#include "boundary.hpp" #define DEBUG 1 #define DoSingleStepOutput 0 #define DoTecplotOutput 1 #define DoRaster3DOutput 1 #define DoVRMLOutput 1 #define TecplotSuffix ".dat" #define Raster3DSuffix ".r3d" #define VRMLSUffix ".wrl" #define HULLEPSILON MYEPSILON // ======================================== Points on Boundary ================================= BoundaryPointSet::BoundaryPointSet() { LinesCount = 0; Nr = -1; } ; BoundaryPointSet::BoundaryPointSet(atom *Walker) { node = Walker; LinesCount = 0; Nr = Walker->nr; } ; BoundaryPointSet::~BoundaryPointSet() { cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl; if (!lines.empty()) cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl; node = NULL; } ; void BoundaryPointSet::AddLine(class BoundaryLineSet *line) { cout << Verbose(6) << "Adding " << *this << " to line " << *line << "." << endl; if (line->endpoints[0] == this) { lines.insert(LinePair(line->endpoints[1]->Nr, line)); } else { lines.insert(LinePair(line->endpoints[0]->Nr, line)); } LinesCount++; } ; ostream & operator <<(ostream &ost, BoundaryPointSet &a) { ost << "[" << a.Nr << "|" << a.node->Name << "]"; return ost; } ; // ======================================== Lines on Boundary ================================= BoundaryLineSet::BoundaryLineSet() { for (int i = 0; i < 2; i++) endpoints[i] = NULL; TrianglesCount = 0; Nr = -1; } ; BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number) { // set number Nr = number; // set endpoints in ascending order SetEndpointsOrdered(endpoints, Point[0], Point[1]); // add this line to the hash maps of both endpoints Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding. Point[1]->AddLine(this); // // clear triangles list TrianglesCount = 0; cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl; } ; BoundaryLineSet::~BoundaryLineSet() { int Numbers[2]; Numbers[0] = endpoints[1]->Nr; Numbers[1] = endpoints[0]->Nr; for (int i = 0; i < 2; i++) { cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl; endpoints[i]->lines.erase(Numbers[i]); if (endpoints[i]->lines.empty()) { cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl; if (endpoints[i] != NULL) { delete(endpoints[i]); endpoints[i] = NULL; } else cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl; } else cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl; } if (!triangles.empty()) cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl; } ; void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle) { cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl; triangles.insert(TrianglePair(triangle->Nr, triangle)); TrianglesCount++; } ; ostream & operator <<(ostream &ost, BoundaryLineSet &a) { ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]"; return ost; } ; // ======================================== Triangles on Boundary ================================= BoundaryTriangleSet::BoundaryTriangleSet() { for (int i = 0; i < 3; i++) { endpoints[i] = NULL; lines[i] = NULL; } Nr = -1; } ; BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number) { // set number Nr = number; // set lines cout << Verbose(5) << "New triangle " << Nr << ":" << endl; for (int i = 0; i < 3; i++) { lines[i] = line[i]; lines[i]->AddTriangle(this); } // get ascending order of endpoints map OrderMap; for (int i = 0; i < 3; i++) // for all three lines for (int j = 0; j < 2; j++) { // for both endpoints OrderMap.insert(pair ( line[i]->endpoints[j]->Nr, line[i]->endpoints[j])); // and we don't care whether insertion fails } // set endpoints int Counter = 0; cout << Verbose(6) << " with end points "; for (map::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) { endpoints[Counter] = runner->second; cout << " " << *endpoints[Counter]; Counter++; } if (Counter < 3) { cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl; //exit(1); } cout << "." << endl; } ; BoundaryTriangleSet::~BoundaryTriangleSet() { for (int i = 0; i < 3; i++) { cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl; lines[i]->triangles.erase(Nr); if (lines[i]->triangles.empty()) { cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl; if (lines[i] != NULL) { delete (lines[i]); lines[i] = NULL; } else cerr << "ERROR: This line " << i << " has already been free'd." << endl; } else cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl; } } ; void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector) { // get normal vector NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x); // make it always point inward (any offset vector onto plane projected onto normal vector suffices) if (NormalVector.Projection(&OtherVector) > 0) NormalVector.Scale(-1.); } ; ostream & operator <<(ostream &ost, BoundaryTriangleSet &a) { ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]"; return ost; } ; // ========================================== F U N C T I O N S ================================= /** Finds the endpoint two lines are sharing. * \param *line1 first line * \param *line2 second line * \return point which is shared or NULL if none */ class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2) { class BoundaryLineSet * lines[2] = { line1, line2 }; class BoundaryPointSet *node = NULL; map OrderMap; pair::iterator, bool> OrderTest; for (int i = 0; i < 2; i++) // for both lines for (int j = 0; j < 2; j++) { // for both endpoints OrderTest = OrderMap.insert(pair ( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j])); if (!OrderTest.second) { // if insertion fails, we have common endpoint node = OrderTest.first->second; cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl; j = 2; i = 2; break; } } return node; } ; /** Determines the boundary points of a cluster. * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's * center and first and last point in the triple, it is thrown out. * \param *out output stream for debugging * \param *mol molecule structure representing the cluster */ Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol) { atom *Walker = NULL; PointMap PointsOnBoundary; LineMap LinesOnBoundary; TriangleMap TrianglesOnBoundary; *out << Verbose(1) << "Finding all boundary points." << endl; Boundaries *BoundaryPoints = new Boundaries[NDIM]; // first is alpha, second is (r, nr) BoundariesTestPair BoundaryTestPair; Vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector; double radius, angle; // 3a. Go through every axis for (int axis = 0; axis < NDIM; axis++) { AxisVector.Zero(); AngleReferenceVector.Zero(); AngleReferenceNormalVector.Zero(); AxisVector.x[axis] = 1.; AngleReferenceVector.x[(axis + 1) % NDIM] = 1.; AngleReferenceNormalVector.x[(axis + 2) % NDIM] = 1.; // *out << Verbose(1) << "Axisvector is "; // AxisVector.Output(out); // *out << " and AngleReferenceVector is "; // AngleReferenceVector.Output(out); // *out << "." << endl; // *out << " and AngleReferenceNormalVector is "; // AngleReferenceNormalVector.Output(out); // *out << "." << endl; // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours Walker = mol->start; while (Walker->next != mol->end) { Walker = Walker->next; Vector ProjectedVector; ProjectedVector.CopyVector(&Walker->x); ProjectedVector.ProjectOntoPlane(&AxisVector); // correct for negative side //if (Projection(y) < 0) //angle = 2.*M_PI - angle; radius = ProjectedVector.Norm(); if (fabs(radius) > MYEPSILON) angle = ProjectedVector.Angle(&AngleReferenceVector); else angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl; if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) { angle = 2. * M_PI - angle; } //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): "; //ProjectedVector.Output(out); //*out << endl; BoundaryTestPair = BoundaryPoints[axis].insert(BoundariesPair(angle, DistancePair (radius, Walker))); if (BoundaryTestPair.second) { // successfully inserted } else { // same point exists, check first r, then distance of original vectors to center of gravity *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl; *out << Verbose(2) << "Present vector: "; BoundaryTestPair.first->second.second->x.Output(out); *out << endl; *out << Verbose(2) << "New vector: "; Walker->x.Output(out); *out << endl; double tmp = ProjectedVector.Norm(); if (tmp > BoundaryTestPair.first->second.first) { BoundaryTestPair.first->second.first = tmp; BoundaryTestPair.first->second.second = Walker; *out << Verbose(2) << "Keeping new vector." << endl; } else if (tmp == BoundaryTestPair.first->second.first) { if (BoundaryTestPair.first->second.second->x.ScalarProduct( &BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower BoundaryTestPair.first->second.second = Walker; *out << Verbose(2) << "Keeping new vector." << endl; } else { *out << Verbose(2) << "Keeping present vector." << endl; } } else { *out << Verbose(2) << "Keeping present vector." << endl; } } } // printing all inserted for debugging // { // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl; // int i=0; // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) { // if (runner != BoundaryPoints[axis].begin()) // *out << ", " << i << ": " << *runner->second.second; // else // *out << i << ": " << *runner->second.second; // i++; // } // *out << endl; // } // 3c. throw out points whose distance is less than the mean of left and right neighbours bool flag = false; do { // do as long as we still throw one out per round *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl; flag = false; Boundaries::iterator left = BoundaryPoints[axis].end(); Boundaries::iterator right = BoundaryPoints[axis].end(); for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) { // set neighbours correctly if (runner == BoundaryPoints[axis].begin()) { left = BoundaryPoints[axis].end(); } else { left = runner; } left--; right = runner; right++; if (right == BoundaryPoints[axis].end()) { right = BoundaryPoints[axis].begin(); } // check distance // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector) { Vector SideA, SideB, SideC, SideH; SideA.CopyVector(&left->second.second->x); SideA.ProjectOntoPlane(&AxisVector); // *out << "SideA: "; // SideA.Output(out); // *out << endl; SideB.CopyVector(&right->second.second->x); SideB.ProjectOntoPlane(&AxisVector); // *out << "SideB: "; // SideB.Output(out); // *out << endl; SideC.CopyVector(&left->second.second->x); SideC.SubtractVector(&right->second.second->x); SideC.ProjectOntoPlane(&AxisVector); // *out << "SideC: "; // SideC.Output(out); // *out << endl; SideH.CopyVector(&runner->second.second->x); SideH.ProjectOntoPlane(&AxisVector); // *out << "SideH: "; // SideH.Output(out); // *out << endl; // calculate each length double a = SideA.Norm(); //double b = SideB.Norm(); //double c = SideC.Norm(); double h = SideH.Norm(); // calculate the angles double alpha = SideA.Angle(&SideH); double beta = SideA.Angle(&SideC); double gamma = SideB.Angle(&SideH); double delta = SideC.Angle(&SideH); double MinDistance = a * sin(beta) / (sin(delta)) * (((alpha < M_PI / 2.) || (gamma < M_PI / 2.)) ? 