source: src/boundary.cpp@ 390248

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 390248 was 68cb0f, checked in by Frederik Heber <heber@…>, 17 years ago

introduced shieldings to analyzer and joiner

both now handle pcp.sigma_all...csv files just as pcp.forces.all. Therefore the data format in pcp/perturbed.c was adapted a bit, as we need a header.
periodentafel.hpp got periodentafel and element class from molecules.hpp

  • Property mode set to 100644
File size: 45.4 KB
Line 
1#include "molecules.hpp"
2#include "boundary.hpp"
3
4// ======================================== Points on Boundary =================================
5
6BoundaryPointSet::BoundaryPointSet()
7{
8 LinesCount = 0;
9 Nr = -1;
10};
11
12BoundaryPointSet::BoundaryPointSet(atom *Walker)
13{
14 node = Walker;
15 LinesCount = 0;
16 Nr = Walker->nr;
17};
18
19BoundaryPointSet::~BoundaryPointSet()
20{
21 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
22 node = NULL;
23};
24
25void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
26{
27 cout << Verbose(6) << "Adding line " << *line << " to " << *this << "." << endl;
28 if (line->endpoints[0] == this) {
29 lines.insert ( LinePair( line->endpoints[1]->Nr, line) );
30 } else {
31 lines.insert ( LinePair( line->endpoints[0]->Nr, line) );
32 }
33 LinesCount++;
34};
35
36ostream & operator << (ostream &ost, BoundaryPointSet &a)
37{
38 ost << "[" << a.Nr << "|" << a.node->Name << "]";
39 return ost;
40};
41
42// ======================================== Lines on Boundary =================================
43
44BoundaryLineSet::BoundaryLineSet()
45{
46 for (int i=0;i<2;i++)
47 endpoints[i] = NULL;
48 TrianglesCount = 0;
49 Nr = -1;
50};
51
52BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
53{
54 // set number
55 Nr = number;
56 // set endpoints in ascending order
57 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
58 // add this line to the hash maps of both endpoints
59 Point[0]->AddLine(this);
60 Point[1]->AddLine(this);
61 // clear triangles list
62 TrianglesCount = 0;
63 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
64};
65
66BoundaryLineSet::~BoundaryLineSet()
67{
68 for (int i=0;i<2;i++) {
69 cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
70 endpoints[i]->lines.erase(Nr);
71 LineMap::iterator tester = endpoints[i]->lines.begin();
72 tester++;
73 if (tester == endpoints[i]->lines.end()) {
74 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
75 delete(endpoints[i]);
76 } else
77 cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
78 }
79};
80
81void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
82{
83 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
84 triangles.insert ( TrianglePair( TrianglesCount, triangle) );
85 TrianglesCount++;
86};
87
88ostream & operator << (ostream &ost, BoundaryLineSet &a)
89{
90 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
91 return ost;
92};
93
94// ======================================== Triangles on Boundary =================================
95
96
97BoundaryTriangleSet::BoundaryTriangleSet()
98{
99 for (int i=0;i<3;i++) {
100 endpoints[i] = NULL;
101 lines[i] = NULL;
102 }
103 Nr = -1;
104};
105
106BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
107{
108 // set number
109 Nr = number;
110 // set lines
111 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
112 for (int i=0;i<3;i++) {
113 lines[i] = line[i];
114 lines[i]->AddTriangle(this);
115 }
116 // get ascending order of endpoints
117 map <int, class BoundaryPointSet * > OrderMap;
118 for(int i=0;i<3;i++) // for all three lines
119 for (int j=0;j<2;j++) { // for both endpoints
120 OrderMap.insert ( pair <int, class BoundaryPointSet * >( line[i]->endpoints[j]->Nr, line[i]->endpoints[j]) );
121 // and we don't care whether insertion fails
122 }
123 // set endpoints
124 int Counter = 0;
125 cout << Verbose(6) << " with end points ";
126 for (map <int, class BoundaryPointSet * >::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
127 endpoints[Counter] = runner->second;
128 cout << " " << *endpoints[Counter];
129 Counter++;
130 }
131 if (Counter < 3) {
132 cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
133 //exit(1);
134 }
135 cout << "." << endl;
136};
137
138BoundaryTriangleSet::~BoundaryTriangleSet()
139{
140 for (int i=0;i<3;i++) {
141 cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
142 lines[i]->triangles.erase(Nr);
143 TriangleMap::iterator tester = lines[i]->triangles.begin();
144 tester++;
145 if (tester == lines[i]->triangles.end()) {
146 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
147 delete(lines[i]);
148 } else
149 cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
150 }
151};
152
153void BoundaryTriangleSet::GetNormalVector(vector &NormalVector)
154{
155 // get normal vector
156 NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x);
157
158 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
159 if (endpoints[0]->node->x.Projection(&NormalVector) > 0)
160 NormalVector.Scale(-1.);
161};
162
163ostream & operator << (ostream &ost, BoundaryTriangleSet &a)
164{
165 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
166 return ost;
167};
168
169// ========================================== F U N C T I O N S =================================
170
171/** Finds the endpoint two lines are sharing.
