any connecting line goes to target or at least not more than 1)
|
---|
927 | continueflag = continueflag && (( (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1)));
|
---|
928 | if (!continueflag) {
|
---|
929 | *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
|
---|
930 | continue;
|
---|
931 | }
|
---|
932 | // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
|
---|
933 | continueflag = continueflag && (!(
|
---|
934 | ((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
|
---|
935 | && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak))
|
---|
936 | ));
|
---|
937 | if (!continueflag) {
|
---|
938 | *out << Verbose(4) << "Current target is peak!" << endl;
|
---|
939 | continue;
|
---|
940 | }
|
---|
941 | // in case NOT both were found
|
---|
942 | if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle
|
---|
943 | flag = true;
|
---|
944 | VirtualNormalVector.MakeNormalVector(&baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x);
|
---|
945 | // make it always point inward
|
---|
946 | if (baseline->second->endpoints[0]->node->x.Projection(&VirtualNormalVector) > 0)
|
---|
947 | VirtualNormalVector.Scale(-1.);
|
---|
948 | // calculate angle
|
---|
949 | TempAngle = NormalVector.Angle(&VirtualNormalVector);
|
---|
950 | *out << Verbose(4) << "NormalVector is ";
|
---|
951 | VirtualNormalVector.Output(out);
|
---|
952 | *out << " and the angle is " << TempAngle << "." << endl;
|
---|
953 | if (SmallestAngle > TempAngle) { // set to new possible winner
|
---|
954 | SmallestAngle = TempAngle;
|
---|
955 | winner = target;
|
---|
956 | }
|
---|
957 | }
|
---|
958 | }
|
---|
959 | // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
|
---|
960 | if (winner != PointsOnBoundary.end()) {
|
---|
961 | *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
|
---|
962 | // create the lins of not yet present
|
---|
963 | BLS[0] = baseline->second;
|
---|
964 | // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
|
---|
965 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
|
---|
966 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
|
---|
967 | if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
|
---|
968 | BPS[0] = baseline->second->endpoints[0];
|
---|
969 | BPS[1] = winner->second;
|
---|
970 | BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
971 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[1]) );
|
---|
972 | LinesOnBoundaryCount++;
|
---|
973 | } else
|
---|
974 | BLS[1] = LineChecker[0]->second;
|
---|
975 | if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
|
---|
976 | BPS[0] = baseline->second->endpoints[1];
|
---|
977 | BPS[1] = winner->second;
|
---|
978 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
979 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[2]) );
|
---|
980 | LinesOnBoundaryCount++;
|
---|
981 | } else
|
---|
982 | BLS[2] = LineChecker[1]->second;
|
---|
983 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
984 | TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
|
---|
985 | TrianglesOnBoundaryCount++;
|
---|
986 | } else {
|
---|
987 | *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
|
---|
988 | }
|
---|
989 |
|
---|
990 | // 5d. If the set of lines is not yet empty, go to 5. and continue
|
---|
991 | } else
|
---|
992 | *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl;
|
---|
993 | } while (flag);
|
---|
994 |
|
---|
995 | };
|
---|
996 |
|
---|
997 | /** Adds an atom to the tesselation::PointsOnBoundary list.
|
---|
998 | * \param *Walker atom to add
|
---|
999 | */
|
---|
1000 | void Tesselation::AddPoint(atom *Walker)
|
---|
1001 | {
|
---|
1002 | PointTestPair InsertUnique;
|
---|
1003 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1004 | InsertUnique = PointsOnBoundary.insert( PointPair(Walker->nr, BPS[0]) );
|
---|
1005 | if (InsertUnique.second) // if new point was not present before, increase counter
|
---|
1006 | PointsOnBoundaryCount++;
|
---|
1007 | };
|
---|
1008 |
|
---|
1009 |
|
---|
1010 |
|
---|
1011 |
|
---|
1012 |
|
---|
1013 |
|
---|
1014 | //====================================================================================================================
|
---|
1015 | //
|
---|
1016 | // ab hier habe ich das verzapft.
|
---|
1017 | //
|
---|
1018 | //====================================================================================================================
|
---|
1019 |
|
---|
1020 | /*!
|
---|
1021 | * This recursive function finds a third point, to form a triangle with two given ones.
|
---|
1022 | * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \
|
---|
1023 | * supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \
|
---|
1024 | * upon which we operate.