1. : -1.); // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl; //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl; if ((fabs(h / fabs(h) - MinDistance / fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) { // throw out point //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl; BoundaryPoints[axis].erase(runner); flag = true; } } } } while (flag); } return BoundaryPoints; } ; /** Determines greatest diameters of a cluster defined by its convex envelope. * Looks at lines parallel to one axis and where they intersect on the projected planes * \param *out output stream for debugging * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane * \param *mol molecule structure representing the cluster * \param IsAngstroem whether we have angstroem or atomic units * \return NDIM array of the diameters */ double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol, bool IsAngstroem) { // get points on boundary of NULL was given as parameter bool BoundaryFreeFlag = false; Boundaries *BoundaryPoints = BoundaryPtr; if (BoundaryPoints == NULL) { BoundaryFreeFlag = true; BoundaryPoints = GetBoundaryPoints(out, mol); } else { *out << Verbose(1) << "Using given boundary points set." << endl; } // determine biggest "diameter" of cluster for each axis Boundaries::iterator Neighbour, OtherNeighbour; double *GreatestDiameter = new double[NDIM]; for (int i = 0; i < NDIM; i++) GreatestDiameter[i] = 0.; double OldComponent, tmp, w1, w2; Vector DistanceVector, OtherVector; int component, Othercomponent; for (int axis = 0; axis < NDIM; axis++) { // regard each projected plane //*out << Verbose(1) << "Current axis is " << axis << "." << endl; for (int j = 0; j < 2; j++) { // and for both axis on the current plane component = (axis + j + 1) % NDIM; Othercomponent = (axis + 1 + ((j + 1) & 1)) % NDIM; //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl; for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) { //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl; // seek for the neighbours pair where the Othercomponent sign flips Neighbour = runner; Neighbour++; if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around Neighbour = BoundaryPoints[axis].begin(); DistanceVector.CopyVector(&runner->second.second->x); DistanceVector.SubtractVector(&Neighbour->second.second->x); do { // seek for neighbour pair where it flips OldComponent = DistanceVector.x[Othercomponent]; Neighbour++; if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around Neighbour = BoundaryPoints[axis].begin(); DistanceVector.CopyVector(&runner->second.second->x); DistanceVector.SubtractVector(&Neighbour->second.second->x); //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl; } while ((runner != Neighbour) && (fabs(OldComponent / fabs( OldComponent) - DistanceVector.x[Othercomponent] / fabs( DistanceVector.x[Othercomponent])) < MYEPSILON)); // as long as sign does not flip if (runner != Neighbour) { OtherNeighbour = Neighbour; if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around OtherNeighbour = BoundaryPoints[axis].end(); OtherNeighbour--; //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl; // now we have found the pair: Neighbour and OtherNeighbour OtherVector.CopyVector(&runner->second.second->x); OtherVector.SubtractVector(&OtherNeighbour->second.second->x); //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl; //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl; // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour w1 = fabs(OtherVector.x[Othercomponent]); w2 = fabs(DistanceVector.x[Othercomponent]); tmp = fabs((w1 * DistanceVector.x[component] + w2 * OtherVector.x[component]) / (w1 + w2)); // mark if it has greater diameter //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl; GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp; } //else //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl; } } } *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl; // free reference lists if (BoundaryFreeFlag) delete[] (BoundaryPoints); return GreatestDiameter; } ; /** Creates the objects in a VRML file. * \param *out output stream for debugging * \param *vrmlfile output stream for tecplot data * \param *Tess Tesselation structure with constructed triangles * \param *mol molecule structure with atom positions */ void write_vrml_file(ofstream *out, ofstream *vrmlfile, class Tesselation *Tess, class molecule *mol) { atom *Walker = mol->start; bond *Binder = mol->first; int i; Vector *center = mol->DetermineCenterOfAll(out); if (vrmlfile != NULL) { //cout << Verbose(1) << "Writing Raster3D file ... "; *vrmlfile << "#VRML V2.0 utf8" << endl; *vrmlfile << "#Created by molecuilder" << endl; *vrmlfile << "#All atoms as spheres" << endl; while (Walker->next != mol->end) { Walker = Walker->next; *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type for (i=0;ix.x[i]+center->x[i] << " "; *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour } *vrmlfile << "# All bonds as vertices" << endl; while (Binder->next != mol->last) { Binder = Binder->next; *vrmlfile << "3" << endl << " "; // 2 is round-ended cylinder type for (i=0;ileftatom->x.x[i]+center->x[i] << " "; *vrmlfile << "\t0.03\t"; for (i=0;irightatom->x.x[i]+center->x[i] << " "; *vrmlfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour } *vrmlfile << "# All tesselation triangles" << endl; for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) { *vrmlfile << "1" << endl << " "; // 1 is triangle type for (i=0;i<3;i++) { // print each node for (int j=0;jsecond->endpoints[i]->node->x.x[j]+center->x[j] << " "; *vrmlfile << "\t"; } *vrmlfile << "1. 0. 0." << endl; // red as colour *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object } } else { cerr << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl; } delete(center); }; /** Creates the objects in a raster3d file (renderable with a header.r3d). * \param *out output stream for debugging * \param *rasterfile output stream for tecplot data * \param *Tess Tesselation structure with constructed triangles * \param *mol molecule structure with atom positions */ void write_raster3d_file(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, class molecule *mol) { atom *Walker = mol->start; bond *Binder = mol->first; int i; Vector *center = mol->DetermineCenterOfAll(out); if (rasterfile != NULL) { //cout << Verbose(1) << "Writing Raster3D file ... "; *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl; *rasterfile << "@header.r3d" << endl; *rasterfile << "# All atoms as spheres" << endl; while (Walker->next != mol->end) { Walker = Walker->next; *rasterfile << "2" << endl << " "; // 2 is sphere type for (i=0;ix.x[i]+center->x[i] << " "; *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour } *rasterfile << "# All bonds as vertices" << endl; while (Binder->next != mol->last) { Binder = Binder->next; *rasterfile << "3" << endl << " "; // 2 is round-ended cylinder type for (i=0;ileftatom->x.x[i]+center->x[i] << " "; *rasterfile << "\t0.03\t"; for (i=0;irightatom->x.x[i]+center->x[i] << " "; *rasterfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour } *rasterfile << "# All tesselation triangles" << endl; *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n"; for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) { *rasterfile << "1" << endl << " "; // 1 is triangle type for (i=0;i<3;i++) { // print each node for (int j=0;jsecond->endpoints[i]->node->x.x[j]+center->x[j] << " "; *rasterfile << "\t"; } *rasterfile << "1. 0. 0." << endl; // red as colour //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object } *rasterfile << "9\n terminating special property\n"; } else { cerr << "ERROR: Given rasterfile is " << rasterfile << "." << endl; } delete(center); }; /** This function creates the tecplot file, displaying the tesselation of the hull. * \param *out output stream for debugging * \param *tecplot output stream for tecplot data * \param N arbitrary number to differentiate various zones in the tecplot format */ void write_tecplot_file(ofstream *out, ofstream *tecplot, class Tesselation *TesselStruct, class molecule *mol, int N) { if (tecplot != NULL) { *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl; *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl; *tecplot << "ZONE T=\"TRIANGLES" << N << "\", N=" << TesselStruct->PointsOnBoundaryCount << ", E=" << TesselStruct->TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl; int *LookupList = new int[mol->AtomCount]; for (int i = 0; i < mol->AtomCount; i++) LookupList[i] = -1; // print atom coordinates *out << Verbose(2) << "The following triangles were created:"; int Counter = 1; atom *Walker = NULL; for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) { Walker = target->second->node; LookupList[Walker->nr] = Counter++; *tecplot << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl; } *tecplot << endl; // print connectivity for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name; *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl; } delete[] (LookupList); *out << endl; } } /** Determines the volume of a cluster. * Determines first the convex envelope, then tesselates it and calculates its volume. * \param *out output stream for debugging * \param *filename filename prefix for output of vertex data * \param *configuration needed for path to store convex envelope file * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired * \param *mol molecule structure representing the cluster * \return determined volume of the cluster in cubed config:GetIsAngstroem() */ double VolumeOfConvexEnvelope(ofstream *out, const char *filename, config *configuration, Boundaries *BoundaryPtr, molecule *mol) { bool IsAngstroem = configuration->GetIsAngstroem(); atom *Walker = NULL; struct Tesselation *TesselStruct = new Tesselation; bool BoundaryFreeFlag = false; Boundaries *BoundaryPoints = BoundaryPtr; double volume = 0.; double PyramidVolume = 0.; double G, h; Vector x, y; double a, b, c; //Find_non_convex_border(out, tecplot, *TesselStruct, mol); // Is now called from command line. // 1. calculate center of gravity *out << endl; Vector *CenterOfGravity = mol->DetermineCenterOfGravity(out); // 2. translate all points into CoG *out << Verbose(1) << "Translating system to Center of Gravity." << endl; Walker = mol->start; while (Walker->next != mol->end) { Walker = Walker->next; Walker->x.Translate(CenterOfGravity); } // 3. Find all points on the boundary if (BoundaryPoints == NULL) { BoundaryFreeFlag = true; BoundaryPoints = GetBoundaryPoints(out, mol); } else { *out << Verbose(1) << "Using given boundary points set." << endl; } // 4. fill the boundary point list for (int axis = 0; axis < NDIM; axis++) for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) { TesselStruct->AddPoint(runner->second.second); } *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl; // now we have the whole set of edge points in the BoundaryList // listing for debugging // *out << Verbose(1) << "Listing PointsOnBoundary:"; // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) { // *out << " " << *runner->second; // } // *out << endl; // 5a. guess starting triangle TesselStruct->GuessStartingTriangle(out); // 5b. go through all lines, that are not yet part of two triangles (only of one so far) TesselStruct->TesselateOnBoundary(out, configuration, mol); *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl; // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl; for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak x.CopyVector(&runner->second->endpoints[0]->node->x); x.SubtractVector(&runner->second->endpoints[1]->node->x); y.CopyVector(&runner->second->endpoints[0]->node->x); y.SubtractVector(&runner->second->endpoints[2]->node->x); a = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared( &runner->second->endpoints[1]->node->x)); b = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared( &runner->second->endpoints[2]->node->x)); c = sqrt(runner->second->endpoints[2]->node->x.DistanceSquared( &runner->second->endpoints[1]->node->x)); G = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x); x.Scale(runner->second->endpoints[1]->node->x.Projection(&x)); h = x.Norm(); // distance of CoG to triangle PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak) *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl; volume += PyramidVolume; } *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl; // 7. translate all points back from CoG *out << Verbose(1) << "Translating system back from Center of Gravity." << endl; CenterOfGravity->Scale(-1); Walker = mol->start; while (Walker->next != mol->end) { Walker = Walker->next; Walker->x.Translate(CenterOfGravity); } // 8. Store triangles in tecplot file string OutputName(filename); OutputName.append(TecplotSuffix); ofstream *tecplot = new ofstream(OutputName.c_str()); write_tecplot_file(out, tecplot, TesselStruct, mol, 0); tecplot->close(); delete(tecplot); // free reference lists if (BoundaryFreeFlag) delete[] (BoundaryPoints); return volume; } ; /** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density. * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster() * \param *out output stream for debugging * \param *configuration needed for path to store convex envelope file * \param *mol molecule structure representing the cluster * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead. * \param celldensity desired average density in final cell */ void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, double ClusterVolume, double celldensity) { // transform to PAS mol->PrincipalAxisSystem(out, true); // some preparations beforehand bool IsAngstroem = configuration->GetIsAngstroem(); Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol); double clustervolume; if (ClusterVolume == 0) clustervolume = VolumeOfConvexEnvelope(out, NULL, configuration, BoundaryPoints, mol); else clustervolume = ClusterVolume; double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol, IsAngstroem); Vector BoxLengths; int repetition[NDIM] = { 1, 1, 1 }; int TotalNoClusters = 1; for (int i = 0; i < NDIM; i++) TotalNoClusters *= repetition[i]; // sum up the atomic masses double totalmass = 0.; atom *Walker = mol->start; while (Walker->next != mol->end) { Walker = Walker->next; totalmass += Walker->type->mass; } *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl; *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass / clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl; // solve cubic polynomial *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl; double cellvolume; if (IsAngstroem) cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_A - (totalmass / clustervolume)) / (celldensity - 1); else cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_a0 - (totalmass / clustervolume)) / (celldensity - 1); *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl; double minimumvolume = TotalNoClusters * (GreatestDiameter[0] * GreatestDiameter[1] * GreatestDiameter[2]); *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl; if (minimumvolume > cellvolume) { cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl; cout << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl; for (int i = 0; i < NDIM; i++) BoxLengths.x[i] = GreatestDiameter[i]; mol->CenterEdge(out, &BoxLengths); } else { BoxLengths.x[0] = (repetition[0] * GreatestDiameter[0] + repetition[1] * GreatestDiameter[1] + repetition[2] * GreatestDiameter[2]); BoxLengths.x[1] = (repetition[0] * repetition[1] * GreatestDiameter[0] * GreatestDiameter[1] + repetition[0] * repetition[2] * GreatestDiameter[0] * GreatestDiameter[2] + repetition[1] * repetition[2] * GreatestDiameter[1] * GreatestDiameter[2]); BoxLengths.x[2] = minimumvolume - cellvolume; double x0 = 0., x1 = 0., x2 = 0.; if (gsl_poly_solve_cubic(BoxLengths.x[0], BoxLengths.x[1], BoxLengths.x[2], &x0, &x1, &x2) == 1) // either 1 or 3 on return *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl; else { *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl; x0 = x2; // sorted in ascending order } cellvolume = 1; for (int i = 0; i < NDIM; i++) { BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]); cellvolume *= BoxLengths.x[i]; } // set new box dimensions *out << Verbose(0) << "Translating to box with these boundaries." << endl; mol->CenterInBox((ofstream *) &cout, &BoxLengths); } // update Box of atoms by boundary mol->SetBoxDimension(&BoxLengths); *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and " << BoxLengths.x[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl; } ; // =========================================================== class TESSELATION =========================================== /** Constructor of class Tesselation. */ Tesselation::Tesselation() { PointsOnBoundaryCount = 0; LinesOnBoundaryCount = 0; TrianglesOnBoundaryCount = 0; TriangleFilesWritten = 0; } ; /** Constructor of class Tesselation. * We have to free all points, lines and triangles. */ Tesselation::~Tesselation() { cout << Verbose(1) << "Free'ing TesselStruct ... " << endl; for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) { if (runner->second != NULL) { delete (runner->second); runner->second = NULL; } else cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl; } } ; /** Gueses first starting triangle of the convex envelope. * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third. * \param *out output stream for debugging * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster */ void Tesselation::GuessStartingTriangle(ofstream *out) { // 4b. create a starting triangle // 4b1. create all distances DistanceMultiMap DistanceMMap; double distance, tmp; Vector PlaneVector, TrialVector; PointMap::iterator A, B, C; // three nodes of the first triangle A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily // with A chosen, take each pair B,C and sort if (A != PointsOnBoundary.end()) { B = A; B++; for (; B != PointsOnBoundary.end(); B++) { C = B; C++; for (; C != PointsOnBoundary.end(); C++) { tmp = A->second->node->x.DistanceSquared(&B->second->node->x); distance = tmp * tmp; tmp = A->second->node->x.DistanceSquared(&C->second->node->x); distance += tmp * tmp; tmp = B->second->node->x.DistanceSquared(&C->second->node->x); distance += tmp * tmp; DistanceMMap.insert(DistanceMultiMapPair(distance, pair< PointMap::iterator, PointMap::iterator> (B, C))); } } } // // listing distances // *out << Verbose(1) << "Listing DistanceMMap:"; // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) { // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")"; // } // *out << endl; // 4b2. pick three baselines forming a triangle // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate DistanceMultiMap::iterator baseline = DistanceMMap.begin(); for (; baseline != DistanceMMap.end(); baseline++) { // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate // 2. next, we have to check whether all points reside on only one side of the triangle // 3. construct plane vector PlaneVector.MakeNormalVector(&A->second->node->x, &baseline->second.first->second->node->x, &baseline->second.second->second->node->x); *out << Verbose(2) << "Plane vector of candidate triangle is "; PlaneVector.Output(out); *out << endl; // 4. loop over all points double sign = 0.; PointMap::iterator checker = PointsOnBoundary.begin(); for (; checker != PointsOnBoundary.end(); checker++) { // (neglecting A,B,C) if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second)) continue; // 4a. project onto plane vector TrialVector.CopyVector(&checker->second->node->x); TrialVector.SubtractVector(&A->second->node->x); distance = TrialVector.Projection(&PlaneVector); if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok continue; *out << Verbose(3) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl; tmp = distance / fabs(distance); // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle) if ((sign != 0) && (tmp != sign)) { // 4c. If so, break 4. loop and continue with next candidate in 1. loop *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " outside the convex hull." << endl; break; } else { // note the sign for later *out << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl; sign = tmp; } // 4d. Check whether the point is inside the triangle (check distance to each node tmp = checker->second->node->x.DistanceSquared(&A->second->node->x); int innerpoint = 0; if ((tmp < A->second->node->x.DistanceSquared( &baseline->second.first->second->node->x)) && (tmp < A->second->node->x.DistanceSquared( &baseline->second.second->second->node->x))) innerpoint++; tmp = checker->second->node->x.DistanceSquared( &baseline->second.first->second->node->x); if ((tmp < baseline->second.first->second->node->x.DistanceSquared( &A->second->node->x)) && (tmp < baseline->second.first->second->node->x.DistanceSquared( &baseline->second.second->second->node->x))) innerpoint++; tmp = checker->second->node->x.DistanceSquared( &baseline->second.second->second->node->x); if ((tmp < baseline->second.second->second->node->x.DistanceSquared( &baseline->second.first->second->node->x)) && (tmp < baseline->second.second->second->node->x.DistanceSquared( &A->second->node->x))) innerpoint++; // 4e. If so, break 4. loop and continue with next candidate in 1. loop if (innerpoint == 3) break; } // 5. come this far, all on same side? Then break 1. loop and construct triangle if (checker == PointsOnBoundary.end()) { *out << "Looks like we have a candidate!" << endl; break; } } if (baseline != DistanceMMap.end()) { BPS[0] = baseline->second.first->second; BPS[1] = baseline->second.second->second; BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); BPS[0] = A->second; BPS[1] = baseline->second.second->second; BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); BPS[0] = baseline->second.first->second; BPS[1] = A->second; BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // 4b3. insert created triangle BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS)); TrianglesOnBoundaryCount++; for (int i = 0; i < NDIM; i++) { LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i])); LinesOnBoundaryCount++; } *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl; } else { *out << Verbose(1) << "No starting triangle found." << endl; exit(255); } } ; /** Tesselates the convex envelope of a cluster from a single starting triangle. * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most * 2 triangles. Hence, we go through all current lines: * -# if the lines contains to only one triangle * -# We search all points in the boundary * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to * baseline in triangle plane pointing out of the triangle and normal vector of new triangle) * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount) * \param *out output stream for debugging * \param *configuration for IsAngstroem * \param *mol the cluster as a molecule structure */ void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol) { bool flag; PointMap::iterator winner; class BoundaryPointSet *peak = NULL; double