172 * \param *line1 first line
173 * \param *line2 second line
174 * \return point which is shared or NULL if none
175 */
176class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
177{
178 class BoundaryLineSet * lines[2] = {line1, line2};
179 class BoundaryPointSet *node = NULL;
180 map <int, class BoundaryPointSet * > OrderMap;
181 pair < map <int, class BoundaryPointSet * >::iterator, bool > OrderTest;
182 for(int i=0;i<2;i++) // for both lines
183 for (int j=0;j<2;j++) { // for both endpoints
184 OrderTest = OrderMap.insert ( pair <int, class BoundaryPointSet * >( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]) );
185 if (!OrderTest.second) { // if insertion fails, we have common endpoint
186 node = OrderTest.first->second;
187 cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
188 j=2;
189 i=2;
190 break;
191 }
192 }
193 return node;
194};
195
196/** Determines the boundary points of a cluster.
197 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
198 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
199 * center and first and last point in the triple, it is thrown out.
200 * \param *out output stream for debugging
201 * \param *mol molecule structure representing the cluster
202 */
203Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol)
204{
205 atom *Walker = NULL;
206 PointMap PointsOnBoundary;
207 LineMap LinesOnBoundary;
208 TriangleMap TrianglesOnBoundary;
209
210 *out << Verbose(1) << "Finding all boundary points." << endl;
211 Boundaries *BoundaryPoints = new Boundaries [NDIM]; // first is alpha, second is (r, nr)
212 BoundariesTestPair BoundaryTestPair;
213 vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
214 double radius, angle;
215 // 3a. Go through every axis
216 for (int axis=0; axis<NDIM; axis++) {
217 AxisVector.Zero();
218 AngleReferenceVector.Zero();
219 AngleReferenceNormalVector.Zero();
220 AxisVector.x[axis] = 1.;
221 AngleReferenceVector.x[(axis+1)%NDIM] = 1.;
222 AngleReferenceNormalVector.x[(axis+2)%NDIM] = 1.;
223 // *out << Verbose(1) << "Axisvector is ";
224 // AxisVector.Output(out);
225 // *out << " and AngleReferenceVector is ";
226 // AngleReferenceVector.Output(out);
227 // *out << "." << endl;
228 // *out << " and AngleReferenceNormalVector is ";
229 // AngleReferenceNormalVector.Output(out);
230 // *out << "." << endl;
231 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
232 Walker = mol->start;
233 while (Walker->next != mol->end) {
234 Walker = Walker->next;
235 vector ProjectedVector;
236 ProjectedVector.CopyVector(&Walker->x);
237 ProjectedVector.ProjectOntoPlane(&AxisVector);
238 // correct for negative side
239 //if (Projection(y) < 0)
240 //angle = 2.*M_PI - angle;
241 radius = ProjectedVector.Norm();
242 if (fabs(radius) > MYEPSILON)
243 angle = ProjectedVector.Angle(&AngleReferenceVector);
244 else
245 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
246
247 //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
248 if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) {
249 angle = 2.*M_PI - angle;
250 }
251 //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
252 //ProjectedVector.Output(out);
253 //*out << endl;
254 BoundaryTestPair = BoundaryPoints[axis].insert( BoundariesPair (angle, DistanceNrPair (radius, Walker) ) );
255 if (BoundaryTestPair.second) { // successfully inserted
256 } else { // same point exists, check first r, then distance of original vectors to center of gravity
257 *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl;
258 *out << Verbose(2) << "Present vector: ";
259 BoundaryTestPair.first->second.second->x.Output(out);
260 *out << endl;
261 *out << Verbose(2) << "New vector: ";
262 Walker->x.Output(out);