|
---|
1025 | * If the candidate is more fitting to support the sphere than the already stored atom is, then we write its id, its general \
|
---|
1026 | * direction and angle into Storage.
|
---|
1027 | * We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \
|
---|
1028 | * with all neighbours of the candidate.
|
---|
1029 | */
|
---|
1030 | void Find_next_suitable_point(atom* a, atom* b, atom* Candidate, int n, Vector *Chord, Vector *d1, Vector *d2, double *Storage, const double RADIUS, molecule* mol)
|
---|
1031 | {
|
---|
1032 | /* d2 is normal vector on the triangle
|
---|
1033 | * d1 is normal on the triangle line, from which we come, as well as on d2.
|
---|
1034 | */
|
---|
1035 | Vector dif_a; //Vector from a to candidate
|
---|
1036 | Vector dif_b; //Vector from b to candidate
|
---|
1037 | Vector AngleCheck; // Projection of a difference vector on plane orthogonal on triangle side.
|
---|
1038 | atom *Walker; // variable atom point
|
---|
1039 |
|
---|
1040 | dif_a.CopyVector(&(a->x));
|
---|
1041 | dif_a.SubtractVector(&(Candidate->x));
|
---|
1042 | dif_b.CopyVector(&(b->x));
|
---|
1043 | dif_b.SubtractVector(&(Candidate->x));
|
---|
1044 | AngleCheck.CopyVector(&dif_a);
|
---|
1045 | AngleCheck.ProjectOntoPlane(Chord);
|
---|
1046 |
|
---|
1047 | if (Chord->Norm()/(2*sin(dif_a.Angle(&dif_b)))<RADIUS) //Using Formula for relation of chord length with inner angle to find of Ball will touch atom
|
---|
1048 | {
|
---|
1049 |
|
---|
1050 | if (dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1))>Storage[1]) //This will give absolute preference to those in "right-hand" quadrants
|
---|
1051 | {
|
---|
1052 | Storage[0]=(double)Candidate->nr;
|
---|
1053 | Storage[1]=dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1));
|
---|
1054 | Storage[2]=AngleCheck.Angle(d2);
|
---|
1055 | }
|
---|
1056 | else
|
---|
1057 | {
|
---|
1058 | if ((dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1)) == Storage[1] && Storage[1]>0 && Storage[2]< AngleCheck.Angle(d2)) or \
|
---|
1059 | (dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1)) == Storage[1] && Storage[1]<0 && Storage[2]> AngleCheck.Angle(d2)))
|
---|
1060 | //Depending on quadrant we prefer higher or lower atom with respect to Triangle normal first.
|
---|
1061 | {
|
---|
1062 | Storage[0]=(double)Candidate->nr;
|
---|
1063 | Storage[1]=dif_a.ScalarProduct(d1)/fabs(dif_a.ScalarProduct(d1));
|
---|
1064 | Storage[2]=AngleCheck.Angle(d2);
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | if (n<5) // Five is the recursion level threshold.
|
---|
1070 | {
|
---|
1071 | for(int i=0; i<mol->NumberOfBondsPerAtom[Candidate->nr];i++) // go through all bond
|
---|
1072 | {
|
---|
1073 | Walker= mol->start; // go through all atoms
|
---|
1074 |
|
---|
1075 | while (Walker->nr != (mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr ==Candidate->nr ? mol->ListOfBondsPerAtom[Candidate->nr][i]->rightatom->nr : mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr))
|
---|
1076 | { // until atom found which belongs to bond
|
---|
1077 | Walker = Walker->next;
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 |
|
---|
1081 | Find_next_suitable_point(a, b, Walker, n+1, Chord, d1, d2, Storage, RADIUS, mol); //call function again
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | };
|
---|
1085 |
|
---|
1086 | /*!
|
---|
1087 | * this function fins a triangle to a line, adjacent to an existing one.