SmallestAngle, TempAngle; Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector; LineMap::iterator LineChecker[2]; do { flag = false; for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++) if (baseline->second->TrianglesCount == 1) { *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl; // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles) SmallestAngle = M_PI; BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far // get peak point with respect to this base line's only triangle for (int i = 0; i < 3; i++) if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1])) peak = BTS->endpoints[i]; *out << Verbose(3) << " and has peak " << *peak << "." << endl; // normal vector of triangle BTS->GetNormalVector(NormalVector); *out << Verbose(4) << "NormalVector of base triangle is "; NormalVector.Output(out); *out << endl; // offset to center of triangle CenterVector.Zero(); for (int i = 0; i < 3; i++) CenterVector.AddVector(&BTS->endpoints[i]->node->x); CenterVector.Scale(1. / 3.); *out << Verbose(4) << "CenterVector of base triangle is "; CenterVector.Output(out); *out << endl; // vector in propagation direction (out of triangle) // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection) TempVector.CopyVector(&baseline->second->endpoints[0]->node->x); TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x); PropagationVector.MakeNormalVector(&TempVector, &NormalVector); TempVector.CopyVector(&CenterVector); TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center! //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl; if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline PropagationVector.Scale(-1.); *out << Verbose(4) << "PropagationVector of base triangle is "; PropagationVector.Output(out); *out << endl; winner = PointsOnBoundary.end(); for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints *out << Verbose(3) << "Target point is " << *(target->second) << ":"; bool continueflag = true; VirtualNormalVector.CopyVector( &baseline->second->endpoints[0]->node->x); VirtualNormalVector.AddVector( &baseline->second->endpoints[0]->node->x); VirtualNormalVector.Scale(-1. / 2.); // points now to center of base line VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target TempAngle = VirtualNormalVector.Angle(&PropagationVector); continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees) if (!continueflag) { *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl; continue; } else *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl; LineChecker[0] = baseline->second->endpoints[0]->lines.find( target->first); LineChecker[1] = baseline->second->endpoints[1]->lines.find( target->first); // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end()) // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl; // else // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl; // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl; // else // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl; // check first endpoint (if any connecting line goes to target or at least not more than 1) continueflag = continueflag && (((LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1))); if (!continueflag) { *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl; continue; } // check second endpoint (if any connecting line goes to target or at least not more than 1) continueflag = continueflag && (((LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1))); if (!continueflag) { *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl; continue; } // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint) continueflag = continueflag && (!(((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))); if (!continueflag) { *out << Verbose(4) << "Current target is peak!" << endl; continue; } // in case NOT both were found if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle flag = true; VirtualNormalVector.MakeNormalVector( &baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x); // make it always point inward if (baseline->second->endpoints[0]->node->x.Projection( &VirtualNormalVector) > 0) VirtualNormalVector.Scale(-1.); // calculate angle TempAngle = NormalVector.Angle(&VirtualNormalVector); *out << Verbose(4) << "NormalVector is "; VirtualNormalVector.Output(out); *out << " and the angle is " << TempAngle << "." << endl; if (SmallestAngle > TempAngle) { // set to new possible winner SmallestAngle = TempAngle; winner = target; } } } // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle if (winner != PointsOnBoundary.end()) { *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl; // create the lins of not yet present BLS[0] = baseline->second; // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles) LineChecker[0] = baseline->second->endpoints[0]->lines.find( winner->first); LineChecker[1] = baseline->second->endpoints[1]->lines.find( winner->first); if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create BPS[0] = baseline->second->endpoints[0]; BPS[1] = winner->second; BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1])); LinesOnBoundaryCount++; } else BLS[1] = LineChecker[0]->second; if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create BPS[0] = baseline->second->endpoints[1]; BPS[1] = winner->second; BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2])); LinesOnBoundaryCount++; } else BLS[2] = LineChecker[1]->second; BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); TrianglesOnBoundary.insert(TrianglePair( TrianglesOnBoundaryCount, BTS)); TrianglesOnBoundaryCount++; } else { *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl; } // 5d. If the set of lines is not yet empty, go to 5. and continue } else *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl; } while (flag); } ; /** Adds an atom to the tesselation::PointsOnBoundary list. * \param *Walker atom to add */ void Tesselation::AddPoint(atom *Walker) { PointTestPair InsertUnique; BPS[0] = new class BoundaryPointSet(Walker); InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[0])); if (InsertUnique.second) // if new point was not present before, increase counter PointsOnBoundaryCount++; } ; /** Adds point to Tesselation::PointsOnBoundary if not yet present. * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique. * @param Candidate point to add * @param n index for this point in Tesselation::TPS array */ void Tesselation::AddTrianglePoint(atom* Candidate, int n) { PointTestPair InsertUnique; TPS[n] = new class BoundaryPointSet(Candidate); InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n])); if (InsertUnique.second) // if new point was not present before, increase counter { PointsOnBoundaryCount++; } else { delete TPS[n]; cout << Verbose(2) << "Atom " << *((InsertUnique.first)->second->node) << " gibt's schon in der PointMap." << endl; TPS[n] = (InsertUnique.first)->second; } } ; /** Function tries to add line from current Points in BPS to BoundaryLineSet. * If succesful it raises the line count and inserts the new line into the BLS, * if unsuccesful, it writes the line which had been present into the BLS, deleting the new constructed one. * @param *a first endpoint * @param *b second endpoint * @param n index of Tesselation::BLS giving the line with both endpoints */ void Tesselation::AddTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) { LineMap::iterator LineWalker; //cout << "Manually checking endpoints for line." << endl; if ((a->lines.find(b->node->nr)) != a->lines.end()) // ->first == b->node->nr) //If a line is there, how do I recognize that beyond a shadow of a doubt? { //cout << Verbose(2) << "Line exists already, retrieving it from LinesOnBoundarySet" << endl; LineWalker = LinesOnBoundary.end(); LineWalker--; while (LineWalker->second->endpoints[0]->node->nr != min(a->node->nr, b->node->nr) or LineWalker->second->endpoints[1]->node->nr != max( a->node->nr, b->node->nr)) { //cout << Verbose(1) << "Looking for line which already exists"<< endl; LineWalker--; } BPS[0] = LineWalker->second->endpoints[0]; BPS[1] = LineWalker->second->endpoints[1]; BLS[n] = LineWalker->second; } else { cout << Verbose(2) << "Adding line which has not been used before between " << *(a->node) << " and " << *(b->node) << "." << endl; BPS[0] = a; BPS[1] = b; BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n])); LinesOnBoundaryCount++; } } ; /** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm). * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later. */ void Tesselation::AddTriangleToLines() { cout << Verbose(1) << "Adding triangle to its lines" << endl; TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS)); TrianglesOnBoundaryCount++; /* * this is apparently done when constructing triangle for (i=0; i<3; i++) { BLS[i]->AddTriangle(BTS); } */ } ; double det_get(gsl_matrix *A, int inPlace) { /* inPlace = 1 => A is replaced with the LU decomposed copy. inPlace = 0 => A is retained, and a copy is used for LU. */ double det; int signum; gsl_permutation *p = gsl_permutation_alloc(A->size1); gsl_matrix *tmpA; if (inPlace) tmpA = A; else { gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2); gsl_matrix_memcpy(tmpA , A); } gsl_linalg_LU_decomp(tmpA , p , &signum); det = gsl_linalg_LU_det(tmpA , signum); gsl_permutation_free(p); if (! inPlace) gsl_matrix_free(tmpA); return det; }; void get_sphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS) { gsl_matrix *A = gsl_matrix_calloc(3,3); double m11, m12, m13, m14; for(int i=0;i<3;i++) { gsl_matrix_set(A, i, 0, a.x[i]); gsl_matrix_set(A, i, 1, b.x[i]); gsl_matrix_set(A, i, 2, c.x[i]); } m11 = det_get(A, 1); for(int i=0;i<3;i++) { gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]); gsl_matrix_set(A, i, 1, b.x[i]); gsl_matrix_set(A, i, 2, c.x[i]); } m12 = det_get(A, 1); for(int i=0;i<3;i++) { gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]); gsl_matrix_set(A, i, 1, a.x[i]); gsl_matrix_set(A, i, 2, c.x[i]); } m13 = det_get(A, 1); for(int i=0;i<3;i++) { gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]); gsl_matrix_set(A, i, 1, a.x[i]); gsl_matrix_set(A, i, 2, b.x[i]); } m14 = det_get(A, 1); if (fabs(m11) < MYEPSILON) cerr << "ERROR: three points are colinear." << endl; center->x[0] = 0.5 * m12/ m11; center->x[1] = -0.5 * m13/ m11; center->x[2] = 0.5 * m14/ m11; if (fabs(a.Distance(center) - RADIUS) > MYEPSILON) cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl; gsl_matrix_free(A); }; /** * Function returns center of sphere with RADIUS, which rests on points a, b, c * @param Center this vector will be used for return * @param a vector first point of triangle * @param b vector second point of triangle * @param c vector third point of triangle * @param Direction vector indicates up/down * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle * @param Halfplaneindicator double indicates whether Direction is up or down * @param AlternativeIndicator doube indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable * @param alpha double angle at a * @param beta double, angle at b * @param gamma, double, angle at c * @param Radius, double * @param Umkreisradius double radius of circumscribing circle */ void Get_center_of_sphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection, double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius) { Vector TempNormal, helper; double Restradius; Vector OtherCenter; cout << Verbose(3) << "Begin of Get_center_of_sphere.