source: src/bin/mpqc/mpqc.cc@ 52aacc

Last change on this file since 52aacc was 52aacc, checked in by Frederik Heber <heber@…>, 13 years ago

setupDebugger does not require argv anymore.

  • Property mode set to 100644
File size: 43.1 KB
Line 
1//
2// mpqc.cc
3//
4// Copyright (C) 1996 Limit Point Systems, Inc.
5//
6// Author: Edward Seidl <seidl@janed.com>
7// Maintainer: LPS
8//
9// This file is part of MPQC.
10//
11// MPQC is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 2, or (at your option)
14// any later version.
15//
16// MPQC is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU General Public License
22// along with the MPQC; see the file COPYING. If not, write to
23// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24//
25// The U.S. Government is granted a limited license as per AL 91-7.
26//
27
28// This is needed to make GNU extensions available, such as
29// feenableexcept and fedisableexcept.
30#ifndef _GNU_SOURCE
31# define _GNU_SOURCE
32#endif
33
34#ifdef HAVE_CONFIG_H
35#include <scconfig.h>
36#endif
37
38#ifdef HAVE_TIME_H
39#include <time.h>
40#endif
41
42#include <scdirlist.h>
43
44#include <new>
45#include <stdexcept>
46#include <string.h>
47#include <unistd.h>
48#include <sys/stat.h>
49#include <fstream>
50
51#include <boost/bind.hpp>
52#include <boost/function.hpp>
53
54#include <scconfig.h>
55#ifdef HAVE_SSTREAM
56# include <sstream>
57#else
58# include <strstream.h>
59#endif
60
61#ifdef HAVE_SYS_RESOURCE_H
62# include <sys/resource.h>
63#endif
64#ifdef HAVE_SYS_TIME_H
65# include <sys/time.h>
66#endif
67
68#include <util/options/GetLongOpt.h>
69#include <util/class/scexception.h>
70#include <util/misc/newstring.h>
71#include <util/keyval/keyval.h>
72#include <util/state/state_bin.h>
73#include <util/group/message.h>
74#include <util/group/memory.h>
75#include <util/group/mstate.h>
76#include <util/group/thread.h>
77#include <util/group/pregtime.h>
78#include <util/misc/bug.h>
79#include <util/misc/formio.h>
80#include <util/misc/exenv.h>
81#ifdef HAVE_CHEMISTRY_CCA
82 #include <util/misc/ccaenv.h>
83#endif
84#include <util/render/render.h>
85
86#include <math/optimize/opt.h>
87
88#include <chemistry/molecule/coor.h>
89#include <chemistry/molecule/energy.h>
90#include <chemistry/molecule/molfreq.h>
91#include <chemistry/molecule/fdhess.h>
92#include <chemistry/molecule/formula.h>
93#include <chemistry/qc/wfn/wfn.h>
94
95// Force linkages:
96#include <util/group/linkage.h>
97#include <chemistry/qc/wfn/linkage.h>
98#include <chemistry/qc/scf/linkage.h>
99#include <chemistry/qc/dft/linkage.h>
100#include <chemistry/qc/mbpt/linkage.h>
101#ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_MBPTR12
102# include <chemistry/qc/mbptr12/linkage.h>
103#endif
104#ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_CINTS
105# include <chemistry/qc/cints/linkage.h>
106#endif
107//#include <chemistry/qc/psi/linkage.h>
108#include <util/state/linkage.h>
109#ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_CC
110# include <chemistry/qc/cc/linkage.h>
111#endif
112#ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_PSI
113# include <chemistry/qc/psi/linkage.h>
114#endif
115#ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_INTCCA
116# include <chemistry/qc/intcca/linkage.h>
117#endif
118
119#ifdef HAVE_MPI
120#define MPICH_SKIP_MPICXX
121#include <mpi.h>
122#include <util/group/messmpi.h>
123#endif
124
125using namespace std;
126using namespace sc;
127
128#include "mpqcin.h"
129
130//////////////////////////////////////////////////////////////////////////
131
132const KeyValValueboolean truevalue(1), falsevalue(0);
133const char *devnull = "/dev/null";
134
135
136static void
137trash_stack_b(int &i, char *&ichar)
138{
139 char stack;
140 ichar = &stack;
141 ichar -= 10;
142 for (i=0; i<1000; i++) {
143 *ichar-- = 0xfe;
144 }
145}
146
147static void
148trash_stack()
149{
150 int i;
151 char *ichar;
152 trash_stack_b(i,ichar);
153}
154
155static void
156clean_up(void)
157{
158 MemoryGrp::set_default_memorygrp(0);
159 MessageGrp::set_default_messagegrp(0);
160 ThreadGrp::set_default_threadgrp(0);
161 SCMatrixKit::set_default_matrixkit(0);
162 Integral::set_default_integral(0);
163 RegionTimer::set_default_regiontimer(0);
164}
165
166#include <signal.h>
167
168#ifdef HAVE_FENV_H
169# include <fenv.h>
170#endif
171
172static void
173print_unseen(const Ref<ParsedKeyVal> &parsedkv,
174 const char *input)
175{
176 if (parsedkv->have_unseen()) {
177 ExEnv::out0() << endl;
178 ExEnv::out0() << indent
179 << "The following keywords in \"" << input << "\" were ignored:"
180 << endl;
181 ExEnv::out0() << incindent;
182 parsedkv->print_unseen(ExEnv::out0());
183 ExEnv::out0() << decindent;
184 }
185}
186
187double EvaluateDensity(
188 SCVector3 &r,
189 Ref<Integral> &intgrl,
190 GaussianBasisSet::ValueData &vdat,
191 Ref<Wavefunction> &wfn);
192
193/** Places all known options into \a options and parses them from argc,argv.