|
---|
1088 | */
|
---|
1089 | void Tesselation::Find_next_suitable_triangle(molecule* mol, BoundaryLineSet Line, BoundaryTriangleSet T, const double& RADIUS)
|
---|
1090 | {
|
---|
1091 | printf("Looking for next suitable triangle \n");
|
---|
1092 | Vector direction1;
|
---|
1093 | Vector helper;
|
---|
1094 | Vector Chord;
|
---|
1095 | atom* Walker;
|
---|
1096 |
|
---|
1097 | double *Storage;
|
---|
1098 | Storage = new double[3];
|
---|
1099 | Storage[0]=-1.; // Id must be positive, we see should nothing be done
|
---|
1100 | Storage[1]=-1.; // This direction is either +1 or -1 one, so any result will take precedence over initial values
|
---|
1101 | Storage[2]=-10.; // This is also lower then any value produced by an eligible atom, which are all positive
|
---|
1102 |
|
---|
1103 |
|
---|
1104 | helper.CopyVector(&(Line.endpoints[0]->node->x));
|
---|
1105 | for (int i =0; i<3; i++)
|
---|
1106 | {
|
---|
1107 | if (T.endpoints[i]->node->nr != Line.endpoints[0]->node->nr && T.endpoints[i]->node->nr!=Line.endpoints[1]->node->nr)
|
---|
1108 | {
|
---|
1109 | helper.SubtractVector(&T.endpoints[i]->node->x);
|
---|
1110 | break;
|
---|
1111 | }
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 |
|
---|
1115 | direction1.CopyVector(&Line.endpoints[0]->node->x);
|
---|
1116 | direction1.SubtractVector(&Line.endpoints[1]->node->x);
|
---|
1117 | direction1.VectorProduct(T.NormalVector);
|
---|
1118 |
|
---|
1119 | if (direction1.ScalarProduct(&helper)>0)
|
---|
1120 | {
|
---|
1121 | direction1.Scale(-1);
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 | Chord.CopyVector(&(Line.endpoints[0]->node->x)); // bring into calling function
|
---|
1125 | Chord.SubtractVector(&(Line.endpoints[1]->node->x));
|
---|
1126 |
|
---|
1127 | printf("Looking for third point candidates for triangle \n");
|
---|
1128 | Find_next_suitable_point(Line.endpoints[0]->node, Line.endpoints[1]->node, Line.endpoints[0]->node, 0, &Chord, &direction1, T.NormalVector, Storage, RADIUS, mol);
|
---|
1129 |
|
---|
1130 | // Konstruiere nun neues Dreieck am Ende der Liste der Dreiecke
|
---|
1131 | // Next Triangle is Line, atom with number in Storage[0]
|
---|
1132 |
|
---|
1133 | Walker= mol->start;
|
---|
1134 | while (Walker->nr != (int)Storage[0])
|
---|
1135 | {
|
---|
1136 | Walker = Walker->next;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | AddPoint(Walker);
|
---|
1140 |
|
---|
1141 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1142 | BPS[1] = new class BoundaryPointSet(Line.endpoints[0]->node);
|
---|
1143 | BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
1144 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1145 | BPS[1] = new class BoundaryPointSet(Line.endpoints[1]->node);
|
---|
1146 | BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
1147 | BLS[2] = new class BoundaryLineSet(Line);
|
---|
1148 |
|
---|
1149 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1150 | TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
|
---|
1151 | TrianglesOnBoundaryCount++;
|
---|
1152 |
|
---|
1153 | for(int i=0;i<NDIM;i++) // sind Linien bereits vorhanden ???
|
---|
1154 | {
|
---|
1155 |
|
---|
1156 |
|
---|
1157 | if ( (LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]))).second);
|
---|
1158 | {
|
---|
1159 | LinesOnBoundaryCount++;
|
---|
1160 | }
|
---|
1161 | }
|
---|
1162 | BTS->GetNormalVector(*BTS->NormalVector);
|
---|
1163 |
|
---|
1164 | if( (BTS->NormalVector->ScalarProduct(T.NormalVector)<0 && Storage[1]>0) || \
|
---|