\n"; Center->Zero(); helper.CopyVector(&a); helper.Scale(sin(2.*alpha)); Center->AddVector(&helper); helper.CopyVector(&b); helper.Scale(sin(2.*beta)); Center->AddVector(&helper); helper.CopyVector(&c); helper.Scale(sin(2.*gamma)); Center->AddVector(&helper); //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ; Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma))); NewUmkreismittelpunkt->CopyVector(Center); cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n"; // Here we calculated center of circumscribing circle, using barycentric coordinates cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n"; TempNormal.CopyVector(&a); TempNormal.SubtractVector(&b); helper.CopyVector(&a); helper.SubtractVector(&c); TempNormal.VectorProduct(&helper); if (fabs(HalfplaneIndicator) < MYEPSILON) { if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0)) { TempNormal.Scale(-1); } } else { if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0) { TempNormal.Scale(-1); } } TempNormal.Normalize(); Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius); cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n"; TempNormal.Scale(Restradius); cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n"; Center->AddVector(&TempNormal); cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n"; get_sphere(&OtherCenter, a, b, c, RADIUS); cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n"; cout << Verbose(3) << "End of Get_center_of_sphere.\n"; }; /** This recursive function finds a third point, to form a triangle with two given ones. * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \ * supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \ * upon which we operate. * If the candidate is more fitting to support the sphere than the already stored atom is, then we write its general \ * direction and angle into Storage. * We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \ * with all neighbours of the candidate. * @param a first point * @param b second point * *param c atom old third point of old triangle * @param Candidate base point along whose bonds to start looking from * @param Parent point to avoid during search as its wrong direction * @param RecursionLevel contains current recursion depth * @param Chord baseline vector of first and second point * @param direction1 second in plane vector (along with \a Chord) of the triangle the baseline belongs to * @param OldNormal normal of the triangle which the baseline belongs to * @param ReferencePoint Vector of center of circumscribing circle from which we look towards center of sphere * @param Opt_Candidate candidate reference to return * @param Storage array containing two angles of current Opt_Candidate * @param RADIUS radius of ball * @param mol molecule structure with atoms and bonds */ void Tesselation::Find_next_suitable_point_via_Angle_of_Sphere(atom* a, atom* b, atom* c, atom* Candidate, atom* Parent, int RecursionLevel, Vector *Chord, Vector *direction1, Vector *OldNormal, Vector ReferencePoint, atom*& Opt_Candidate, double *Storage, const double RADIUS, molecule* mol) { cout << Verbose(2) << "Begin of Find_next_suitable_point_via_Angle_of_Sphere, recursion level " << RecursionLevel << ".\n"; cout << Verbose(3) << "Candidate is "<< *Candidate << endl; cout << Verbose(4) << "Baseline vector is " << *Chord << "." << endl; cout << Verbose(4) << "ReferencePoint is " << ReferencePoint << "." << endl; cout << Verbose(4) << "Normal of base triangle is " << *OldNormal << "." << endl; cout << Verbose(4) << "Search direction is " << *direction1 << "." << endl; /* OldNormal is normal vector on the old triangle * direction1 is normal on the triangle line, from which we come, as well as on OldNormal. * Chord points from b to a!!! */ Vector dif_a; //Vector from a to candidate Vector dif_b; //Vector from b to candidate Vector AngleCheck; Vector TempNormal, Umkreismittelpunkt; Vector Mittelpunkt; double alpha, beta, gamma, SideA, SideB, SideC, sign, Umkreisradius; double BallAngle, AlternativeSign; atom *Walker; // variable atom point Vector NewUmkreismittelpunkt; if (a != Candidate and b != Candidate and c != Candidate) { cout << Verbose(3) << "We have a unique candidate!" << endl; dif_a.CopyVector(&(a->x)); dif_a.SubtractVector(&(Candidate->x)); dif_b.CopyVector(&(b->x)); dif_b.SubtractVector(&(Candidate->x)); AngleCheck.CopyVector(&(Candidate->x)); AngleCheck.SubtractVector(&(a->x)); AngleCheck.ProjectOntoPlane(Chord); SideA = dif_b.Norm(); SideB = dif_a.Norm(); SideC = Chord->Norm(); //Chord->Scale(-1); alpha = Chord->Angle(&dif_a); beta = M_PI - Chord->Angle(&dif_b); gamma = dif_a.Angle(&dif_b); cout << Verbose(2) << "Base triangle has sides " << dif_a << ", " << dif_b << ", " << *Chord << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl; if (fabs(M_PI - alpha - beta - gamma) > MYEPSILON) { cerr << Verbose(0) << "WARNING: sum of angles for base triangle " << (alpha + beta + gamma)/M_PI*180. << " != 180.\n"; cout << Verbose(1) << "Base triangle has sides " << dif_a << ", " << dif_b << ", " << *Chord << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl; } if ((M_PI*179./180. > alpha) && (M_PI*179./180. > beta) && (M_PI*179./180. > gamma)) { Umkreisradius = SideA / 2.0 / sin(alpha); //cout << Umkreisradius << endl; //cout << SideB / 2.0 / sin(beta) << endl; //cout << SideC / 2.0 / sin(gamma) << endl; if (Umkreisradius < RADIUS) { //Checking whether ball will at least rest on points. cout << Verbose(3) << "Circle of circumference would fit: " << Umkreisradius << " < " << RADIUS << "." << endl; cout << Verbose(2) << "Candidate is "<< *Candidate << endl; sign = AngleCheck.ScalarProduct(direction1); if (fabs(sign)= 0) { cout << Verbose(3) << "Candidate is in search direction: " << sign << "." << endl; Get_center_of_sphere(&Mittelpunkt, (a->x), (b->x), (Candidate->x), &NewUmkreismittelpunkt, OldNormal, direction1, sign, AlternativeSign, alpha, beta, gamma, RADIUS, Umkreisradius); Mittelpunkt.SubtractVector(&ReferencePoint); cout << Verbose(3) << "Reference vector to sphere's center is " << Mittelpunkt << "." << endl; BallAngle = Mittelpunkt.Angle(OldNormal); cout << Verbose(3) << "Angle between normal of base triangle and center of ball sphere is :" << BallAngle << "." << endl; //cout << "direction1 is " << *direction1 << "." << endl; //cout << "Mittelpunkt is " << Mittelpunkt << "."<< endl; //cout << Verbose(3) << "BallAngle is " << BallAngle << " Sign is " << sign << endl; NewUmkreismittelpunkt.SubtractVector(&ReferencePoint); if ((Mittelpunkt.ScalarProduct(direction1) >=0) || (fabs(NewUmkreismittelpunkt.Norm()) < MYEPSILON)) { if (Storage[0]< -1.5) { // first Candidate at all if (1) {//if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) { cout << Verbose(2) << "First good candidate is " << *Candidate << " with "; Opt_Candidate = Candidate; Storage[0] = sign; Storage[1] = AlternativeSign; Storage[2] = BallAngle; cout << " angle " << Storage[2] << " and Up/Down " << Storage[0] << endl; } else cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl; } else { if ( Storage[2] > BallAngle) { if (1) { //if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) { cout << Verbose(2) << "Next better candidate is " << *Candidate << " with "; Opt_Candidate = Candidate; Storage[0] = sign; Storage[1] = AlternativeSign; Storage[2] = BallAngle; cout << " angle " << Storage[2] << " and Up/Down " << Storage[0] << endl; } else cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl; } else { if (DEBUG) { cout << Verbose(3) << *Candidate << " looses against better candidate " << *Opt_Candidate << "." << endl; } } } } else { if (DEBUG) { cout << Verbose(3) << *Candidate << " refused due to Up/Down sign which is " << sign << endl; } } } else { if (DEBUG) { cout << Verbose(3) << *Candidate << " is not in search direction." << endl; } } } else { if (DEBUG) { cout << Verbose(3) << *Candidate << " would have circumference of " << Umkreisradius << " bigger than ball's radius " << RADIUS << "." << endl; } } } else { if (DEBUG) { cout << Verbose(0) << "Triangle consisting of " << *Candidate << ", " << *a << " and " << *b << " has an angle >150!" << endl; } } } else { if (DEBUG) { cout << Verbose(3) << *Candidate << " is either " << *a << " or " << *b << "." << endl; } } if (RecursionLevel < 5) { // Seven is the recursion level threshold. for (int i = 0; i < mol->NumberOfBondsPerAtom[Candidate->nr]; i++) { // go through all bond Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate); if (Walker == Parent) { // don't go back the same bond continue; } else { Find_next_suitable_point_via_Angle_of_Sphere(a, b, c, Walker, Candidate, RecursionLevel+1, Chord, direction1, OldNormal, ReferencePoint, Opt_Candidate, Storage, RADIUS, mol); //call function again } } } cout << Verbose(2) << "End of Find_next_suitable_point_via_Angle_of_Sphere, recursion level " << RecursionLevel << ".\n"; } ; /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c. * \param *Center new center on return * \param *a first point * \param *b second point * \param *c third point */ void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c) { Vector helper; double alpha, beta, gamma; Vector SideA, SideB, SideC; SideA.CopyVector(b); SideA.SubtractVector(c); SideB.CopyVector(c); SideB.SubtractVector(a); SideC.CopyVector(a); SideC.SubtractVector(b); alpha = M_PI - SideB.Angle(&SideC); beta = M_PI - SideC.Angle(&SideA); gamma = M_PI - SideA.Angle(&SideB); cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl; if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) cerr << "Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl; Center->Zero(); helper.CopyVector(a); helper.Scale(sin(2.*alpha)); Center->AddVector(&helper); helper.CopyVector(b); helper.Scale(sin(2.*beta)); Center->AddVector(&helper); helper.CopyVector(c); helper.Scale(sin(2.*gamma)); Center->AddVector(&helper); Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma))); }; /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius. * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter. * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection. * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter). * \param CircleCenter Center of the parameter circle * \param CirclePlaneNormal normal vector to plane of the parameter circle * \param CircleRadius radius of the parameter circle * \param NewSphereCenter new center of a circumcircle * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle * \param NormalVector normal vector * \param SearchDirection search direction to make angle unique on return. * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails */ double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection) { Vector helper; double radius, alpha; helper.CopyVector(&NewSphereCenter); // test whether new center is on the parameter circle's plane if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) { cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " < HULLEPSILON) cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl; alpha = helper.Angle(&OldSphereCenter); // make the angle unique by checking the halfplanes/search direction if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals alpha = 2.