source: src/analysis_correlation.cpp@ d85c28

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since d85c28 was cca9ef, checked in by Frederik Heber <heber@…>, 14 years ago

Renamed Matrix to RealSpaceMatrix.

  • class Matrix only represents 3x3 matrices, whereas we are now going to extend the class MatrixContent to contain arbritrary dimensions.
  • renamed class and file
  • Property mode set to 100644
File size: 21.7 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "Helpers/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24
25#include "BoundaryTriangleSet.hpp"
26#include "analysis_correlation.hpp"
27#include "element.hpp"
28#include "Helpers/Info.hpp"
29#include "Helpers/Log.hpp"
30#include "molecule.hpp"
31#include "tesselation.hpp"
32#include "tesselationhelpers.hpp"
33#include "triangleintersectionlist.hpp"
34#include "LinearAlgebra/Vector.hpp"
35#include "LinearAlgebra/RealSpaceMatrix.hpp"
36#include "Helpers/Verbose.hpp"
37#include "World.hpp"
38#include "Box.hpp"
39
40
41/** Calculates the pair correlation between given elements.
42 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
43 * \param *molecules vector of molecules
44 * \param &elements vector of elements to correlate
45 * \return Map of doubles with values the pair of the two atoms.
46 */
47PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
48{
49 Info FunctionInfo(__func__);
50 PairCorrelationMap *outmap = NULL;
51 double distance = 0.;
52 Box &domain = World::getInstance().getDomain();
53
54 if (molecules.empty()) {
55 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
56 return outmap;
57 }
58 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
59 (*MolWalker)->doCountAtoms();
60
61 // create all possible pairs of elements
62 set <pair<const element *,const element *> > PairsOfElements;
63 if (elements.size() >= 2) {
64 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
65 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
66 if (type1 != type2) {
67 PairsOfElements.insert( make_pair(*type1,*type2) );
68 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
69 }
70 } else if (elements.size() == 1) { // one to all are valid
71 const element *elemental = *elements.begin();
72 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
73 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
74 } else { // all elements valid
75 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
76 }
77
78 outmap = new PairCorrelationMap;
79 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
80 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
81 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
82 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
83 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
84 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
85 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
86 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
87 if ((*iter)->getId() < (*runner)->getId()){
88 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
89 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
90 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
91 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
92 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
93 }
94 }
95 }
96 }
97 }
98 }
99 return outmap;
100};
101
102/** Calculates the pair correlation between given elements.
103 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
104 * \param *molecules list of molecules structure
105 * \param &elements vector of elements to correlate
106 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
107 * \return Map of doubles with values the pair of the two atoms.
108 */
109PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
110{
111 Info FunctionInfo(__func__);
112 PairCorrelationMap *outmap = NULL;
113 double distance = 0.;
114 int n[NDIM];
115 Vector checkX;
116 Vector periodicX;
117 int Othern[NDIM];
118 Vector checkOtherX;
119 Vector periodicOtherX;
120
121 if (molecules.empty()) {
122 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
123 return outmap;
124 }
125 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
126 (*MolWalker)->doCountAtoms();
127
128 // create all possible pairs of elements
129 set <pair<const element *,const element *> > PairsOfElements;
130 if (elements.size() >= 2) {
131 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
132 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
133 if (type1 != type2) {
134 PairsOfElements.insert( make_pair(*type1,*type2) );
135 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
136 }
137 } else if (elements.size() == 1) { // one to all are valid
138 const element *elemental = *elements.begin();
139 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
140 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
141 } else { // all elements valid
142 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
143 }
144
145 outmap = new PairCorrelationMap;
146 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
147 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
148 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
149 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
150 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
151 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
152 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
153 // go through every range in xyz and get distance
154 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
155 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
156 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
157 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
158 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
159 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
160 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
161 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
162 if ((*iter)->getId() < (*runner)->getId()){
163 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
164 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
165 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
166 // go through every range in xyz and get distance
167 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
168 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
169 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
170 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
171 distance = checkX.distance(checkOtherX);
172 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
173 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
174 }
175 }
176 }
177 }
178 }
179 }
180 }
181 }
182
183 return outmap;
184};
185
186/** Calculates the distance (pair) correlation between a given element and a point.