1165 | (BTS->NormalVector->ScalarProduct(T.NormalVector)>0 && Storage[1]<0))
|
---|
1166 | {
|
---|
1167 | BTS->NormalVector->Scale(-1);
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | };
|
---|
1171 |
|
---|
1172 |
|
---|
1173 | void Find_second_point_for_Tesselation(atom* a, atom* Candidate, int n, Vector Oben, double Storage[3], molecule* mol)
|
---|
1174 | {
|
---|
1175 | printf("Looking for second point of starting triangle \n");
|
---|
1176 | int i;
|
---|
1177 | Vector *AngleCheck;
|
---|
1178 | atom* Walker;
|
---|
1179 |
|
---|
1180 | AngleCheck->CopyVector(&(Candidate->x));
|
---|
1181 | AngleCheck->SubtractVector(&(a->x));
|
---|
1182 | if (AngleCheck->Angle(&Oben) < Storage[1])
|
---|
1183 | {
|
---|
1184 | //printf("Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
|
---|
1185 | Storage[0]=(double)(Candidate->nr);
|
---|
1186 | Storage[1]=AngleCheck->Angle(&Oben);
|
---|
1187 | //printf("Changing something in Storage: %lf %lf. \n", Storage[0], Storage[1]);
|
---|
1188 | };
|
---|
1189 | printf("%d \n", n);
|
---|
1190 | if (n<5)
|
---|
1191 | {
|
---|
1192 | for (i = 0; i< mol->NumberOfBondsPerAtom[Candidate->nr]; i++)
|
---|
1193 | {
|
---|
1194 | Walker = mol->start;
|
---|
1195 | while (Candidate->nr != (mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr ==Candidate->nr ? mol->ListOfBondsPerAtom[Candidate->nr][i]->leftatom->nr : mol->ListOfBondsPerAtom[Candidate->nr][i]->rightatom->nr))
|
---|
1196 | {
|
---|
1197 | Walker = Walker->next;
|
---|
1198 | };
|
---|
1199 |
|
---|
1200 | Find_second_point_for_Tesselation(a, Walker, n+1, Oben, Storage, mol);
|
---|
1201 | };
|
---|
1202 | };
|
---|
1203 |
|
---|
1204 |
|
---|
1205 | };
|
---|
1206 |
|
---|
1207 |
|
---|
1208 | void Tesselation::Find_starting_triangle(molecule* mol, const double RADIUS)
|
---|
1209 | {
|
---|
1210 | printf("Looking for starting triangle \n");
|
---|
1211 | int i=0;
|
---|
1212 | atom* Walker;
|
---|
1213 | atom* Walker2;
|
---|
1214 | atom* Walker3;
|
---|
1215 | int max_index[3];
|
---|
1216 | double max_coordinate[3];
|
---|
1217 | Vector Oben;
|
---|
1218 | Vector helper;
|
---|
1219 | Vector Chord;
|
---|
1220 |
|
---|
1221 | Oben.Zero();
|
---|
1222 |
|
---|
1223 |
|
---|
1224 | for(i =0; i<3; i++)
|
---|
1225 | {
|
---|
1226 | max_index[i] =-1;
|
---|
1227 | max_coordinate[i] =-1;
|
---|
1228 | }
|
---|
1229 | printf("Molecule mol is there and has %d Atoms \n", mol->AtomCount);
|
---|
1230 | Walker = mol->start;
|
---|
1231 | while (Walker->next != mol->end)
|
---|
1232 | {
|
---|
1233 | Walker = Walker->next;
|
---|
1234 | for (i=0; i<3; i++)
|
---|
1235 | {
|
---|
1236 | if (Walker->x.x[i] > max_coordinate[i])
|
---|
1237 | {
|
---|
1238 | max_coordinate[i]=Walker->x.x[i];
|
---|
1239 | max_index[i]=Walker->nr;
|
---|
1240 | }
|
---|
1241 | }
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | printf("Found starting atom \n");
|
---|
1245 | //Koennen dies fuer alle Richtungen, legen hier erstmal Richtung auf k=0
|
---|
1246 | const int k=2;
|
---|
1247 |
|
---|
1248 | Oben.x[k]=1.;
|
---|
1249 | Walker = mol->start;
|
---|
1250 | Walker = Walker->next;
|
---|
1251 | while (Walker->nr != max_index[k])
|
---|
1252 | {
|
---|
1253 | Walker = Walker->next;
|
---|
1254 | }
|
---|
1255 | printf("%d \n", Walker->nr);
|
---|
1256 | double Storage[3];
|
---|
1257 | Storage[0]=-1.; // Id must be positive, we see should nothing be done
|
---|
1258 | Storage[1]=999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
|
---|
1259 | Storage[2]=999999.; // This will be an angle looking for the third point.