*M_PI - alpha; cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl; radius = helper.Distance(&OldSphereCenter); helper.ProjectOntoPlane(&NormalVector); // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) { cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl; return alpha; } else { cout << Verbose(1) << "ERROR: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl; return 2.*M_PI; } }; /** This recursive function finds a third point, to form a triangle with two given ones. * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then * the center of the sphere is still fixed up to a single parameter. The band of possible values * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives * us the "null" on this circle, the new center of the candidate point will be some way along this * circle. The shorter the way the better is the candidate. Note that the direction is clearly given * by the normal vector of the base triangle that always points outwards by construction. * Hence, we construct a Center of this circle which sits right in the middle of the current base line. * We construct the normal vector that defines the plane this circle lies in, it is just in the * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest * with respect to the length of the baseline and the sphere's fixed \a RADIUS. * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check * both. * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI). * @param BaseTriangle BoundaryTriangleSet of the current base triangle with all three points * @param BaseLine BoundaryLineSet of BaseTriangle with the current base line * @param OptCandidate candidate reference on return * @param OptCandidateCenter candidate's sphere center on return * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate * @param RADIUS radius of sphere * @param *LC LinkedCell structure with neighbouring atoms */ // void Find_next_suitable_point(class BoundaryTriangleSet *BaseTriangle, class BoundaryLineSet *BaseLine, atom*& OptCandidate, Vector *OptCandidateCenter, double *ShortestAngle, const double RADIUS, LinkedCell *LC) // { // atom *Walker = NULL; // Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers // Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in // Vector OldSphereCenter; // center of the sphere defined by the three points of BaseTriangle // Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility // Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility // Vector NewNormalVector; // normal vector of the Candidate's triangle // Vector SearchDirection; // vector that points out of BaseTriangle and is orthonormal to its NormalVector (i.e. the desired direction for the best Candidate) // Vector helper; // LinkedAtoms *List = NULL; // double CircleRadius; // radius of this circle // double radius; // double alpha, Otheralpha; // angles (i.e. parameter for the circle). // double Nullalpha; // angle between OldSphereCenter and NormalVector of base triangle // int N[NDIM], Nlower[NDIM], Nupper[NDIM]; // atom *Candidate = NULL; // // cout << Verbose(1) << "Begin of Find_next_suitable_point" << endl; // // cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << BaseTriangle->NormalVector << "." << endl; // // // construct center of circle // CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x)); // CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x); // CircleCenter.Scale(0.5); // // // construct normal vector of circle // CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x); // CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x); // // // calculate squared radius of circle // radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal); // if (radius/4. < RADIUS*RADIUS) { // CircleRadius = RADIUS*RADIUS - radius/4.; // CirclePlaneNormal.Normalize(); // cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; // // // construct old center // GetCenterofCircumcircle(&OldSphereCenter, &(BaseTriangle->endpoints[0]->node->x), &(BaseTriangle->endpoints[1]->node->x), &(BaseTriangle->endpoints[2]->node->x)); // helper.CopyVector(&BaseTriangle->NormalVector); // normal vector ensures that this is correct center of the two possible ones // radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&OldSphereCenter); // helper.Scale(sqrt(RADIUS*RADIUS - radius)); // OldSphereCenter.AddVector(&helper); // OldSphereCenter.SubtractVector(&CircleCenter); // cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl; // // // test whether old center is on the band's plane // if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) { // cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl; // OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal); // } // radius = OldSphereCenter.ScalarProduct(&OldSphereCenter); // if (fabs(radius - CircleRadius) < HULLEPSILON) { // // // construct SearchDirection // SearchDirection.MakeNormalVector(&BaseTriangle->NormalVector, &CirclePlaneNormal); // helper.CopyVector(&BaseLine->endpoints[0]->node->x); // for(int i=0;i<3;i++) // just take next different endpoint // if ((BaseTriangle->endpoints[i]->node != BaseLine->endpoints[0]->node) && (BaseTriangle->endpoints[i]->node != BaseLine->endpoints[1]->node)) { // helper.SubtractVector(&BaseTriangle->endpoints[i]->node->x); // } // if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // ohoh, SearchDirection points inwards! // SearchDirection.Scale(-1.); // SearchDirection.ProjectOntoPlane(&OldSphereCenter); // SearchDirection.Normalize(); // cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl; // if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way! // cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl; // } // // if (LC->SetIndexToVector(&CircleCenter)) { // get cell for the starting atom // for(int i=0;in[i]; // cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl; // } else { // cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl; // return; // } // // then go through the current and all neighbouring cells and check the contained atoms for possible candidates // cout << Verbose(2) << "LC Intervals:"; // for (int i=0;i= 0) ? N[i]-1 : 0; // Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1; // cout << " [" << Nlower[i] << "," << Nupper[i] << "] "; // } // cout << endl; // for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) // for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) // for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { // List = LC->GetCurrentCell(); // cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; // if (List != NULL) { // for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) { // Candidate = (*Runner); // // // check for three unique points // if ((Candidate != BaseTriangle->endpoints[0]->node) && (Candidate != BaseTriangle->endpoints[1]->node) && (Candidate != BaseTriangle->endpoints[2]->node)) { // cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl; // // // construct both new centers // GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x)); // OtherNewSphereCenter.CopyVector(&NewSphereCenter); // // if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x))) && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)) { // helper.CopyVector(&NewNormalVector); // cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl; // radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter); // if (radius < RADIUS*RADIUS) { // helper.Scale(sqrt(RADIUS*RADIUS - radius)); // cout << Verbose(3) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << "." << endl; // NewSphereCenter.AddVector(&helper); // NewSphereCenter.SubtractVector(&CircleCenter); // cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl; // // helper.Scale(-1.); // OtherNewSphereCenter is created by the same vector just in the other direction // OtherNewSphereCenter.AddVector(&helper); // OtherNewSphereCenter.SubtractVector(&CircleCenter); // cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl; // // // check both possible centers // alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection); // Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection); // alpha = min(alpha, Otheralpha); // if (*ShortestAngle > alpha) { // OptCandidate = Candidate; // *ShortestAngle = alpha; // if (alpha != Otheralpha) // OptCandidateCenter->CopyVector(&NewSphereCenter); // else // OptCandidateCenter->CopyVector(&OtherNewSphereCenter); // cout << Verbose(1) << "We have found a better candidate: " << *OptCandidate << " with " << alpha << " and circumsphere's center at " << *OptCandidateCenter << "." << endl; // } else { // if (OptCandidate != NULL) // cout << Verbose(1) << "REJECT: Old candidate: " << *OptCandidate << " is better than " << alpha << " with " << *ShortestAngle << "." << endl; // else // cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl; // } // // } else { // cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl; // } // } else { // cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl; // } // } else { // cout << Verbose(1) << "REJECT: Base triangle " << *BaseTriangle << " contains Candidate " << *Candidate << "." << endl; // } // } // } // } // } else { // cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl; // } // } else { // cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and base triangle " << *BaseTriangle << " is too big!" << endl; // } // // cout << Verbose(1) << "End of Find_next_suitable_point" << endl; // }; /** Checks whether the triangle consisting of the three atoms is already present. * Searches for the points in Tesselation::PointsOnBoundary and checks their * lines. If any of the three edges already has two triangles attached, false is * returned. * \param *out output stream for debugging * \param *Candidates endpoints of the triangle candidate * \return false - triangle invalid due to edge criteria, true - triangle may be added. */ bool Tesselation::CheckPresenceOfTriangle(ofstream *out, atom *Candidates[3]) { LineMap::iterator FindLine; PointMap::iterator FindPoint; *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl; for (int i=0;i<3;i++) { // check through all endpoints FindPoint = PointsOnBoundary.find(Candidates[i]->nr); if (FindPoint != PointsOnBoundary.end()) TPS[i] = FindPoint->second; else TPS[i] = NULL; } // check lines for (int i=0;i<3;i++) if (TPS[i] != NULL) for (int j=i;j<3;j++) if (TPS[j] != NULL) { FindLine = TPS[i]->lines.find(TPS[j]->node->nr); if ((FindLine != TPS[i]->lines.end()) && (FindLine->second->TrianglesCount > 1)) { *out << "WARNING: Line " << *FindLine->second << " already present with " << FindLine->second->TrianglesCount << " triangles attached." << endl; *out << Verbose(2) << "End of CheckPresenceOfTriangle" << endl; return false; } } *out << Verbose(2) << "End of CheckPresenceOfTriangle" << endl; return true; }; /** This recursive function finds a third point, to form a triangle with two given ones. * Note that this function is for the starting triangle. * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then * the center of the sphere is still fixed up to a single parameter. The band of possible values * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives * us the "null" on this circle, the new center of the candidate point will be some way along this * circle. The shorter the way the better is the candidate. Note that the direction is clearly given * by the normal vector of the base triangle