194 *
195 * \param options options structure
196 * \param argc argument count
197 * \param argv argument array
198 * \return return value by GetLongOpt::parse() function
199 */
200int ParseOptions(
201 GetLongOpt &options,
202 int argc,
203 char **argv)
204{
205 options.usage("[options] [filename]");
206 options.enroll("f", GetLongOpt::MandatoryValue,
207 "the name of an object format input file", 0);
208 options.enroll("o", GetLongOpt::MandatoryValue,
209 "the name of the output file", 0);
210 options.enroll("n", GetLongOpt::NoValue,
211 "listen for incoming object format input files", 0);
212 options.enroll("messagegrp", GetLongOpt::MandatoryValue,
213 "which message group to use", 0);
214 options.enroll("threadgrp", GetLongOpt::MandatoryValue,
215 "which thread group to use", 0);
216 options.enroll("memorygrp", GetLongOpt::MandatoryValue,
217 "which memory group to use", 0);
218 options.enroll("integral", GetLongOpt::MandatoryValue,
219 "which integral evaluator to use", 0);
220 options.enroll("l", GetLongOpt::MandatoryValue, "basis set limit", "0");
221 options.enroll("W", GetLongOpt::MandatoryValue,
222 "set the working directory", ".");
223 options.enroll("c", GetLongOpt::NoValue, "check input then exit", 0);
224 options.enroll("v", GetLongOpt::NoValue, "print the version number", 0);
225 options.enroll("w", GetLongOpt::NoValue, "print the warranty", 0);
226 options.enroll("L", GetLongOpt::NoValue, "print the license", 0);
227 options.enroll("k", GetLongOpt::NoValue, "print key/value assignments", 0);
228 options.enroll("i", GetLongOpt::NoValue, "convert simple to OO input", 0);
229 options.enroll("d", GetLongOpt::NoValue, "debug", 0);
230 options.enroll("h", GetLongOpt::NoValue, "print this message", 0);
231 options.enroll("cca-path", GetLongOpt::OptionalValue,
232 "cca component path", "");
233 options.enroll("cca-load", GetLongOpt::OptionalValue,
234 "cca components to load", "");
235
236 int optind = options.parse(argc, argv);
237
238 return optind;
239}
240
241/** Checks for each known option and acts accordingly.
242 *
243 * \param options option structure
244 * \param *output name of outputfile on return
245 * \param *outstream open output stream on return
246 */
247void ComputeOptions(
248 GetLongOpt &options,
249 const char *&output,
250 ostream *&outstream)
251{
252 output = options.retrieve("o");
253 outstream = 0;
254 if (output != 0) {
255 outstream = new ofstream(output);
256 ExEnv::set_out(outstream);
257 }
258
259 if (options.retrieve("h")) {
260 ExEnv::out0()
261 << indent << "MPQC version " << SC_VERSION << endl
262 << indent << "compiled for " << TARGET_ARCH << endl
263 << SCFormIO::copyright << endl;
264 options.usage(ExEnv::out0());
265 exit(0);
266 }
267
268 if (options.retrieve("v")) {
269 ExEnv::out0()
270 << indent << "MPQC version " << SC_VERSION << endl
271 << indent << "compiled for " << TARGET_ARCH << endl
272 << SCFormIO::copyright;
273 exit(0);
274 }
275
276 if (options.retrieve("w")) {
277 ExEnv::out0()
278 << indent << "MPQC version " << SC_VERSION << endl
279 << indent << "compiled for " << TARGET_ARCH << endl
280 << SCFormIO::copyright << endl
281 << SCFormIO::warranty;
282 exit(0);
283 }
284
285 if (options.retrieve("L")) {
286 ExEnv::out0()
287 << indent << "MPQC version " << SC_VERSION << endl
288 << indent << "compiled for " << TARGET_ARCH << endl
289 << SCFormIO::copyright << endl
290 << SCFormIO::license;
291 exit(0);
292 }
293
294 if (options.retrieve("d"))
295 SCFormIO::set_debug(1);
296
297 // set the working dir
298 if (strcmp(options.retrieve("W"),"."))
299 int retval = chdir(options.retrieve("W"));
300
301 // check that n and f/o are not given at the same time
302 if ((options.retrieve("n")) && ((options.retrieve("f")) || (options.retrieve("o")))) {
303 throw invalid_argument("-n must not be given with -f or -o");
304 }
305}
306
307/** Temporary structure for storing information from command-line
308 *
309 * This structure has been introduced to gather the various calls to GetLongOpts
310 * at one (initial) place and to abstract it from the source of command-lines.
311 * This temporary object can be set by other means, too. I.e. we become
312 * independent of usage in command-line programs.
313 */
314struct OptionValues {
315 const char *keyvalue; // option "k"
316 const char *debug; // option ""
317 int limit; // option "l"
318 const char *check; // option "c"
319 const char *simple_input; // option "i"
320 string executablename;
321
322#ifdef HAVE_CHEMISTRY_CCA
323 string cca_load; // option "cca-path"
324 string cc_path; // option "cca-load"
325#endif
326};
327
328/** Parse remainder options not treated by ComputeOptions() into temporary storage.
329 *
330 * \param options option structure to obtain values from
331 * \param values remaining option values which are processed later and now
332 * stored in a temporary structure
333 */
334void parseRemainderOptions(
335 GetLongOpt &options,
336 struct OptionValues &values,
337 int argc,
338 char **argv)
339{
340 values.keyvalue = options.retrieve("k");
341 values.debug = options.retrieve("d");
342 values.limit = atoi(options.retrieve("l"));
343 values.check = options.retrieve("c");
344 values.simple_input = options.retrieve("i");
345 values.executablename = argv[0];
346
347#ifdef HAVE_CHEMISTRY_CCA
348 values.cca_load = options.retrieve("cca-load");
349 values.cca_path = options.retrieve("cca-path");
350#endif
351}
352
353/** Sets object and generic input file names.
354 *
355 * \param object_input filename of object-oriented input
356 * \param generic_input filename of generic input
357 * \param options (command-line)option structure
358 * \param argc argument count
359 * \param argv argument array
360 */
361void getInputFileNames(
362 const char *&object_input,
363 const char *&generic_input,
364 GetLongOpt &options,
365 int argc,
366 char **argv)
367{
368 // initialize keyval input
369 object_input = options.retrieve("f");
370 generic_input = 0;
371 if (argc - optind == 0) {
372 generic_input = 0;
373 }
374 else if (argc - optind == 1) {
375 generic_input = argv[optind];
376 }
377 else {
378 options.usage();
379 throw invalid_argument("extra arguments given");
380 }
381
382 if (object_input == 0 && generic_input == 0) {
383 generic_input = "mpqc.in";
384 }
385 else if (object_input && generic_input) {
386 options.usage();
387 throw invalid_argument("only one of -f and a file argument can be given");
388 }
389}
390
391/** Gets the MPI Message group.
392 *
393 * \param grp reference to obtained group
394 * \param argc argument count
395 * \param argv argument array
396 */
397void getMessageGroup(
398 Ref<MessageGrp> &grp,
399 int argc,
400 char **argv)
401{
402#if defined(HAVE_MPI) && defined(ALWAYS_USE_MPI)
403 grp = new MPIMessageGrp(&argc, &argv);
404#endif
405 if (grp.null()) grp = MessageGrp::initial_messagegrp(argc, argv);
406 if (grp.nonnull())
407 MessageGrp::set_default_messagegrp(grp);
408 else
409 grp = MessageGrp::get_default_messagegrp();
410}
411
412/** Sets the base name of output files.
413 *
414 * \param input input file name
415 * \param output output file name
416 */
417void setOutputBaseName(const char *input, const char *output)
418{
419 const char *basename_source;
420 if (output) basename_source = output;
421 else basename_source = input;
422 int nfilebase = (int) (::strrchr(basename_source, '.') - basename_source);
423 char *basename = new char[nfilebase + 1];
424 strncpy(basename, basename_source, nfilebase);
425 basename[nfilebase] = '\0';
426 SCFormIO::set_default_basename(basename);
427 delete[] basename;
428}
429
430/** Prints current key values.