187 * \param *molecules list of molecules structure
188 * \param &elements vector of elements to correlate with point
189 * \param *point vector to the correlation point
190 * \return Map of dobules with values as pairs of atom and the vector
191 */
192CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
193{
194 Info FunctionInfo(__func__);
195 CorrelationToPointMap *outmap = NULL;
196 double distance = 0.;
197 Box &domain = World::getInstance().getDomain();
198
199 if (molecules.empty()) {
200 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
201 return outmap;
202 }
203 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
204 (*MolWalker)->doCountAtoms();
205 outmap = new CorrelationToPointMap;
206 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
207 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
208 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
209 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
210 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
211 if ((*type == NULL) || ((*iter)->getType() == *type)) {
212 distance = domain.periodicDistance((*iter)->getPosition(),*point);
213 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
214 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> ((*iter), point) ) );
215 }
216 }
217 }
218
219 return outmap;
220};
221
222/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
223 * \param *molecules list of molecules structure
224 * \param &elements vector of elements to correlate to point
225 * \param *point vector to the correlation point
226 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
227 * \return Map of dobules with values as pairs of atom and the vector
228 */
229CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
230{
231 Info FunctionInfo(__func__);
232 CorrelationToPointMap *outmap = NULL;
233 double distance = 0.;
234 int n[NDIM];
235 Vector periodicX;
236 Vector checkX;
237
238 if (molecules.empty()) {
239 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
240 return outmap;
241 }
242 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
243 (*MolWalker)->doCountAtoms();
244 outmap = new CorrelationToPointMap;
245 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
246 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
247 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
248 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
249 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
250 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
251 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
252 if ((*type == NULL) || ((*iter)->getType() == *type)) {
253 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
254 // go through every range in xyz and get distance
255 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
256 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
257 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
258 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
259 distance = checkX.distance(*point);
260 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
261 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> (*iter, point) ) );
262 }
263 }
264 }
265 }
266
267 return outmap;
268};
269
270/** Calculates the distance (pair) correlation between a given element and a surface.
271 * \param *molecules list of molecules structure
272 * \param &elements vector of elements to correlate to surface
273 * \param *Surface pointer to Tesselation class surface
274 * \param *LC LinkedCell structure to quickly find neighbouring atoms
275 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
276 */
277CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC )
278{
279 Info FunctionInfo(__func__);
280 CorrelationToSurfaceMap *outmap = NULL;
281 double distance = 0;
282 class BoundaryTriangleSet *triangle = NULL;
283 Vector centroid;
284
285 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
286 DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
287 return outmap;
288 }
289 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
290 (*MolWalker)->doCountAtoms();
291 outmap = new CorrelationToSurfaceMap;
292 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
293 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << (*MolWalker)->name << "." << endl);
294 if ((*MolWalker)->empty())
295 DoLog(2) && (2) && (Log() << Verbose(2) << "\t is empty." << endl);
296 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
297 DoLog(3) && (Log() << Verbose(3) << "\tCurrent atom is " << *(*iter) << "." << endl);
298 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
299 if ((*type == NULL) || ((*iter)->getType() == *type)) {
300 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
301 distance = Intersections.GetSmallestDistance();
302 triangle = Intersections.GetClosestTriangle();
303 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(distance, pair<atom *, BoundaryTriangleSet*> ((*iter), triangle) ) );
304 }
305 }
306 }
307
308 return outmap;
309};
310
311/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
312 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
313 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