that always points outwards by construction. * Hence, we construct a Center of this circle which sits right in the middle of the current base line. * We construct the normal vector that defines the plane this circle lies in, it is just in the * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest * with respect to the length of the baseline and the sphere's fixed \a RADIUS. * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check * both. * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI). * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa Find_starting_triangle()) * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle * @param BaseLine BoundaryLineSet with the current base line * @param ThirdNode third atom to avoid in search * @param OptCandidate candidate reference on return * @param OptCandidateCenter candidate's sphere center on return * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate * @param RADIUS radius of sphere * @param *LC LinkedCell structure with neighbouring atoms */ void Find_third_point_for_Tesselation(Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter, class BoundaryLineSet *BaseLine, atom *ThirdNode, atom*& OptCandidate, Vector *OptCandidateCenter, double *ShortestAngle, const double RADIUS, LinkedCell *LC) { Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility Vector NewNormalVector; // normal vector of the Candidate's triangle Vector helper; LinkedAtoms *List = NULL; double CircleRadius; // radius of this circle double radius; double alpha, Otheralpha; // angles (i.e. parameter for the circle). int N[NDIM], Nlower[NDIM], Nupper[NDIM]; atom *Candidate = NULL; cout << Verbose(1) << "Begin of Find_third_point_for_Tesselation" << endl; cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl; // construct center of circle CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x)); CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x); CircleCenter.Scale(0.5); // construct normal vector of circle CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x); CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x); // calculate squared radius of circle radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal); if (radius/4. < RADIUS*RADIUS) { CircleRadius = RADIUS*RADIUS - radius/4.; CirclePlaneNormal.Normalize(); cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; // test whether old center is on the band's plane if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) { cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl; OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal); } radius = OldSphereCenter.ScalarProduct(&OldSphereCenter); if (fabs(radius - CircleRadius) < HULLEPSILON) { // check SearchDirection cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl; if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way! cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl; } // get cell for the starting atom if (LC->SetIndexToVector(&CircleCenter)) { for(int i=0;in[i]; cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl; } else { cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl; return; } // then go through the current and all neighbouring cells and check the contained atoms for possible candidates cout << Verbose(2) << "LC Intervals:"; for (int i=0;i= 0) ? N[i]-1 : 0; Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1; cout << " [" << Nlower[i] << "," << Nupper[i] << "] "; } cout << endl; for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { List = LC->GetCurrentCell(); //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; if (List != NULL) { for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) { Candidate = (*Runner); // check for three unique points if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) && (Candidate != ThirdNode)) { cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl; // construct both new centers GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x)); OtherNewSphereCenter.CopyVector(&NewSphereCenter); if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x))) && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)) { helper.CopyVector(&NewNormalVector); cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl; radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter); if (radius < RADIUS*RADIUS) { helper.Scale(sqrt(RADIUS*RADIUS - radius)); cout << Verbose(3) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << "." << endl; NewSphereCenter.AddVector(&helper); NewSphereCenter.SubtractVector(&CircleCenter); cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl; helper.Scale(-1.); // OtherNewSphereCenter is created by the same vector just in the other direction OtherNewSphereCenter.AddVector(&helper); OtherNewSphereCenter.SubtractVector(&CircleCenter); cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl; // check both possible centers alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); alpha = min(alpha, Otheralpha); if (*ShortestAngle > alpha) { OptCandidate = Candidate; *ShortestAngle = alpha; if (alpha != Otheralpha) OptCandidateCenter->CopyVector(&NewSphereCenter); else OptCandidateCenter->CopyVector(&OtherNewSphereCenter); cout << Verbose(1) << "ACCEPT: We have found a better candidate: " << *OptCandidate << " with " << alpha << " and circumsphere's center at " << *OptCandidateCenter << "." << endl; } else { if (OptCandidate != NULL) cout << Verbose(1) << "REJECT: Old candidate: " << *OptCandidate << " is better than " << alpha << " with " << *ShortestAngle << "." << endl; else cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl; } } else { cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl; } } else { cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl; } } else { if (ThirdNode != NULL) cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl; else cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl; } } } } } else { cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl; } } else { if (ThirdNode != NULL) cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl; else cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl; } cout << Verbose(1) << "End of Find_third_point_for_Tesselation" << endl; }; /** Finds the second point of starting triangle. * \param *a first atom * \param *Candidate pointer to candidate atom on return * \param Oben vector indicating the outside * \param Opt_Candidate reference to recommended candidate on return * \param Storage[3] array storing angles and other candidate information * \param RADIUS radius of virtual sphere * \param *LC LinkedCell structure with neighbouring atoms */ void Find_second_point_for_Tesselation(atom* a, atom* Candidate, Vector Oben, atom*& Opt_Candidate, double Storage[3], double RADIUS, LinkedCell *LC) { cout << Verbose(2) << "Begin of Find_second_point_for_Tesselation" << endl; Vector AngleCheck; double norm = -1., angle; LinkedAtoms *List = NULL; int N[NDIM], Nlower[NDIM], Nupper[NDIM]; if (LC->SetIndexToAtom(a)) { // get cell for the starting atom for(int i=0;in[i]; } else { cerr << "ERROR: Atom " << *a << " is not found in cell " << LC->index << "." << endl; return; } // then go through the current and all neighbouring cells and check the contained atoms for possible candidates cout << Verbose(2) << "LC Intervals:"; for (int i=0;i= 0) ? N[i]-1 : 0; Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1; cout << " [" << Nlower[i] << "," << Nupper[i] << "] "; } cout << endl; for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { List = LC->GetCurrentCell(); //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; if (List != NULL) { for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) { Candidate = (*Runner); // check if we only have one unique point yet ... if (a != Candidate) { cout << Verbose(3) << "Current candidate is " << *Candidate << ": "; AngleCheck.CopyVector(&(Candidate->x)); AngleCheck.SubtractVector(&(a->x)); norm = AngleCheck.Norm(); // second point shall have smallest angle with respect to Oben vector if (norm < RADIUS) { angle = AngleCheck.Angle(&Oben); if (angle < Storage[0]) { //cout << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]); cout << "Is a better candidate with distance " << norm << " and " << angle << ".\n"; Opt_Candidate = Candidate; Storage[0] = AngleCheck.Angle(&Oben); //cout << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]); } else { cout << "Looses with angle " << angle << " to a better candidate " << *Opt_Candidate << endl; } } else { cout << "Refused due to Radius " << norm << endl; } } } } } cout << Verbose(2) << "End of Find_second_point_for_Tesselation" << endl; }; /** Finds the starting triangle for find_non_convex_border(). * Looks at the outermost atom per axis, then Find_second_point_for_Tesselation() * for the second and Find_next_suitable_point_via_Angle_of_Sphere() for the third * point are called. * \param RADIUS radius of virtual rolling sphere * \param *LC LinkedCell structure with neighbouring atoms */ void Tesselation::Find_starting_triangle(ofstream *out, molecule *mol, const double RADIUS, LinkedCell *LC) { cout << Verbose(1) << "Begin of Find_starting_triangle\n"; int i = 0; LinkedAtoms *List = NULL; atom* FirstPoint; atom* SecondPoint; atom* MaxAtom[NDIM]; double max_coordinate[NDIM]; Vector Oben; Vector helper; Vector Chord; Vector SearchDirection; Vector OptCandidateCenter; Oben.Zero(); for (i = 0; i < 3; i++) { MaxAtom[i] = NULL; max_coordinate[i] = -1; } // 1. searching topmost atom with respect to each axis for (int i=0;in[i] = LC->N[i]-1; // current axis is topmost cell for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++) for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) { List = LC->GetCurrentCell(); //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; if (List != NULL) { for (LinkedAtoms::iterator Runner = List->begin();Runner != List->end();Runner++) { cout << Verbose(2) << "Current atom is " << *(*Runner) << "." << endl; if ((*Runner)->x.x[i] > max_coordinate[i]) { max_coordinate[i] = (*Runner)->x.x[i]; MaxAtom[i] = (*Runner); } } } else { cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl; } } } cout << Verbose(2) << "Found maximum coordinates: "; for (int i=0;ix << "." << endl; // add first point AddTrianglePoint(FirstPoint, 0); double ShortestAngle; atom* Opt_Candidate = NULL; ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant. Find_second_point_for_Tesselation(FirstPoint, NULL, Oben, Opt_Candidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_... SecondPoint = Opt_Candidate; cout << Verbose(1) << "Found second point is " << *SecondPoint << " at " << SecondPoint->x << ".\n"; // add second point and first baseline AddTrianglePoint(SecondPoint, 1); AddTriangleLine(TPS[0], TPS[1], 0); helper.CopyVector(&(FirstPoint->x)); helper.SubtractVector(&(SecondPoint->x)); helper.Normalize(); Oben.ProjectOntoPlane(&helper); Oben.Normalize(); helper.VectorProduct(&Oben); ShortestAngle = 2.*M_PI; // This will indicate the quadrant. Chord.CopyVector(&(FirstPoint->x)); // bring into calling function Chord.SubtractVector(&(SecondPoint->x)); double radius = Chord.ScalarProduct(&Chord); double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.); helper.CopyVector(&Oben); helper.Scale(CircleRadius); // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized) cout << Verbose(2) << "Looking for third point candidates \n"; // look in one direction of baseline for initial candidate Opt_Candidate = NULL; SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ... cout << Verbose(1) << "Looking for third point candidates ...