|
---|
1260 | printf("%d \n", mol->NumberOfBondsPerAtom[Walker->nr]);
|
---|
1261 |
|
---|
1262 | for (i=1; i< (mol->NumberOfBondsPerAtom[Walker->nr]); i++)
|
---|
1263 | {
|
---|
1264 | Walker2 = mol->start;
|
---|
1265 | Walker2 = Walker2->next;
|
---|
1266 | while (Walker2->nr != (mol->ListOfBondsPerAtom[Walker->nr][i]->leftatom->nr == Walker->nr ? mol->ListOfBondsPerAtom[Walker->nr][i]->rightatom->nr : mol->ListOfBondsPerAtom[Walker->nr][i]->leftatom->nr) )
|
---|
1267 | {
|
---|
1268 | Walker2 = Walker2->next;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | Find_second_point_for_Tesselation(Walker, Walker2, 0, Oben, Storage, mol);
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 | Walker2 = mol->start;
|
---|
1275 |
|
---|
1276 | while (Walker2->nr != int(Storage[0]))
|
---|
1277 | {
|
---|
1278 | Walker2 = Walker2->next;
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | helper.CopyVector(&(Walker->x));
|
---|
1282 | helper.SubtractVector(&(Walker2->x));
|
---|
1283 | Oben.ProjectOntoPlane(&helper);
|
---|
1284 | helper.VectorProduct(&Oben);
|
---|
1285 | Storage[0]=-1.; // Id must be positive, we see should nothing be done
|
---|
1286 | Storage[1]=-2.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
|
---|
1287 | Storage[2]= -10.; // This will be an angle looking for the third point.
|
---|
1288 |
|
---|
1289 | Chord.CopyVector(&(Walker->x)); // bring into calling function
|
---|
1290 | Chord.SubtractVector(&(Walker2->x));
|
---|
1291 |
|
---|
1292 | printf("Looking for third point candidates \n");
|
---|
1293 | Find_next_suitable_point(Walker, Walker2, (mol->ListOfBondsPerAtom[Walker->nr][0]->leftatom->nr == Walker->nr ? mol->ListOfBondsPerAtom[Walker->nr][0]->rightatom : mol->ListOfBondsPerAtom[Walker->nr][0]->leftatom), 0, &Chord, &helper, &Oben, Storage, RADIUS, mol);
|
---|
1294 | Walker3 = mol->start;
|
---|
1295 | while (Walker3->nr != int(Storage[0]))
|
---|
1296 | {
|
---|
1297 | Walker3 = Walker3->next;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | //Starting Triangle is Walker, Walker2, index Storage[0]
|
---|
1301 |
|
---|
1302 | AddPoint(Walker);
|
---|
1303 | AddPoint(Walker2);
|
---|
1304 | AddPoint(Walker3);
|
---|
1305 |
|
---|
1306 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1307 | BPS[1] = new class BoundaryPointSet(Walker2);
|
---|
1308 | BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
1309 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1310 | BPS[1] = new class BoundaryPointSet(Walker3);
|
---|
1311 | BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
1312 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1313 | BPS[1] = new class BoundaryPointSet(Walker2);
|
---|
1314 | BLS[2] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
1315 |
|
---|
1316 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1317 | TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
|
---|
1318 | TrianglesOnBoundaryCount++;
|
---|
1319 |
|
---|
1320 | for(int i=0;i<NDIM;i++)
|
---|
1321 | {
|
---|
1322 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
|
---|
1323 | LinesOnBoundaryCount++;
|
---|
1324 | };
|
---|
1325 |
|
---|
1326 | BTS->GetNormalVector(*BTS->NormalVector);
|
---|
1327 |
|
---|
1328 | if( BTS->NormalVector->ScalarProduct(&Oben)<0)
|
---|
1329 | {
|
---|
1330 | BTS->NormalVector->Scale(-1);
|
---|
1331 | }
|
---|
1332 | };
|
---|
1333 |
|
---|
1334 |
|
---|
1335 | void Find_non_convex_border(Tesselation Tess, molecule* mol)
|
---|
1336 | {
|
---|
1337 | printf("Entering finding of non convex hull. \n");
|
---|
1338 | const double RADIUS =6;
|
---|
1339 | Tess.Find_starting_triangle(mol, RADIUS);
|
---|
1340 |
|
---|
1341 | for (LineMap::iterator baseline = Tess.LinesOnBoundary.begin(); baseline != Tess.LinesOnBoundary.end(); baseline++)
|
---|
1342 | if (baseline->second->TrianglesCount == 1)
|
---|
1343 | {
|
---|
1344 | Tess.Find_next_suitable_triangle(mol, *(baseline->second), *(baseline->second->triangles.begin()->second), RADIUS); //the line is there, so there is a triangle, but only one.
|
---|
1345 | }
|
---|
1346 | else
|
---|
1347 | {
|
---|
1348 | printf("There is a line with %d triangles adjacent", baseline->second->TrianglesCount);
|
---|
1349 | }
|
---|
1350 | };
|
---|