263 *out << endl;
264 double tmp = ProjectedVector.Norm();
265 if (tmp > BoundaryTestPair.first->second.first) {
266 BoundaryTestPair.first->second.first = tmp;
267 BoundaryTestPair.first->second.second = Walker;
268 *out << Verbose(2) << "Keeping new vector." << endl;
269 } else if (tmp == BoundaryTestPair.first->second.first) {
270 if (BoundaryTestPair.first->second.second->x.ScalarProduct(&BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower
271 BoundaryTestPair.first->second.second = Walker;
272 *out << Verbose(2) << "Keeping new vector." << endl;
273 } else {
274 *out << Verbose(2) << "Keeping present vector." << endl;
275 }
276 } else {
277 *out << Verbose(2) << "Keeping present vector." << endl;
278 }
279 }
280 }
281 // printing all inserted for debugging
282 // {
283 // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
284 // int i=0;
285 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
286 // if (runner != BoundaryPoints[axis].begin())
287 // *out << ", " << i << ": " << *runner->second.second;
288 // else
289 // *out << i << ": " << *runner->second.second;
290 // i++;
291 // }
292 // *out << endl;
293 // }
294 // 3c. throw out points whose distance is less than the mean of left and right neighbours
295 bool flag = false;
296 do { // do as long as we still throw one out per round
297 *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl;
298 flag = false;
299 Boundaries::iterator left = BoundaryPoints[axis].end();
300 Boundaries::iterator right = BoundaryPoints[axis].end();
301 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
302 // set neighbours correctly
303 if (runner == BoundaryPoints[axis].begin()) {
304 left = BoundaryPoints[axis].end();
305 } else {
306 left = runner;
307 }
308 left--;
309 right = runner;
310 right++;
311 if (right == BoundaryPoints[axis].end()) {
312 right = BoundaryPoints[axis].begin();
313 }
314 // check distance
315
316 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
317 {
318 vector SideA, SideB, SideC, SideH;
319 SideA.CopyVector(&left->second.second->x);
320 SideA.ProjectOntoPlane(&AxisVector);
321 // *out << "SideA: ";
322 // SideA.Output(out);
323 // *out << endl;
324
325 SideB.CopyVector(&right->second.second->x);
326 SideB.ProjectOntoPlane(&AxisVector);
327 // *out << "SideB: ";
328 // SideB.Output(out);
329 // *out << endl;
330
331 SideC.CopyVector(&left->second.second->x);
332 SideC.SubtractVector(&right->second.second->x);
333 SideC.ProjectOntoPlane(&AxisVector);
334 // *out << "SideC: ";
335 // SideC.Output(out);
336 // *out << endl;
337
338 SideH.CopyVector(&runner->second.second->x);
339 SideH.ProjectOntoPlane(&AxisVector);
340 // *out << "SideH: ";
341 // SideH.Output(out);
342 // *out << endl;
343
344 // calculate each length
345 double a = SideA.Norm();
346 //double b = SideB.Norm();
347 //double c = SideC.Norm();
348 double h = SideH.Norm();
349 // calculate the angles
350 double alpha = SideA.Angle(&SideH);
351 double beta = SideA.Angle(&SideC);
352 double gamma = SideB.Angle(&SideH);
353 double delta = SideC.Angle(&SideH);
354 double MinDistance = a * sin(beta)/(sin(delta)) * (((alpha < M_PI/2.) || (gamma < M_PI/2.)) ? 1. : -1.);
355 // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
356 //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
357 if ((fabs(h/fabs(h) - MinDistance/fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) {
358 // throw out point
359 //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
360 BoundaryPoints[axis].erase(runner);
361 flag = true;
362 }
363 }
364 }
365 } while (flag);
366 }
367 return BoundaryPoints;
368};
369
370/** Determines greatest diameters of a cluster defined by its convex envelope.