314 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
315 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
316 * \param *molecules list of molecules structure
317 * \param &elements vector of elements to correlate to surface
318 * \param *Surface pointer to Tesselation class surface
319 * \param *LC LinkedCell structure to quickly find neighbouring atoms
320 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
321 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
322 */
323CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] )
324{
325 Info FunctionInfo(__func__);
326 CorrelationToSurfaceMap *outmap = NULL;
327 double distance = 0;
328 class BoundaryTriangleSet *triangle = NULL;
329 Vector centroid;
330 int n[NDIM];
331 Vector periodicX;
332 Vector checkX;
333
334 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
335 DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
336 return outmap;
337 }
338 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
339 (*MolWalker)->doCountAtoms();
340 outmap = new CorrelationToSurfaceMap;
341 double ShortestDistance = 0.;
342 BoundaryTriangleSet *ShortestTriangle = NULL;
343 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
344 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
345 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
346 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
347 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
348 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
349 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
350 if ((*type == NULL) || ((*iter)->getType() == *type)) {
351 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
352 // go through every range in xyz and get distance
353 ShortestDistance = -1.;
354 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
355 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
356 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
357 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
358 TriangleIntersectionList Intersections(checkX,Surface,LC);
359 distance = Intersections.GetSmallestDistance();
360 triangle = Intersections.GetClosestTriangle();
361 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
362 ShortestDistance = distance;
363 ShortestTriangle = triangle;
364 }
365 }
366 // insert
367 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(ShortestDistance, pair<atom *, BoundaryTriangleSet*> (*iter, ShortestTriangle) ) );
368 //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl;
369 }
370 }
371 }
372
373 return outmap;
374};
375
376/** Returns the index of the bin for a given value.
377 * \param value value whose bin to look for
378 * \param BinWidth width of bin
379 * \param BinStart first bin
380 */
381int GetBin ( const double value, const double BinWidth, const double BinStart )
382{
383 Info FunctionInfo(__func__);
384 int bin =(int) (floor((value - BinStart)/BinWidth));
385 return (bin);
386};
387
388
389/** Prints correlation (double, int) pairs to file.
390 * \param *file file to write to
391 * \param *map map to write
392 */
393void OutputCorrelation( ofstream * const file, const BinPairMap * const map )
394{
395 Info FunctionInfo(__func__);
396 *file << "BinStart\tCount" << endl;
397 for (BinPairMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
398 *file << setprecision(8) << runner->first << "\t" << runner->second << endl;
399 }
400};
401
402/** Prints correlation (double, (atom*,atom*) ) pairs to file.
403 * \param *file file to write to
404 * \param *map map to write
405 */
406void OutputPairCorrelation( ofstream * const file, const PairCorrelationMap * const map )
407{
408 Info FunctionInfo(__func__);
409 *file << "BinStart\tAtom1\tAtom2" << endl;
410 for (PairCorrelationMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
411 *file << setprecision(8) << runner->first << "\t" << *(runner->second.first) << "\t" << *(runner->second.second) << endl;
412 }
413};
414
415/** Prints correlation (double, int) pairs to file.
416 * \param *file file to write to
417 * \param *map map to write
418 */
419void OutputCorrelationToPoint( ofstream * const file, const CorrelationToPointMap * const map )
420{
421 Info FunctionInfo(__func__);
422 *file << "BinStart\tAtom::x[i]-point.x[i]" << endl;
423 for (CorrelationToPointMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
424 *file << runner->first;
425 for (int i=0;i<NDIM;i++)
426 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
427 *file << endl;
428 }
429};
430
431/** Prints correlation (double, int) pairs to file.
432 * \param *file file to write to
433 * \param *map map to write
434 */
435void OutputCorrelationToSurface( ofstream * const file, const CorrelationToSurfaceMap * const map )
436{
437 Info FunctionInfo(__func__);
438 *file << "BinStart\tTriangle" << endl;
439 if (!map->empty())
440 for (CorrelationToSurfaceMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
441 *file << setprecision(8) << runner->first << "\t";
442 *file << *(runner->second.first) << "\t";
443 *file << *(runner->second.second) << endl;
444 }
445};
446
Note: See TracBrowser for help on using the repository browser.