\n"; Find_third_point_for_Tesselation(Oben, SearchDirection, helper, BLS[0], NULL, Opt_Candidate, &OptCandidateCenter, &ShortestAngle, RADIUS, LC); cout << Verbose(1) << "Third Point is " << *Opt_Candidate << endl; // add third point AddTrianglePoint(Opt_Candidate, 2); // FOUND Starting Triangle: FirstPoint, SecondPoint, Opt_Candidate // Finally, we only have to add the found further lines AddTriangleLine(TPS[1], TPS[2], 1); AddTriangleLine(TPS[0], TPS[2], 2); // ... and triangles to the Maps of the Tesselation class BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); AddTriangleToLines(); // ... and calculate its normal vector (with correct orientation) OptCandidateCenter.Scale(-1.); cout << Verbose(2) << "Oben is currently " << OptCandidateCenter << "." << endl; BTS->GetNormalVector(OptCandidateCenter); cout << Verbose(0) << "==> The found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and " << *Opt_Candidate << " with normal vector " << BTS->NormalVector << ".\n"; cout << Verbose(2) << "Projection is " << BTS->NormalVector.Projection(&Oben) << "." << endl; cout << Verbose(1) << "End of Find_starting_triangle\n"; }; /** This function finds a triangle to a line, adjacent to an existing one. * @param out output stream for debugging * @param *mol molecule with Atom's and Bond's * @param Line current baseline to search from * @param T current triangle which \a Line is edge of * @param RADIUS radius of the rolling ball * @param N number of found triangles * @param *filename filename base for intermediate envelopes * @param *LC LinkedCell structure with neighbouring atoms */ bool Tesselation::Find_next_suitable_triangle(ofstream *out, molecule *mol, BoundaryLineSet &Line, BoundaryTriangleSet &T, const double& RADIUS, int N, const char *tempbasename, LinkedCell *LC) { cout << Verbose(1) << "Begin of Find_next_suitable_triangle\n"; ofstream *tempstream = NULL; char NumberName[255]; atom* Opt_Candidate = NULL; Vector OptCandidateCenter; Vector CircleCenter; Vector CirclePlaneNormal; Vector OldSphereCenter; Vector SearchDirection; Vector helper; atom *ThirdNode = NULL; double ShortestAngle = 2.*M_PI; // This will indicate the quadrant. double radius, CircleRadius; cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl; for (int i=0;i<3;i++) if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node)) ThirdNode = T.endpoints[i]->node; // construct center of circle CircleCenter.CopyVector(&Line.endpoints[0]->node->x); CircleCenter.AddVector(&Line.endpoints[1]->node->x); CircleCenter.Scale(0.5); // construct normal vector of circle CirclePlaneNormal.CopyVector(&Line.endpoints[0]->node->x); CirclePlaneNormal.SubtractVector(&Line.endpoints[1]->node->x); // calculate squared radius of circle radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal); if (radius/4. < RADIUS*RADIUS) { CircleRadius = RADIUS*RADIUS - radius/4.; CirclePlaneNormal.Normalize(); cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; // construct old center GetCenterofCircumcircle(&OldSphereCenter, &(T.endpoints[0]->node->x), &(T.endpoints[1]->node->x), &(T.endpoints[2]->node->x)); helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones radius = Line.endpoints[0]->node->x.DistanceSquared(&OldSphereCenter); helper.Scale(sqrt(RADIUS*RADIUS - radius)); OldSphereCenter.AddVector(&helper); OldSphereCenter.SubtractVector(&CircleCenter); cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl; // construct SearchDirection SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal); helper.CopyVector(&Line.endpoints[0]->node->x); helper.SubtractVector(&ThirdNode->x); if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // ohoh, SearchDirection points inwards! SearchDirection.Scale(-1.); SearchDirection.ProjectOntoPlane(&OldSphereCenter); SearchDirection.Normalize(); cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl; if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way! cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl; } // add third point cout << Verbose(1) << "Looking for third point candidates for triangle ... " << endl; Find_third_point_for_Tesselation(T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, Opt_Candidate, &OptCandidateCenter, &ShortestAngle, RADIUS, LC); } else { cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl; } if (Opt_Candidate == NULL) { cerr << "WARNING: Could not find a suitable candidate." << endl; return false; } cout << Verbose(1) << " Optimal candidate is " << *Opt_Candidate << " with circumsphere's center at " << OptCandidateCenter << "." << endl; // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2) atom *AtomCandidates[3]; AtomCandidates[0] = Opt_Candidate; AtomCandidates[1] = Line.endpoints[0]->node; AtomCandidates[2] = Line.endpoints[1]->node; bool flag = CheckPresenceOfTriangle(out, AtomCandidates); if (flag) { // if so, add AddTrianglePoint(Opt_Candidate, 0); AddTrianglePoint(Line.endpoints[0]->node, 1); AddTrianglePoint(Line.endpoints[1]->node, 2); AddTriangleLine(TPS[0], TPS[1], 0); AddTriangleLine(TPS[0], TPS[2], 1); AddTriangleLine(TPS[1], TPS[2], 2); BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); AddTriangleToLines(); OptCandidateCenter.Scale(-1.); BTS->GetNormalVector(OptCandidateCenter); OptCandidateCenter.Scale(-1.); cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " for this triangle ... " << endl; cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << Line << "." << endl; } else { // else, yell and do nothing cout << Verbose(1) << "This triangle consisting of "; cout << *Opt_Candidate << ", "; cout << *Line.endpoints[0]->node << " and "; cout << *Line.endpoints[1]->node << " "; cout << "is invalid!" << endl; return false; } if (flag && (DoSingleStepOutput && (TrianglesOnBoundaryCount % 10 == 0))) { // if we have a new triangle and want to output each new triangle configuration sprintf(NumberName, "-%04d-%s_%s_%s", TriangleFilesWritten, BTS->endpoints[0]->node->Name, BTS->endpoints[1]->node->Name, BTS->endpoints[2]->node->Name); if (DoTecplotOutput) { string NameofTempFile(tempbasename); NameofTempFile.append(NumberName); for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos)) NameofTempFile.erase(npos, 1); NameofTempFile.append(TecplotSuffix); cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n"; tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc); write_tecplot_file(out, tempstream, this, mol, TriangleFilesWritten); tempstream->close(); tempstream->flush(); delete(tempstream); } if (DoRaster3DOutput) { string NameofTempFile(tempbasename); NameofTempFile.append(NumberName); for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos)) NameofTempFile.erase(npos, 1); NameofTempFile.append(Raster3DSuffix); cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n"; tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc); write_raster3d_file(out, tempstream, this, mol); // include the current position of the virtual sphere in the temporary raster3d file // make the circumsphere's center absolute again helper.CopyVector(&Line.endpoints[0]->node->x); helper.AddVector(&Line.endpoints[1]->node->x); helper.Scale(0.5); OptCandidateCenter.AddVector(&helper); Vector *center = mol->DetermineCenterOfAll(out); OptCandidateCenter.AddVector(center); delete(center); // and add to file plus translucency object *tempstream << "# current virtual sphere\n"; *tempstream << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n"; *tempstream << "2\n " << OptCandidateCenter.x[0] << " " << OptCandidateCenter.x[1] << " " << OptCandidateCenter.x[2] << "\t" << RADIUS << "\t1 0 0\n"; *tempstream << "9\n terminating special property\n"; tempstream->close(); tempstream->flush(); delete(tempstream); } if (DoTecplotOutput || DoRaster3DOutput) TriangleFilesWritten++; } cout << Verbose(1) << "End of Find_next_suitable_triangle\n"; return true; }; /** Tesselates the non convex boundary by rolling a virtual sphere along the surface of the molecule. * \param *out output stream for debugging * \param *mol molecule structure with Atom's and Bond's * \param *Tess Tesselation filled with points, lines and triangles on boundary on return * \param *LCList linked cell list of all atoms * \param *filename filename prefix for output of vertex data * \para RADIUS radius of the virtual sphere */ void Find_non_convex_border(ofstream *out, molecule* mol, class Tesselation *Tess, class LinkedCell *LCList, const char *filename, const double RADIUS) { int N = 0; bool freeTess = false; *out << Verbose(1) << "Entering search for non convex hull. " << endl; if (Tess == NULL) { *out << Verbose(1) << "Allocating Tesselation struct ..." << endl; Tess = new Tesselation; freeTess = true; } bool freeLC = false; LineMap::iterator baseline; *out << Verbose(0) << "Begin of Find_non_convex_border\n"; bool flag = false; // marks whether we went once through all baselines without finding any without two triangles bool failflag = false; if (LCList == NULL) { LCList = new LinkedCell(mol, 2.*RADIUS); freeLC = true; } Tess->Find_starting_triangle(out, mol, RADIUS, LCList); baseline = Tess->LinesOnBoundary.begin(); while ((baseline != Tess->LinesOnBoundary.end()) || (flag)) { if (baseline->second->TrianglesCount == 1) { failflag = Tess->Find_next_suitable_triangle(out, mol, *(baseline->second), *(((baseline->second->triangles.begin()))->second), RADIUS, N, filename, LCList); //the line is there, so there is a triangle, but only one. flag = flag || failflag; if (!failflag) cerr << "WARNING: Find_next_suitable_triangle failed." << endl; } else { cout << Verbose(1) << "Line " << *baseline->second << " has " << baseline->second->TrianglesCount << " triangles adjacent" << endl; } N++; baseline++; if ((baseline == Tess->LinesOnBoundary.end()) && (flag)) { baseline = Tess->LinesOnBoundary.begin(); // restart if we reach end due to newly inserted lines flag = false; } } if (1) { //failflag) { *out << Verbose(1) << "Writing final tecplot file\n"; if (DoTecplotOutput) { string OutputName(filename); OutputName.append(TecplotSuffix); ofstream *tecplot = new ofstream(OutputName.c_str()); write_tecplot_file(out, tecplot, Tess, mol, -1); tecplot->close(); delete(tecplot); } if (DoRaster3DOutput) { string OutputName(filename); OutputName.append(Raster3DSuffix); ofstream *raster = new ofstream(OutputName.c_str()); write_raster3d_file(out, raster, Tess, mol); raster->close(); delete(raster); } } else { cerr << "ERROR: Could definately not find all necessary triangles!" << endl; } if (freeTess) delete(Tess); if (freeLC) delete(LCList); *out << Verbose(0) << "End of Find_non_convex_border\n"; }; /** Finds a hole of sufficient size in \a this molecule to embed \a *srcmol into it. * \param *out output stream for debugging * \param *srcmol molecule to embed into * \return *Vector new center of \a *srcmol for embedding relative to \a this */ Vector* molecule::FindEmbeddingHole(ofstream *out, molecule *srcmol) { Vector *Center = new Vector; Center->Zero(); // calculate volume/shape of \a *srcmol // find embedding holes // if more than one, let user choose // return embedding center return Center; };