371 * Looks at lines parallel to one axis and where they intersect on the projected planes
372 * \param *out output stream for debugging
373 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
374 * \param *mol molecule structure representing the cluster
375 * \param IsAngstroem whether we have angstroem or atomic units
376 * \return NDIM array of the diameters
377 */
378double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol, bool IsAngstroem)
379{
380 // get points on boundary of NULL was given as parameter
381 bool BoundaryFreeFlag = false;
382 Boundaries *BoundaryPoints = BoundaryPtr;
383 if (BoundaryPoints == NULL) {
384 BoundaryFreeFlag = true;
385 BoundaryPoints = GetBoundaryPoints(out, mol);
386 } else {
387 *out << Verbose(1) << "Using given boundary points set." << endl;
388 }
389
390 // determine biggest "diameter" of cluster for each axis
391 Boundaries::iterator Neighbour, OtherNeighbour;
392 double *GreatestDiameter = new double[NDIM];
393 for(int i=0;i<NDIM;i++)
394 GreatestDiameter[i] = 0.;
395 double OldComponent, tmp, w1, w2;
396 vector DistanceVector, OtherVector;
397 int component, Othercomponent;
398 for(int axis=0;axis<NDIM;axis++) { // regard each projected plane
399 //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
400 for (int j=0;j<2;j++) { // and for both axis on the current plane
401 component = (axis+j+1)%NDIM;
402 Othercomponent = (axis+1+((j+1) & 1))%NDIM;
403 //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
404 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
405 //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
406 // seek for the neighbours pair where the Othercomponent sign flips
407 Neighbour = runner;
408 Neighbour++;
409 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
410 Neighbour = BoundaryPoints[axis].begin();
411 DistanceVector.CopyVector(&runner->second.second->x);
412 DistanceVector.SubtractVector(&Neighbour->second.second->x);
413 do { // seek for neighbour pair where it flips
414 OldComponent = DistanceVector.x[Othercomponent];
415 Neighbour++;
416 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
417 Neighbour = BoundaryPoints[axis].begin();
418 DistanceVector.CopyVector(&runner->second.second->x);
419 DistanceVector.SubtractVector(&Neighbour->second.second->x);
420 //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
421 } while ((runner != Neighbour) && ( fabs( OldComponent/fabs(OldComponent) - DistanceVector.x[Othercomponent]/fabs(DistanceVector.x[Othercomponent]) ) < MYEPSILON)); // as long as sign does not flip
422 if (runner != Neighbour) {
423 OtherNeighbour = Neighbour;
424 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
425 OtherNeighbour = BoundaryPoints[axis].end();
426 OtherNeighbour--;
427 //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
428 // now we have found the pair: Neighbour and OtherNeighbour
429 OtherVector.CopyVector(&runner->second.second->x);
430 OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
431 //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
432 //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
433 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
434 w1 = fabs(OtherVector.x[Othercomponent]);
435 w2 = fabs(DistanceVector.x[Othercomponent]);
436 tmp = fabs((w1*DistanceVector.x[component] + w2*OtherVector.x[component])/(w1+w2));
437 // mark if it has greater diameter
438 //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
439 GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp;
440 } //else
441 //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
442 }
443 }
444 }
445 *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl;
446
447 // free reference lists
448 if (BoundaryFreeFlag)
449 delete[](BoundaryPoints);
450
451 return GreatestDiameter;
452};
453
454
455/** Determines the volume of a cluster.
456 * Determines first the convex envelope, then tesselates it and calculates its volume.