431 *
432 * \param keyval key value structure
433 * \param opt optimization structure
434 * \param molname name of molecule
435 * \param restartfile name of restartfile
436 */
437void printOptions(
438 Ref<KeyVal> &keyval,
439 Ref<Optimize> &opt,
440 const char *molname,
441 const char *restartfile)
442{
443 int restart = keyval->booleanvalue("restart",truevalue);
444
445 int checkpoint = keyval->booleanvalue("checkpoint",truevalue);
446
447 int savestate = keyval->booleanvalue("savestate",truevalue);
448
449 int do_energy = keyval->booleanvalue("do_energy",truevalue);
450
451 int do_grad = keyval->booleanvalue("do_gradient",falsevalue);
452
453 int do_opt = keyval->booleanvalue("optimize",truevalue);
454
455 int do_pdb = keyval->booleanvalue("write_pdb",falsevalue);
456
457 int print_mole = keyval->booleanvalue("print_mole",truevalue);
458
459 int print_timings = keyval->booleanvalue("print_timings",truevalue);
460
461 // sanity checks for the benefit of reasonable looking output
462 if (opt.null()) do_opt=0;
463
464 ExEnv::out0() << endl << indent
465 << "MPQC options:" << endl << incindent
466 << indent << "matrixkit = <"
467 << SCMatrixKit::default_matrixkit()->class_name() << ">" << endl
468 << indent << "filename = " << molname << endl
469 << indent << "restart_file = " << restartfile << endl
470 << indent << "restart = " << (restart ? "yes" : "no") << endl
471 << indent << "checkpoint = " << (checkpoint ? "yes" : "no") << endl
472 << indent << "savestate = " << (savestate ? "yes" : "no") << endl
473 << indent << "do_energy = " << (do_energy ? "yes" : "no") << endl
474 << indent << "do_gradient = " << (do_grad ? "yes" : "no") << endl
475 << indent << "optimize = " << (do_opt ? "yes" : "no") << endl
476 << indent << "write_pdb = " << (do_pdb ? "yes" : "no") << endl
477 << indent << "print_mole = " << (print_mole ? "yes" : "no") << endl
478 << indent << "print_timings = " << (print_timings ? "yes" : "no")
479 << endl << decindent;
480
481}
482
483/** Saves the current state to checkpoint file.
484 *
485 * \param keyval key value structure
486 * \param opt optimization structure
487 * \param grp message group
488 * \param mole MolecularEnergy object
489 * \param molname name of molecule
490 * \param ckptfile name of check point file
491 */
492void saveState(
493 char *wfn_file,
494 int savestate,
495 Ref<Optimize> &opt,
496 Ref<MessageGrp> &grp,
497 Ref<MolecularEnergy> &mole,
498 char *&molname,
499 char *&ckptfile)
500{
501 // function stuff
502 if (savestate) {
503 if (opt.nonnull()) {
504 if (grp->me() == 0) {
505 ckptfile = new char[strlen(molname)+6];
506 sprintf(ckptfile,"%s.ckpt",molname);
507 }
508 else {
509 ckptfile = new char[strlen(devnull)+1];
510 strcpy(ckptfile, devnull);
511 }
512
513 StateOutBin so(ckptfile);
514 SavableState::save_state(opt.pointer(),so);
515 so.close();
516
517 delete[] ckptfile;
518 }
519
520 if (mole.nonnull()) {
521 if (grp->me() == 0) {
522 if (wfn_file == 0) {
523 wfn_file = new char[strlen(molname)+6];
524 sprintf(wfn_file,"%s.wfn",molname);
525 }
526 }
527 else {
528 delete[] wfn_file;
529 wfn_file = new char[strlen(devnull)+1];
530 strcpy(wfn_file, devnull);
531 }
532
533 StateOutBin so(wfn_file);
534 SavableState::save_state(mole.pointer(),so);
535 so.close();
536
537 }
538 }
539 delete[] wfn_file;
540}
541
542/** Sets up indentation and output modes.
543 *
544 * \param grp message group
545 */
546void setupSCFormIO(
547 Ref<MessageGrp> &grp
548 )
549{
550 SCFormIO::setindent(ExEnv::outn(), 2);
551 SCFormIO::setindent(ExEnv::errn(), 2);
552 SCFormIO::setindent(cout, 2);
553 SCFormIO::setindent(cerr, 2);
554
555 SCFormIO::set_printnode(0);
556 if (grp->n() > 1)
557 SCFormIO::init_mp(grp->me());
558}
559
560/** Initialises the timer.
561 *
562 * \param grp message group
563 * \param keyval key value structure
564 * \param tim timing structure
565 */
566void initTimings(
567 Ref<MessageGrp> &grp,
568 Ref<KeyVal> &keyval,
569 Ref<RegionTimer> &tim
570 )
571{
572 grp->sync(); // make sure nodes are sync'ed before starting timings
573 if (keyval->exists("timer")) tim << keyval->describedclassvalue("timer");
574 else tim = new ParallelRegionTimer(grp,"mpqc",1,1);
575 RegionTimer::set_default_regiontimer(tim);
576
577 if (tim.nonnull()) tim->enter("input");
578}
579
580/** Prints the header of the output.
581 *
582 * \param tim timing structure
583 */
584void makeAnnouncement(
585 Ref<RegionTimer> &tim
586 )
587{
588 const char title1[] = "MPQC: Massively Parallel Quantum Chemistry";
589 int ntitle1 = sizeof(title1);
590 const char title2[] = "Version " SC_VERSION;
591 int ntitle2 = sizeof(title2);
592 ExEnv::out0() << endl;
593 ExEnv::out0() << indent;
594 for (int i=0; i<(80-ntitle1)/2; i++) ExEnv::out0() << ' ';
595 ExEnv::out0() << title1 << endl;
596 ExEnv::out0() << indent;
597 for (int i=0; i<(80-ntitle2)/2; i++) ExEnv::out0() << ' ';
598 ExEnv::out0() << title2 << endl << endl;
599
600 const char *tstr = 0;
601#if defined(HAVE_TIME) && defined(HAVE_CTIME)
602 time_t t;
603 time(&t);
604 tstr = ctime(&t);
605#endif
606 if (!tstr) {
607 tstr = "UNKNOWN";
608 }
609
610 ExEnv::out0()
611 << indent << scprintf("Machine: %s", TARGET_ARCH) << endl
612 << indent << scprintf("User: %s@%s",
613 ExEnv::username(), ExEnv::hostname()) << endl
614 << indent << scprintf("Start Time: %s", tstr) << endl;
615}
616
617/** Parse the input file into the key value container.
