/** \file atom.cpp * * Function implementations for the class atom. * */ #include "atom.hpp" #include "bond.hpp" #include "config.hpp" #include "element.hpp" #include "lists.hpp" #include "memoryallocator.hpp" #include "parser.hpp" #include "vector.hpp" /************************************* Functions for class atom *************************************/ /** Constructor of class atom. */ atom::atom() : previous(NULL), next(NULL), father(this), sort(&nr) { node = &x; // TesselPoint::x can only be referenced from here }; /** Constructor of class atom. */ atom::atom(atom *pointer) : previous(NULL), next(NULL), father(pointer), sort(&nr) { type = pointer->type; // copy element of atom x.CopyVector(&pointer->x); // copy coordination v.CopyVector(&pointer->v); // copy velocity FixedIon = pointer->FixedIon; node = &x; }; /** Destructor of class atom. */ atom::~atom() { unlink(this); }; /** Climbs up the father list until NULL, last is returned. * \return true father, i.e. whose father points to itself, NULL if it could not be found or has none (added hydrogen) */ atom *atom::GetTrueFather() { atom *walker = this; do { if (walker == walker->father) // top most father is the one that points on itself break; walker = walker->father; } while (walker != NULL); return walker; }; /** Sets father to itself or its father in case of copying a molecule. */ void atom::CorrectFather() { if (father->father == father) // same atom in copy's father points to itself father = this; // set father to itself (copy of a whole molecule) else father = father->father; // set father to original's father }; /** Check whether father is equal to given atom. * \param *ptr atom to compare father to * \param **res return value (only set if atom::father is equal to \a *ptr) */ void atom::EqualsFather ( const atom *ptr, const atom **res ) const { if ( ptr == father ) *res = this; }; /** Checks whether atom is within the given box. * \param offset offset to box origin * \param *parallelepiped box matrix * \return true - is inside, false - is not */ bool atom::IsInParallelepiped(const Vector offset, const double *parallelepiped) const { return (node->IsInParallelepiped(offset, parallelepiped)); }; /** Counts the number of bonds weighted by bond::BondDegree. * \param bonds times bond::BondDegree */ int BondedParticle::CountBonds() const { int NoBonds = 0; for (BondList::const_iterator Runner = ListOfBonds.begin(); Runner != ListOfBonds.end(); (++Runner)) NoBonds += (*Runner)->BondDegree; return NoBonds; }; /** Output of a single atom with given numbering. * \param ElementNo cardinal number of the element * \param AtomNo cardinal number among these atoms of the same element * \param *out stream to output to * \param *comment commentary after '#' sign * \return true - \a *out present, false - \a *out is NULL */ bool atom::OutputIndexed(ofstream * const out, const int ElementNo, const int AtomNo, const char *comment) const { if (out != NULL) { *out << "Ion_Type" << ElementNo << "_" << AtomNo << "\t" << fixed << setprecision(9) << showpoint; *out << x.x[0] << "\t" << x.x[1] << "\t" << x.x[2]; *out << "\t" << FixedIon; if (v.Norm() > MYEPSILON) *out << "\t" << scientific << setprecision(6) << v.x[0] << "\t" << v.x[1] << "\t" << v.x[2] << "\t"; if (comment != NULL) *out << " # " << comment << endl; else *out << " # molecule nr " << nr << endl; return true; } else return false; }; /** Output of a single atom with numbering from array according to atom::type. * \param *ElementNo cardinal number of the element * \param *AtomNo cardinal number among these atoms of the same element * \param *out stream to output to * \param *comment commentary after '#' sign * \return true - \a *out present, false - \a *out is NULL */ bool atom::OutputArrayIndexed(ofstream * const out, const int *ElementNo, int *AtomNo, const char *comment) const { AtomNo[type->Z]++; // increment number if (out != NULL) { *out << "Ion_Type" << ElementNo[type->Z] << "_" << AtomNo[type->Z] << "\t" << fixed << setprecision(9) << showpoint; *out << x.x[0] << "\t" << x.x[1] << "\t" << x.x[2]; *out << "\t" << FixedIon; if (v.Norm() > MYEPSILON) *out << "\t" << scientific << setprecision(6) << v.x[0] << "\t" << v.x[1] << "\t" << v.x[2] << "\t"; if (comment != NULL) *out << " # " << comment << endl; else *out << " # molecule nr " << nr << endl; return true; } else return false; }; /** Output of a single atom as one lin in xyz file. * \param *out stream to output to * \return true - \a *out present, false - \a *out is NULL */ bool atom::OutputXYZLine(ofstream *out) const { if (out != NULL) { *out << type->symbol << "\t" << x.x[0] << "\t" << x.x[1] << "\t" << x.x[2] << "\t" << endl; return true; } else return false; }; /** Output of a single atom as one lin in xyz file. * \param *out stream to output to * \param *ElementNo array with ion type number in the config file this atom's element shall have * \param *AtomNo array with atom number in the config file this atom shall have, is increase by one automatically * \param step Trajectory time step to output * \return true - \a *out present, false - \a *out is NULL */ bool atom::OutputTrajectory(ofstream * const out, const int *ElementNo, int *AtomNo, const int step) const { AtomNo[type->Z]++; if (out != NULL) { *out << "Ion_Type" << ElementNo[type->Z] << "_" << AtomNo[type->Z] << "\t" << fixed << setprecision(9) << showpoint; *out << Trajectory.R.at(step).x[0] << "\t" << Trajectory.R.at(step).x[1] << "\t" << Trajectory.R.at(step).x[2]; *out << "\t" << FixedIon; if (Trajectory.U.at(step).Norm() > MYEPSILON) *out << "\t" << scientific << setprecision(6) << Trajectory.U.at(step).x[0] << "\t" << Trajectory.U.at(step).x[1] << "\t" << Trajectory.U.at(step).x[2] << "\t"; if (Trajectory.F.at(step).Norm() > MYEPSILON) *out << "\t" << scientific << setprecision(6) << Trajectory.F.at(step).x[0] << "\t" << Trajectory.F.at(step).x[1] << "\t" << Trajectory.F.at(step).x[2] << "\t"; *out << "\t# Number in molecule " << nr << endl; return true; } else return false; }; /** Output of a single atom as one lin in xyz file. * \param *out stream to output to * \param step Trajectory time step to output * \return true - \a *out present, false - \a *out is NULL */ bool atom::OutputTrajectoryXYZ(ofstream * const out, const int step) const { if (out != NULL) { *out << type->symbol << "\t"; *out << Trajectory.R.at(step).x[0] << "\t"; *out << Trajectory.R.at(step).x[1] << "\t"; *out << Trajectory.R.at(step).x[2] << endl; return true; } else return false; }; /** Outputs the MPQC configuration line for this atom. * \param *out output stream * \param *center center of molecule subtracted from position * \param *AtomNo pointer to atom counter that is increased by one */ void atom::OutputMPQCLine(ofstream * const out, const Vector *center, int *AtomNo = NULL) const { *out << "\t\t" << type->symbol << " [ " << x.x[0]-center->x[0] << "\t" << x.x[1]-center->x[1] << "\t" << x.x[2]-center->x[2] << " ]" << endl; if (AtomNo != NULL) *AtomNo++; }; /** Compares the indices of \a this atom with a given \a ptr. * \param ptr atom to compare index against * \return true - this one's is smaller, false - not */ bool atom::Compare(const atom &ptr) const { if (nr < ptr.nr) return true; else return false; }; /** Returns squared distance to a given vector. * \param origin vector to calculate distance to * \return distance squared */ double atom::DistanceSquaredToVector(const Vector &origin) const { return origin.DistanceSquared(&x); }; /** Returns distance to a given vector. * \param origin vector to calculate distance to * \return distance */ double atom::DistanceToVector(const Vector &origin) const { return origin.Distance(&x); }; /** Initialises the component number array. * Size is set to atom::ListOfBonds.size()+1 (last is th encode end by -1) */ void atom::InitComponentNr() { if (ComponentNr != NULL) Free(&ComponentNr); ComponentNr = Malloc(ListOfBonds.size()+1, "atom::InitComponentNumbers: *ComponentNr"); for (int i=ListOfBonds.size()+1;i--;) ComponentNr[i] = -1; }; bool operator < (atom &a, atom &b) { return a.Compare(b); };