457 * \param *out output stream for debugging
458 * \param *configuration needed for path to store convex envelope file
459 * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
460 * \param *mol molecule structure representing the cluster
461 */
462double VolumeOfConvexEnvelope(ofstream *out, config *configuration, Boundaries *BoundaryPtr, molecule *mol)
463{
464 bool IsAngstroem = configuration->GetIsAngstroem();
465 atom *Walker = NULL;
466 struct Tesselation *TesselStruct = new Tesselation;
467 bool BoundaryFreeFlag = false;
468 Boundaries *BoundaryPoints = BoundaryPtr;
469 double volume = 0.;
470 double PyramidVolume = 0.;
471 double G,h;
472 vector x,y;
473 double a,b,c;
474
475 // 1. calculate center of gravity
476 *out << endl;
477 vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
478
479 // 2. translate all points into CoG
480 *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
481 Walker = mol->start;
482 while (Walker->next != mol->end) {
483 Walker = Walker->next;
484 Walker->x.Translate(CenterOfGravity);
485 }
486
487 // 3. Find all points on the boundary
488 if (BoundaryPoints == NULL) {
489 BoundaryFreeFlag = true;
490 BoundaryPoints = GetBoundaryPoints(out, mol);
491 } else {
492 *out << Verbose(1) << "Using given boundary points set." << endl;
493 }
494
495 // 4. fill the boundary point list
496 for (int axis=0;axis<NDIM;axis++)
497 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
498 TesselStruct->AddPoint(runner->second.second);
499 }
500
501 *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl;
502 // now we have the whole set of edge points in the BoundaryList
503
504
505 // listing for debugging
506// *out << Verbose(1) << "Listing PointsOnBoundary:";
507// for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
508// *out << " " << *runner->second;
509// }
510// *out << endl;
511
512 // 5a. guess starting triangle
513 TesselStruct->GuessStartingTriangle(out);
514
515 // 5b. go through all lines, that are not yet part of two triangles (only of one so far)
516 TesselStruct->TesselateOnBoundary(out, configuration, mol);
517
518 *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl;
519
520 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
521 *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl;
522 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak
523 x.CopyVector(&runner->second->endpoints[0]->node->x);
524 x.SubtractVector(&runner->second->endpoints[1]->node->x);
525 y.CopyVector(&runner->second->endpoints[0]->node->x);
526 y.SubtractVector(&runner->second->endpoints[2]->node->x);
527 a = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[1]->node->x));
528 b = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[2]->node->x));
529 c = sqrt(runner->second->endpoints[2]->node->x.Distance(&runner->second->endpoints[1]->node->x));
530 G = sqrt( ( (a*a+b*b+c*c)*(a*a+b*b+c*c) - 2*(a*a*a*a + b*b*b*b + c*c*c*c) )/16.); // area of tesselated triangle
531 x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x);
532 x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
533 h = x.Norm(); // distance of CoG to triangle
534 PyramidVolume = (1./3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
535 *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
536 volume += PyramidVolume;
537 }
538 *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
539
540
541 // 7. translate all points back from CoG
542 *out << Verbose(1) << "Translating system back from Center of Gravity." << endl;
543 CenterOfGravity->Scale(-1);
544 Walker = mol->start;
545 while (Walker->next != mol->end) {
546 Walker = Walker->next;
547 Walker->x.Translate(CenterOfGravity);
548 }
549
550 // free reference lists
551 if (BoundaryFreeFlag)
552 delete[](BoundaryPoints);
553
554 return volume;
555};
556
557
558/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
559 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
560 * \param *out output stream for debugging
561 * \param *configuration needed for path to store convex envelope file
562 * \param *mol molecule structure representing the cluster
563 * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
564 * \param celldensity desired average density in final cell
565 */
566void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, double ClusterVolume, double celldensity)
567{
568 // transform to PAS
569 mol->PrincipalAxisSystem(out, true);
570
571 // some preparations beforehand
572 bool IsAngstroem = configuration->GetIsAngstroem();
573 Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
574 double clustervolume;
575 if (ClusterVolume == 0)
576 clustervolume = VolumeOfConvexEnvelope(out, configuration, BoundaryPoints, mol);
577 else
578 clustervolume = ClusterVolume;
579 double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol, IsAngstroem);
580 vector BoxLengths;
581 int repetition[NDIM] = {1, 1, 1};
582 int TotalNoClusters = 1;
583 for (int i=0;i<NDIM;i++)
584 TotalNoClusters *= repetition[i];
585
586 // sum up the atomic masses
587 double totalmass = 0.;
588 atom *Walker = mol->start;
589 while (Walker->next != mol->end) {
590 Walker = Walker->next;
591 totalmass += Walker->type->mass;
592 }