618 *
619 * \param grp message group
620 * \param parsedkev keyvalue container on return
621 * \param values (command-line) options structure
622 * \param input input file name
623 * \param generic_input filename of generic input
624 */
625void parseInputfile(
626 Ref<MessageGrp> &grp,
627 Ref<ParsedKeyVal> &parsedkv,
628 struct OptionValues &values,
629 const char *&input,
630 const char *&generic_input
631 )
632{
633 // read the input file on only node 0
634 char *in_char_array;
635 if (grp->me() == 0) {
636 ifstream is(input);
637#ifdef HAVE_SSTREAM
638 ostringstream ostrs;
639 is >> ostrs.rdbuf();
640 int n = 1 + strlen(ostrs.str().c_str());
641 in_char_array = strcpy(new char[n],ostrs.str().c_str());
642#else
643 ostrstream ostrs;
644 is >> ostrs.rdbuf();
645 ostrs << ends;
646 in_char_array = ostrs.str();
647 int n = ostrs.pcount();
648#endif
649 grp->bcast(n);
650 grp->bcast(in_char_array, n);
651 }
652 else {
653 int n;
654 grp->bcast(n);
655 in_char_array = new char[n];
656 grp->bcast(in_char_array, n);
657 }
658
659 int use_simple_input;
660 if (generic_input && grp->me() == 0) {
661 MPQCIn mpqcin;
662 use_simple_input = mpqcin.check_string(in_char_array);
663 }
664 else {
665 use_simple_input = 0;
666 }
667 grp->bcast(use_simple_input);
668
669 if (use_simple_input) {
670 MPQCIn mpqcin;
671 char *simple_input_text = mpqcin.parse_string(in_char_array);
672 if (values.simple_input) {
673 ExEnv::out0() << "Generated object-oriented input file:" << endl
674 << simple_input_text
675 << endl;
676 exit(0);
677 }
678 parsedkv = new ParsedKeyVal();
679 parsedkv->parse_string(simple_input_text);
680 delete[] simple_input_text;
681 }
682 else {
683 parsedkv = new ParsedKeyVal();
684 parsedkv->parse_string(in_char_array);
685 }
686 delete[] in_char_array;
687}
688
689/** Get the thread group.
690 *
691 * \param keyval keyvalue container
692 * \param thread thread group on return
693 * \param argc argument count
694 * \param argv argument array
695 */
696void getThreadGroup(
697 Ref<KeyVal> &keyval,
698 Ref<ThreadGrp> &thread,
699 int argc,
700 char **argv)
701{
702 //first try the commandline and environment
703 thread = ThreadGrp::initial_threadgrp(argc, argv);
704
705 // if we still don't have a group, try reading the thread group
706 // from the input
707 if (thread.null()) {
708 thread << keyval->describedclassvalue("thread");
709 }
710
711 if (thread.nonnull())
712 ThreadGrp::set_default_threadgrp(thread);
713 else
714 thread = ThreadGrp::get_default_threadgrp();
715}
716
717/** Get the memory group.
718 *
719 * \param keyval keyvalue container
720 * \param memory memory group on return
721 * \param argc argument count
722 * \param argv argument array
723 */
724void getMemoryGroup(
725 Ref<KeyVal> &keyval,
726 Ref<MemoryGrp> &memory,
727 int argc,
728 char **argv)
729{
730 // first try the commandline and environment
731 memory = MemoryGrp::initial_memorygrp(argc, argv);
732
733 // if we still don't have a group, try reading the memory group
734 // from the input
735 if (memory.null()) {
736 memory << keyval->describedclassvalue("memory");
737 }
738
739 if (memory.nonnull())
740 MemoryGrp::set_default_memorygrp(memory);
741 else
742 memory = MemoryGrp::get_default_memorygrp();
743}
744
745/** Prepares CCA component if available.
746 *
747 * \param keyval keyvalue container
748 * \param values parsed (command-line) options
749 */
750void prepareCCA(
751 Ref<KeyVal> &keyval,
752 struct OptionValues &values
753 )
754{
755#ifdef HAVE_CHEMISTRY_CCA
756 // initialize cca framework
757 KeyValValuestring emptystring("");
758 bool do_cca = keyval->booleanvalue("do_cca",falsevalue);
759
760 string cca_path(values.cca_path);
761 string cca_load(values.cca_load);
762 if(cca_path.size()==0)
763 cca_path = keyval->stringvalue("cca_path",emptystring);
764 if(cca_load.size()==0)
765 cca_load = keyval->stringvalue("cca_load",emptystring);
766
767 if( !do_cca && (cca_load.size() > 0 || cca_path.size() > 0) )
768 do_cca = true;
769
770 if(cca_path.size()==0) {
771 #ifdef CCA_PATH
772 cca_path = CCA_PATH;
773 #endif
774 }
775 if(cca_load.size()==0) {
776 cca_load += "MPQC.IntegralEvaluatorFactory";
777 }
778
779 if( cca_load.size() > 0 && cca_path.size() > 0 && do_cca ) {
780 string cca_args = "--path " + cca_path + " --load " + cca_load;
781 ExEnv::out0() << endl << indent << "Initializing CCA framework with args: "
782 << endl << indent << cca_args << endl;
783 CCAEnv::init( cca_args );
784 }
785#endif
786}
787
788/** Setup debugger.
789 *
790 * \param keyval keyvalue container
791 * \param grp message group
792 * \param debugger debugger structure
793 * \param options parsed command line options
794 */
795void setupDebugger(
796 Ref<KeyVal> &keyval,
797 Ref<MessageGrp> &grp,
798 Ref<Debugger> &debugger,
799 struct OptionValues &values)
800{
801 debugger << keyval->describedclassvalue("debug");
802 if (debugger.nonnull()) {
803 Debugger::set_default_debugger(debugger);
804 debugger->set_exec(values.executablename.c_str());
805 debugger->set_prefix(grp->me());
806 if (values.debug)
807 debugger->debug("Starting debugger because -d given on command line.");
808 }
809}
810
811/** Get integral factory.
812 *
813 * \param keyval keyvalue container
814 * \param integral integral group on return
815 * \param argc argument count
816 * \param argv argument array
817 */
818void getIntegralFactory(
819 Ref<KeyVal> &keyval,
820 Ref<Integral> &integral,
821 int argc,
822 char **argv)
823{
824 // first try commandline and environment
825 integral = Integral::initial_integral(argc, argv);
826
827 // if we still don't have a integral, try reading the integral
828 // from the input
829 if (integral.null()) {
830 integral << keyval->describedclassvalue("integrals");
831 }
832
833 if (integral.nonnull())
834 Integral::set_default_integral(integral);
835 else
836 integral = Integral::get_default_integral();
837
838}
839
840void performRestart(
841 Ref<KeyVal> &keyval,
842 Ref<MessageGrp> &grp,
843 Ref<Optimize> &opt,
844 Ref<MolecularEnergy> &mole,
845 char *&restartfile
846 )
847{
848 int restart = keyval->booleanvalue("restart",truevalue);
849 struct stat sb;
850 int statresult, statsize;
851 if (restart) {
852 if (grp->me() == 0) {
853 statresult = stat(restartfile,&sb);
854 statsize = (statresult==0) ? sb.st_size : 0;
855 }
856 grp->bcast(statresult);
857 grp->bcast(statsize);
858 }
859 if (restart && statresult==0 && statsize) {
860 BcastStateInBin si(grp,restartfile);
861 if (keyval->exists("override")) {
862 si.set_override(new PrefixKeyVal(keyval,"override"));
863 }
864 char *suf = strrchr(restartfile,'.');
865 if (!strcmp(suf,".wfn")) {
866 mole << SavableState::key_restore_state(si,"mole");
867 ExEnv::out0() << endl
868 << indent << "Restored <" << mole->class_name()
869 << "> from " << restartfile << endl;
870
871 opt << keyval->describedclassvalue("opt");
872 if (opt.nonnull())
873 opt->set_function(mole.pointer());
874 }
875 else {
876 opt << SavableState::key_restore_state(si,"opt");
877 if (opt.nonnull()) {
878 mole << opt->function();
879 ExEnv::out0() << endl << indent
880 << "Restored <Optimize> from " << restartfile << endl;
881 }
882 }
883 } else {
884 mole << keyval->describedclassvalue("mole");
885 opt << keyval->describedclassvalue("opt");
886 }
887}
888
889char *setMolecularCheckpointFile(
890 Ref<KeyVal> &keyval,
891 Ref<MessageGrp> &grp,
892 Ref<MolecularEnergy> &mole,
893 char *mole_ckpt_file
894 )
895{
896 int checkpoint = keyval->booleanvalue("checkpoint",truevalue);
897 int checkpoint_freq = keyval->intvalue("checkpoint_freq",KeyValValueint(1));
898 if (mole.nonnull()) {
899 MolecularFormula mf(mole->molecule());
900 ExEnv::out0() << endl << indent
901 << "Molecular formula " << mf.formula() << endl;
902 if (checkpoint) {
903 mole->set_checkpoint();
904 if (grp->me() == 0) mole->set_checkpoint_file(mole_ckpt_file);
905 else mole->set_checkpoint_file(devnull);
906 mole->set_checkpoint_freq(checkpoint_freq);
907 }
908 }
909}
910
911/** Checks whether limit on command-line exceeds the basis functions.
912 *
913 * \param mole molecular energy object
914 * \param values temporarily storage for (command-line) options
915 * \return 0 - not exceeded, 1 - exceeded
916 */
917int checkBasisSetLimit(
918 Ref<MolecularEnergy> &mole,
919 struct OptionValues &values
920 )
921{
922 int check = (values.check != (const char *)0);
923 int limit = values.limit;
924 if (limit) {
925 Ref<Wavefunction> wfn; wfn << mole;
926 if (wfn.nonnull() && wfn->ao_dimension()->n() > limit) {
927 ExEnv::out0() << endl << indent
928 << "The limit of " << limit << " basis functions has been exceeded."
929 << endl;
930 check = 1;
931 }
932 }
933 return check;
934}
935
936/** Performs the energy optimization.
937 *
938 * \param opt optimization object
939 * \param mole molecular energy object
940 * \return 0 - not read for frequency calculation, 1 - ready
941 */
942int performEnergyOptimization(
943 Ref<Optimize> &opt,
944 Ref<MolecularEnergy> &mole
945 )
946{
947 int ready_for_freq = 0;
948 int result = opt->optimize();
949 if (result) {
950 ExEnv::out0() << indent
951 << "The optimization has converged." << endl << endl;
952 ExEnv::out0() << indent
953 << scprintf("Value of the MolecularEnergy: %15.10f",
954 mole->energy())
955 << endl << endl;
956 ready_for_freq = 1;
957 } else {
958 ExEnv::out0() << indent
959 << "The optimization has NOT converged." << endl << endl;
960 ready_for_freq = 0;
961 }
962 return ready_for_freq;
963}
964
965/** Performs gradient calculation.
966 *
967 * \param mole molecular energy object
968 */
969void performGradientCalculation(
970 Ref<MolecularEnergy> &mole
971 )
972{
973 mole->do_gradient(1);
974 ExEnv::out0() << endl << indent
975 << scprintf("Value of the MolecularEnergy: %15.10f",
976 mole->energy())
977 << endl;
978 if (mole->value_result().actual_accuracy()
979 > mole->value_result().desired_accuracy()) {
980 ExEnv::out0() << indent
981 << "WARNING: desired accuracy not achieved in energy" << endl;
982 }
983 ExEnv::out0() << endl;
984 // Use result_noupdate since the energy might not have converged
985 // to the desired accuracy in which case grabbing the result will
986 // start up the calculation again. However the gradient might
987 // not have been computed (if we are restarting and the gradient
988 // isn't in the save file for example).
989 RefSCVector grad;
990 if (mole->gradient_result().computed()) {
991 grad = mole->gradient_result().result_noupdate();
992 }
993 else {
994 grad = mole->gradient();
995 }
996 if (grad.nonnull()) {
997 grad.print("Gradient of the MolecularEnergy:");
998 if (mole->gradient_result().actual_accuracy()
999 > mole->gradient_result().desired_accuracy()) {
1000 ExEnv::out0() << indent
1001 << "WARNING: desired accuracy not achieved in gradient" << endl;
1002 }
1003 }
1004}
1005
1006/** Performs frequency calculation.
1007 *
1008 * \param mole molecular energy object
1009 * \param molhess molecular hessian object
1010 * \param molfreq molecular frequency object
1011 */
1012void performFrequencyCalculation(
1013 Ref<MolecularEnergy> &mole,
1014 Ref<MolecularHessian> &molhess,
1015 Ref<MolecularFrequencies> &molfreq
1016
1017 )
1018{
1019 RefSymmSCMatrix xhessian;
1020 if (molhess.nonnull()) {
1021 // if "hess" input was given, use it to compute the hessian
1022 xhessian = molhess->cartesian_hessian();
1023 }
1024 else if (mole->hessian_implemented()) {
1025 // if mole can compute the hessian, use that hessian
1026 xhessian = mole->get_cartesian_hessian();
1027 }
1028 else if (mole->gradient_implemented()) {
1029 // if mole can compute gradients, use gradients at finite
1030 // displacements to compute the hessian
1031 molhess = new FinDispMolecularHessian(mole);
1032 xhessian = molhess->cartesian_hessian();
1033 }
1034 else {
1035 ExEnv::out0() << "mpqc: WARNING: Frequencies cannot be computed" << endl;
1036 }
1037
1038 if (xhessian.nonnull()) {
1039 char *hessfile = SCFormIO::fileext_to_filename(".hess");
1040 MolecularHessian::write_cartesian_hessian(hessfile,
1041 mole->molecule(), xhessian);
1042 delete[] hessfile;
1043
1044 molfreq->compute_frequencies(xhessian);
1045 // DEGENERACY IS NOT CORRECT FOR NON-SINGLET CASES:
1046 molfreq->thermochemistry(1);
1047 }
1048}
1049
1050/** Renders some objects.