593 *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl;
594
595 *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass/clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
596
597 // solve cubic polynomial
598 *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl;
599 double cellvolume;
600 if (IsAngstroem)
601 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_A - (totalmass/clustervolume))/(celldensity-1);
602 else
603 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_a0 - (totalmass/clustervolume))/(celldensity-1);
604 *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
605
606 double minimumvolume = TotalNoClusters*(GreatestDiameter[0]*GreatestDiameter[1]*GreatestDiameter[2]);
607 *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
608 if (minimumvolume > cellvolume) {
609 cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl;
610 cout << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl;
611 for(int i=0;i<NDIM;i++)
612 BoxLengths.x[i] = GreatestDiameter[i];
613 mol->CenterEdge(out, &BoxLengths);
614 } else {
615 BoxLengths.x[0] = (repetition[0]*GreatestDiameter[0] + repetition[1]*GreatestDiameter[1] + repetition[2]*GreatestDiameter[2]);
616 BoxLengths.x[1] = (repetition[0]*repetition[1]*GreatestDiameter[0]*GreatestDiameter[1]
617 + repetition[0]*repetition[2]*GreatestDiameter[0]*GreatestDiameter[2]
618 + repetition[1]*repetition[2]*GreatestDiameter[1]*GreatestDiameter[2]);
619 BoxLengths.x[2] = minimumvolume - cellvolume;
620 double x0 = 0.,x1 = 0.,x2 = 0.;
621 if (gsl_poly_solve_cubic(BoxLengths.x[0],BoxLengths.x[1],BoxLengths.x[2],&x0,&x1,&x2) == 1) // either 1 or 3 on return
622 *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl;
623 else {
624 *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl;
625 x0 = x2; // sorted in ascending order
626 }
627
628 cellvolume = 1;
629 for(int i=0;i<NDIM;i++) {
630 BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]);
631 cellvolume *= BoxLengths.x[i];
632 }
633
634 // set new box dimensions
635 *out << Verbose(0) << "Translating to box with these boundaries." << endl;
636 mol->CenterInBox((ofstream *)&cout, &BoxLengths);
637 }
638 // update Box of atoms by boundary
639 mol->SetBoxDimension(&BoxLengths);
640 *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and " << BoxLengths.x[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
641};
642
643
644// =========================================================== class TESSELATION ===========================================
645
646/** Constructor of class Tesselation.
647 */
648Tesselation::Tesselation()
649{
650 PointsOnBoundaryCount = 0;
651 LinesOnBoundaryCount = 0;
652 TrianglesOnBoundaryCount = 0;
653};
654
655/** Constructor of class Tesselation.
656 * We have to free all points, lines and triangles.
657 */
658Tesselation::~Tesselation()
659{
660 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
661 delete(runner->second);
662 }
663};
664
665/** Gueses first starting triangle of the convex envelope.
666 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
667 * \param *out output stream for debugging
668 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
669 */
670void Tesselation::GuessStartingTriangle(ofstream *out)
671{
672 // 4b. create a starting triangle
673 // 4b1. create all distances
674 DistanceMultiMap DistanceMMap;
675 double distance;
676 for (PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
677 for(PointMap::iterator sprinter = PointsOnBoundary.begin(); sprinter != PointsOnBoundary.end(); sprinter++) {
678 if (runner->first < sprinter->first) {
679 distance = runner->second->node->x.Distance(&sprinter->second->node->x);
680 DistanceMMap.insert( DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator>(runner,sprinter) ) );
681 }
682 }
683 }
684
685// // listing distances
686// *out << Verbose(1) << "Listing DistanceMMap:";
687// for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
688// *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
689// }
690// *out << endl;
691
692 // 4b2. take three smallest distance that form a triangle
693 // we take the smallest distance as the base line
694 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
695 BPS[0] = baseline->second.first->second;
696 BPS[1] = baseline->second.second->second;
697 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
698
699 // take the second smallest as the second base line
700 DistanceMultiMap::iterator secondline = DistanceMMap.begin();
701 do {
702 secondline++;
703 } while (!(
704 ((BPS[0] == secondline->second.first->second) && (BPS[1] != secondline->second.second->second)) ||
705 ((BPS[0] == secondline->second.second->second) && (BPS[1] != secondline->second.first->second)) ||
706 ((BPS[1] == secondline->second.first->second) && (BPS[0] != secondline->second.second->second)) ||
707 ((BPS[1] == secondline->second.second->second) && (BPS[0] != secondline->second.first->second))
708 ));
709 BPS[0] = secondline->second.first->second;
710 BPS[1] = secondline->second.second->second;
711 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
712
713 // connection yields the third line (note: first and second endpoint are sorted!)