1051 *
1052 * \param renderer renderer object
1053 * \param keyval keyvalue container
1054 * \param tim timing object
1055 * \param grp message group
1056 */
1057void renderObjects(
1058 Ref<Render> &renderer,
1059 Ref<KeyVal> &keyval,
1060 Ref<RegionTimer> &tim,
1061 Ref<MessageGrp> &grp
1062 )
1063{
1064 Ref<RenderedObject> rendered;
1065 rendered << keyval->describedclassvalue("rendered");
1066 Ref<AnimatedObject> animated;
1067 animated << keyval->describedclassvalue("rendered");
1068 if (rendered.nonnull()) {
1069 if (tim.nonnull()) tim->enter("render");
1070 if (grp->me() == 0) renderer->render(rendered);
1071 if (tim.nonnull()) tim->exit("render");
1072 }
1073 else if (animated.nonnull()) {
1074 if (tim.nonnull()) tim->enter("render");
1075 if (grp->me() == 0) renderer->animate(animated);
1076 if (tim.nonnull()) tim->exit("render");
1077 }
1078 else {
1079 if (tim.nonnull()) tim->enter("render");
1080 int n = keyval->count("rendered");
1081 for (int i=0; i<n; i++) {
1082 rendered << keyval->describedclassvalue("rendered",i);
1083 animated << keyval->describedclassvalue("rendered",i);
1084 if (rendered.nonnull()) {
1085 // make sure the object has a name so we don't overwrite its file
1086 if (rendered->name() == 0) {
1087 char ic[64];
1088 sprintf(ic,"%02d",i);
1089 rendered->set_name(ic);
1090 }
1091 if (grp->me() == 0) renderer->render(rendered);
1092 }
1093 else if (animated.nonnull()) {
1094 // make sure the object has a name so we don't overwrite its file
1095 if (animated->name() == 0) {
1096 char ic[64];
1097 sprintf(ic,"%02d",i);
1098 animated->set_name(ic);
1099 }
1100 if (grp->me() == 0) renderer->animate(animated);
1101 }
1102 }
1103 if (tim.nonnull()) tim->exit("render");
1104 }
1105}
1106
1107/** Save the molecule to PDB file.
1108 *
1109 * \param do_pdb whether to save as pdb (1) or not (0)
1110 * \param grp message group
1111 * \param mole molecular energy object
1112 * \param molname name of output file
1113 */
1114void saveToPdb(
1115 int do_pdb,
1116 Ref<MessageGrp> &grp,
1117 Ref<MolecularEnergy> &mole,
1118 const char *molname
1119 )
1120{
1121 if (do_pdb && grp->me() == 0) {
1122 char *ckptfile = new char[strlen(molname)+5];
1123 sprintf(ckptfile, "%s.pdb", molname);
1124 ofstream pdbfile(ckptfile);
1125 mole->molecule()->print_pdb(pdbfile);
1126 delete[] ckptfile;
1127 }
1128}
1129
1130int
1131try_main(int argc, char *argv[])
1132{
1133 //trash_stack();
1134
1135 int i;
1136 atexit(clean_up);
1137
1138#ifdef HAVE_FEENABLEEXCEPT
1139 // this uses a glibc extension to trap on individual exceptions
1140# ifdef FE_DIVBYZERO
1141 feenableexcept(FE_DIVBYZERO);
1142# endif
1143# ifdef FE_INVALID
1144 feenableexcept(FE_INVALID);
1145# endif
1146# ifdef FE_OVERFLOW
1147 feenableexcept(FE_OVERFLOW);
1148# endif
1149#endif
1150
1151#ifdef HAVE_FEDISABLEEXCEPT
1152 // this uses a glibc extension to not trap on individual exceptions
1153# ifdef FE_UNDERFLOW
1154 fedisableexcept(FE_UNDERFLOW);
1155# endif
1156# ifdef FE_INEXACT
1157 fedisableexcept(FE_INEXACT);
1158# endif
1159#endif
1160
1161#if defined(HAVE_SETRLIMIT)
1162 struct rlimit rlim;
1163 rlim.rlim_cur = 0;
1164 rlim.rlim_max = 0;
1165 setrlimit(RLIMIT_CORE,&rlim);
1166#endif
1167
1168 ExEnv::init(argc, argv);
1169
1170 // parse commandline options
1171 GetLongOpt options;
1172 int optind = ParseOptions(options, argc, argv);
1173 const char *output = 0;
1174 ostream *outstream = 0;
1175 ComputeOptions(options, output, outstream);
1176 OptionValues values;
1177 parseRemainderOptions(options, values, argc, argv);
1178
1179 // get the message group. first try the commandline and environment
1180 Ref<MessageGrp> grp;
1181 getMessageGroup(grp, argc, argv);
1182
1183 // get input file names, either object-oriented or generic
1184 const char *object_input = 0;
1185 const char *generic_input = 0;
1186 getInputFileNames(object_input, generic_input, options, argc, argv);
1187 const char *input;
1188 if (object_input) input = object_input;
1189 if (generic_input) input = generic_input;
1190
1191 // parse input into keyvalue container
1192 Ref<ParsedKeyVal> parsedkv;
1193 parseInputfile(grp, parsedkv, values, input, generic_input);
1194 if (values.keyvalue) parsedkv->verbose(1);
1195 Ref<KeyVal> keyval = new PrefixKeyVal(parsedkv.pointer(),"mpqc");
1196
1197 // get the basename for output files
1198 setOutputBaseName(input, output);
1199
1200 // set up output classes
1201 setupSCFormIO(grp);
1202
1203 // initialize timing for mpqc
1204 Ref<RegionTimer> tim;
1205 initTimings(grp, keyval, tim);
1206
1207 // announce ourselves
1208 makeAnnouncement(tim);
1209
1210 // get the thread group.
1211 Ref<ThreadGrp> thread;
1212 getThreadGroup(keyval, thread, argc, argv);
1213
1214 // get the memory group.
1215 Ref<MemoryGrp> memory;
1216 getMemoryGroup(keyval, memory, argc, argv);
1217
1218 ExEnv::out0() << indent
1219 << "Using " << grp->class_name()
1220 << " for message passing (number of nodes = " << grp->n() << ")." << endl
1221 << indent
1222 << "Using " << thread->class_name()
1223 << " for threading (number of threads = " << thread->nthread() << ")." << endl
1224 << indent
1225 << "Using " << memory->class_name()
1226 << " for distributed shared memory." << endl
1227 << indent
1228 << "Total number of processors = " << grp->n() * thread->nthread() << endl;
1229
1230 // prepare CCA if available
1231 prepareCCA(keyval, values);
1232
1233 // now set up the debugger
1234 Ref<Debugger> debugger;
1235 setupDebugger(keyval, grp, debugger, values);
1236
1237 // now check to see what matrix kit to use
1238 if (keyval->exists("matrixkit"))
1239 SCMatrixKit::set_default_matrixkit(
1240 dynamic_cast<SCMatrixKit*>(
1241 keyval->describedclassvalue("matrixkit").pointer()));
1242
1243 // get the integral factory.
1244 Ref<Integral> integral;
1245 getIntegralFactory(keyval, integral, argc, argv);
1246 ExEnv::out0() << endl << indent
1247 << "Using " << integral->class_name()
1248 << " by default for molecular integrals evaluation" << endl << endl;
1249
1250 // create some filenames for molecule, checkpoint, basename of output
1251 const char *basename = SCFormIO::default_basename();
1252 KeyValValueString molnamedef(basename);
1253 char * molname = keyval->pcharvalue("filename", molnamedef);
1254 if (strcmp(molname, basename))
1255 SCFormIO::set_default_basename(molname);
1256
1257 char * ckptfile = new char[strlen(molname)+6];
1258 sprintf(ckptfile,"%s.ckpt",molname);
1259
1260 KeyValValueString restartfiledef(ckptfile);
1261 char * restartfile = keyval->pcharvalue("restart_file", restartfiledef);
1262
1263 char * wfn_file = keyval->pcharvalue("wfn_file");
1264 if (wfn_file == 0) {
1265 wfn_file = new char[strlen(molname)+6];
1266 sprintf(wfn_file,"%s.wfn",molname);
1267 }
1268 char *mole_ckpt_file = new char[strlen(wfn_file)+1];
1269 sprintf(mole_ckpt_file,"%s",wfn_file);
1270
1271 int savestate = keyval->booleanvalue("savestate",truevalue);
1272
1273 // setup molecular energy and optimization instances
1274 Ref<MolecularEnergy> mole;
1275 Ref<Optimize> opt;
1276
1277 // read in restart file if we do restart
1278 performRestart(keyval, grp, opt, mole, restartfile);
1279
1280 // setup molecule checkpoint file
1281 setMolecularCheckpointFile(keyval, grp, mole, mole_ckpt_file);
1282 delete[] mole_ckpt_file;
1283
1284 int checkpoint = keyval->booleanvalue("checkpoint",truevalue);
1285 if (checkpoint && opt.nonnull()) {
1286 opt->set_checkpoint();
1287 if (grp->me() == 0) opt->set_checkpoint_file(ckptfile);
1288 else opt->set_checkpoint_file(devnull);
1289 }
1290
1291 // see if frequencies are wanted
1292 Ref<MolecularHessian> molhess;
1293 molhess << keyval->describedclassvalue("hess");
1294 Ref<MolecularFrequencies> molfreq;
1295 molfreq << keyval->describedclassvalue("freq");
1296
1297 // check basis set limit
1298 const int check = checkBasisSetLimit(mole, values);
1299 if (check) {
1300 ExEnv::out0() << endl << indent
1301 << "Exiting since the check option is on." << endl;
1302 exit(0);
1303 }
1304
1305 // from now on we time the calculations
1306 if (tim.nonnull()) tim->change("calc");
1307
1308 int do_energy = keyval->booleanvalue("do_energy",truevalue);
1309
1310 int do_grad = keyval->booleanvalue("do_gradient",falsevalue);
1311
1312 int do_opt = keyval->booleanvalue("optimize",truevalue);
1313
1314 int do_pdb = keyval->booleanvalue("write_pdb",falsevalue);
1315
1316 int print_mole = keyval->booleanvalue("print_mole",truevalue);
1317
1318 int print_timings = keyval->booleanvalue("print_timings",truevalue);
1319
1320 // print all current options (keyvalues)
1321 printOptions(keyval, opt, molname, restartfile);
1322
1323 // see if any pictures are desired
1324 Ref<Render> renderer;
1325 renderer << keyval->describedclassvalue("renderer");
1326
1327 // If we have a renderer, then we will read in some more info
1328 // below. Otherwise we can get rid of the keyval's, to eliminate
1329 // superfluous references to objects that we might otherwise be
1330 // able to delete. We cannot read in the remaining rendering
1331 // objects now, since some of their KeyVal CTOR's are heavyweight,
1332 // requiring optimized geometries, etc.
1333 if (renderer.null()) {
1334 if (parsedkv.nonnull()) print_unseen(parsedkv, input);
1335 keyval = 0;
1336 parsedkv = 0;
1337 }
1338
1339 delete[] restartfile;
1340 delete[] ckptfile;
1341
1342 int ready_for_freq = 1;
1343 if (mole.nonnull()) {
1344 if (((do_opt && opt.nonnull()) || do_grad)
1345 && !mole->gradient_implemented()) {
1346 ExEnv::out0() << indent
1347 << "WARNING: optimization or gradient requested but the given"
1348 << endl
1349 << " MolecularEnergy object cannot do gradients."
1350 << endl;
1351 }
1352
1353 if (do_opt && opt.nonnull() && mole->gradient_implemented()) {
1354
1355 ready_for_freq = performEnergyOptimization(opt, mole);
1356
1357 } else if (do_grad && mole->gradient_implemented()) {
1358
1359 performGradientCalculation(mole);
1360
1361 } else if (do_energy && mole->value_implemented()) {
1362 ExEnv::out0() << endl << indent
1363 << scprintf("Value of the MolecularEnergy: %15.10f",
1364 mole->energy())
1365 << endl << endl;
1366 }
1367 }
1368
1369 // stop timing of calculations
1370 if (tim.nonnull()) tim->exit("calc");
1371
1372 // save this before doing the frequency stuff since that obsoletes the
1373 saveState(wfn_file, savestate, opt, grp, mole, molname, ckptfile);
1374
1375 // Frequency calculation.