714 if (baseline->second.first->second == secondline->second.first->second) {
715 SetEndpointsOrdered(BPS, baseline->second.second->second, secondline->second.second->second);
716 } else if (baseline->second.first->second == secondline->second.second->second) {
717 SetEndpointsOrdered(BPS, baseline->second.second->second, secondline->second.first->second);
718 } else if (baseline->second.second->second == secondline->second.first->second) {
719 SetEndpointsOrdered(BPS, baseline->second.first->second, baseline->second.second->second);
720 } else if (baseline->second.second->second == secondline->second.second->second) {
721 SetEndpointsOrdered(BPS, baseline->second.first->second, baseline->second.first->second);
722 }
723 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
724
725 // 4b3. insert created triangle
726 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
727 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
728 TrianglesOnBoundaryCount++;
729 for(int i=0;i<NDIM;i++) {
730 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
731 LinesOnBoundaryCount++;
732 }
733
734 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
735};
736
737
738/** Tesselates the convex envelope of a cluster from a single starting triangle.
739 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
740 * 2 triangles. Hence, we go through all current lines:
741 * -# if the lines contains to only one triangle
742 * -# We search all points in the boundary
743 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
744 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
745 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
746 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
747 * \param *out output stream for debugging
748 * \param *configuration for IsAngstroem
749 * \param *mol the cluster as a molecule structure
750 */
751void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol)
752{
753 bool flag;
754 PointMap::iterator winner;
755 class BoundaryPointSet *peak = NULL;
756 double SmallestAngle, TempAngle;
757 vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector;
758 LineMap::iterator LineChecker[2];
759 do {
760 flag = false;
761 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
762 if (baseline->second->TrianglesCount == 1) {
763 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
764 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
765 SmallestAngle = M_PI;
766 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
767 // get peak point with respect to this base line's only triangle
768 for(int i=0;i<3;i++)
769 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
770 peak = BTS->endpoints[i];
771 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
772 // normal vector of triangle
773 BTS->GetNormalVector(NormalVector);
774 *out << Verbose(4) << "NormalVector of base triangle is ";
775 NormalVector.Output(out);
776 *out << endl;
777 // offset to center of triangle
778 CenterVector.Zero();
779 for(int i=0;i<3;i++)
780 CenterVector.AddVector(&BTS->endpoints[i]->node->x);
781 CenterVector.Scale(1./3.);
782 *out << Verbose(4) << "CenterVector of base triangle is ";
783 CenterVector.Output(out);
784 *out << endl;
785 // vector in propagation direction (out of triangle)
786 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
787 TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
788 TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
789 PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
790 TempVector.CopyVector(&CenterVector);
791 TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
792 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
793 if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
794 PropagationVector.Scale(-1.);
795 *out << Verbose(4) << "PropagationVector of base triangle is ";
796 PropagationVector.Output(out);
797 *out << endl;
798 winner = PointsOnBoundary.end();
799 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++)
800 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
801 *out << Verbose(3) << "Target point is " << *(target->second) << ":";
802 bool continueflag = true;
803
804 VirtualNormalVector.CopyVector(&baseline->second->endpoints[0]->node->x);
805 VirtualNormalVector.AddVector(&baseline->second->endpoints[0]->node->x);
806 VirtualNormalVector.Scale(-1./2.); // points now to center of base line
807 VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
808 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
809 continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
810 if (!continueflag) {
811 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
812 continue;
813 } else
814 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
815 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
816 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
817 // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
818 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
819 // else