1376 if (ready_for_freq && molfreq.nonnull()) {
1377 performFrequencyCalculation(mole, molhess, molfreq);
1378 }
1379
1380 if (renderer.nonnull()) {
1381 renderObjects(renderer, keyval, tim, grp);
1382
1383 Ref<MolFreqAnimate> molfreqanim;
1384 molfreqanim << keyval->describedclassvalue("animate_modes");
1385 if (ready_for_freq && molfreq.nonnull()
1386 && molfreqanim.nonnull()) {
1387 if (tim.nonnull()) tim->enter("render");
1388 molfreq->animate(renderer, molfreqanim);
1389 if (tim.nonnull()) tim->exit("render");
1390 }
1391 }
1392
1393 if (mole.nonnull()) {
1394 if (print_mole)
1395 mole->print(ExEnv::out0());
1396
1397 saveToPdb(do_pdb, grp, mole, molname);
1398
1399 }
1400 else {
1401 ExEnv::out0() << "mpqc: The molecular energy object is null" << endl
1402 << " make sure \"mole\" specifies a MolecularEnergy derivative"
1403 << endl;
1404 }
1405 if (parsedkv.nonnull()) print_unseen(parsedkv, input);
1406
1407 if (print_timings)
1408 if (tim.nonnull()) tim->print(ExEnv::out0());
1409
1410 // here, we may gather the results
1411 // we start to construct the MPQC_Data object
1412 {
1413 Ref<Wavefunction> wfn;
1414 wfn << mole;
1415 ExEnv::out0() << "The number of atomic orbitals: " << wfn->ao_dimension()->n() << endl;
1416 ExEnv::out0() << "The AO density matrix is ";
1417 wfn->ao_density()->print(ExEnv::out0());
1418 ExEnv::out0() << "The natural density matrix is ";
1419 wfn->natural_density()->print(ExEnv::out0());
1420 ExEnv::out0() << "The Gaussian basis is " << wfn->basis()->name() << endl;
1421 ExEnv::out0() << "The Gaussians sit at the following centers: " << endl;
1422 for (int nr = 0; nr< wfn->basis()->ncenter(); ++nr) {
1423 ExEnv::out0() << nr << " basis function has its center at ";
1424 for (int i=0; i < 3; ++i)
1425 ExEnv::out0() << wfn->basis()->r(nr,i) << "\t";
1426 ExEnv::out0() << endl;
1427 }
1428 // GaussianShell is the actual orbital functions it seems ...
1429 //ExEnv::out0() << "There are the following Gaussian Shells: " << endl;
1430 SCVector3 r;
1431 r.x() = r.y() = r.z() = 10;
1432 ExEnv::out0() << "We get the following value at " << r << "." << endl;
1433 Ref<Integral> intgrl = Integral::get_default_integral();
1434 GaussianBasisSet::ValueData vdat(wfn->basis(), integral);
1435 ExEnv::out0() << "Value at (10,10,10) is " << EvaluateDensity(r, intgrl, vdat, wfn) << endl;
1436 boost::function<double (SCVector3 &r)> evaluator =
1437 boost::bind(&EvaluateDensity, _1, boost::ref(intgrl), boost::ref(vdat), boost::ref(wfn));
1438 ExEnv::out0() << "Check against values at " << r << "." << endl;
1439 int nbasis = wfn->basis()->nbasis();
1440 double *b_val = new double[nbasis];
1441 wfn->basis()->values(r, &vdat, b_val);
1442 for (int i=0; i<nbasis; i++) {
1443 //ExEnv::out0() << "Shell nr. " << nr << ": ";
1444 ExEnv::out0() << "Value at (10,10,10) is " << b_val[i] << endl;
1445 }
1446 // perform test integration of density
1447 double delta = 1.;
1448 double sum = 0.;
1449 for (r.x() = -10. ; r.x() < 10.; r.x() += delta)
1450 for (r.y() = -10. ; r.y() < 10.; r.y() += delta)
1451 for (r.z() = -10. ; r.z() < 10.; r.z() += delta) {
1452 wfn->basis()->values(r, &vdat, b_val);
1453 for (int i=0; i<nbasis; i++)
1454 sum += wfn->ao_density()->get_element(i,i)*b_val[i];
1455 }
1456 sum /= pow(20/delta,3);
1457 ExEnv::out0() << "Sum over domain [0:20]^3 with " << delta << " delta is " << sum << "." << endl;
1458 delete[] b_val;
1459 }
1460
1461 delete[] molname;
1462 SCFormIO::set_default_basename(0);
1463
1464 renderer = 0;
1465 molfreq = 0;
1466 molhess = 0;
1467 opt = 0;
1468 mole = 0;
1469 integral = 0;
1470 debugger = 0;
1471 thread = 0;
1472 tim = 0;
1473 keyval = 0;
1474 parsedkv = 0;
1475 grp = 0;
1476 memory = 0;
1477 clean_up();
1478
1479#if defined(HAVE_TIME) && defined(HAVE_CTIME)
1480 time_t t;
1481 time(&t);
1482 const char *tstr = ctime(&t);
1483#endif
1484 if (!tstr) {
1485 tstr = "UNKNOWN";
1486 }
1487 ExEnv::out0() << endl
1488 << indent << scprintf("End Time: %s", tstr) << endl;
1489
1490 if (output != 0) {
1491 ExEnv::set_out(&cout);
1492 delete outstream;
1493 }
1494
1495 return 0;
1496}
1497
1498double EvaluateDensity(SCVector3 &r, Ref<Integral> &intgrl, GaussianBasisSet::ValueData &vdat, Ref<Wavefunction> &wfn)
1499{
1500 ExEnv::out0() << "We get the following values at " << r << "." << endl;
1501 int nbasis = wfn->basis()->nbasis();
1502 double *b_val = new double[nbasis];
1503 wfn->basis()->values(r, &vdat, b_val);
1504 double sum=0.;
1505 for (int i=0; i<nbasis; i++)
1506 sum += b_val[i];
1507 delete[] b_val;
1508 return sum;
1509}
1510
1511int
1512main(int argc, char *argv[])
1513{
1514 try {
1515 try_main(argc, argv);
1516 }
1517 catch (SCException &e) {
1518 cout << argv[0] << ": ERROR: SC EXCEPTION RAISED:" << endl
1519 << e.what()
1520 << endl;
1521 clean_up();
1522 throw;
1523 }
1524 catch (bad_alloc &e) {
1525 cout << argv[0] << ": ERROR: MEMORY ALLOCATION FAILED:" << endl
1526 << e.what()
1527 << endl;
1528 clean_up();
1529 throw;
1530 }
1531 catch (exception &e) {
1532 cout << argv[0] << ": ERROR: EXCEPTION RAISED:" << endl
1533 << e.what()
1534 << endl;
1535 clean_up();
1536 throw;
1537 }
1538 catch (...) {
1539 cout << argv[0] << ": ERROR: UNKNOWN EXCEPTION RAISED" << endl;
1540 clean_up();
1541 throw;
1542 }
1543 return 0;
1544}
1545
1546/////////////////////////////////////////////////////////////////////////////
1547
1548// Local Variables:
1549// mode: c++
1550// c-file-style: "ETS"
1551// End:
Note: See TracBrowser for help on using the repository browser.