820 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
821 // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
822 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
823 // else
824 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
825 // check first endpoint (if any connecting line goes to target or at least not more than 1)
826 continueflag = continueflag && (( (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1)));
827 if (!continueflag) {
828 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
829 continue;
830 }
831 // check second endpoint (if any connecting line goes to target or at least not more than 1)
832 continueflag = continueflag && (( (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1)));
833 if (!continueflag) {
834 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
835 continue;
836 }
837 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
838 continueflag = continueflag && (!(
839 ((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
840 && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak))
841 ));
842 if (!continueflag) {
843 *out << Verbose(4) << "Current target is peak!" << endl;
844 continue;
845 }
846 // in case NOT both were found
847 if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle
848 flag = true;
849 VirtualNormalVector.MakeNormalVector(&baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x);
850 // make it always point inward
851 if (baseline->second->endpoints[0]->node->x.Projection(&VirtualNormalVector) > 0)
852 VirtualNormalVector.Scale(-1.);
853 // calculate angle
854 TempAngle = NormalVector.Angle(&VirtualNormalVector);
855 *out << Verbose(4) << "NormalVector is ";
856 VirtualNormalVector.Output(out);
857 *out << " and the angle is " << TempAngle << "." << endl;
858 if (SmallestAngle > TempAngle) { // set to new possible winner
859 SmallestAngle = TempAngle;
860 winner = target;
861 }
862 }
863 }
864 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
865 if (winner != PointsOnBoundary.end()) {
866 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
867 // create the lins of not yet present
868 BLS[0] = baseline->second;
869 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
870 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
871 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
872 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
873 BPS[0] = baseline->second->endpoints[0];
874 BPS[1] = winner->second;
875 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
876 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[1]) );
877 LinesOnBoundaryCount++;
878 } else
879 BLS[1] = LineChecker[0]->second;
880 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
881 BPS[0] = baseline->second->endpoints[1];
882 BPS[1] = winner->second;
883 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
884 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[2]) );
885 LinesOnBoundaryCount++;
886 } else
887 BLS[2] = LineChecker[1]->second;
888 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
889 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
890 TrianglesOnBoundaryCount++;
891 } else {
892 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
893 }
894
895 // 5d. If the set of lines is not yet empty, go to 5. and continue
896 } else
897 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl;
898 } while (flag);
899
900 stringstream line;
901 line << configuration->configpath << "/" << CONVEXENVELOPE;
902 *out << Verbose(1) << "Storing convex envelope in tecplot data file " << line.str() << "." << endl;
903 ofstream output(line.str().c_str());
904 output << "TITLE = \"3D CONVEX SHELL\"" << endl;
905 output << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
906 output << "ZONE T=\"TRIANGLES\", N=" << PointsOnBoundaryCount << ", E=" << TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
907 int *LookupList = new int[mol->AtomCount];
908 for (int i=0;i<mol->AtomCount;i++)
909 LookupList[i] = -1;
910
911 // print atom coordinates
912 *out << Verbose(2) << "The following triangles were created:";
913 int Counter = 1;
914 atom *Walker = NULL;
915 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
916 Walker = target->second->node;
917 LookupList[Walker->nr] = Counter++;
918 output << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl;
919 }
920 output << endl;
921 // print connectivity
922 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
923 *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
924 output << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
925 }
926 output.close();
927 delete[](LookupList);
928 *out << endl;
929};
930
931/** Adds an atom to the tesselation::PointsOnBoundary list.
932 * \param *Walker atom to add
933 */
934void Tesselation::AddPoint(atom *Walker)
935{
936 BPS[0] = new class BoundaryPointSet(Walker);
937 PointsOnBoundary.insert( PointPair(Walker->nr, BPS[0]) );
938 PointsOnBoundaryCount++;
939};
Note: See TracBrowser for help on using the repository browser.