/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* TesselationHelpers.cpp
*
* Created on: Aug 3, 2009
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include
#include "tesselationhelpers.hpp"
#include "BoundaryLineSet.hpp"
#include "BoundaryPointSet.hpp"
#include "BoundaryPolygonSet.hpp"
#include "BoundaryTriangleSet.hpp"
#include "CandidateForTesselation.hpp"
#include "CodePatterns/Info.hpp"
#include "CodePatterns/Log.hpp"
#include "CodePatterns/Verbose.hpp"
#include "LinearAlgebra/Line.hpp"
#include "LinearAlgebra/LinearSystemOfEquations.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinearAlgebra/vector_ops.hpp"
#include "LinkedCell/IPointCloud.hpp"
#include "LinkedCell/linkedcell.hpp"
#include "tesselation.hpp"
void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
{
//Info FunctionInfo(__func__);
RealSpaceMatrix mat;
double m11, m12, m13, m14;
for(int i=0;i<3;i++) {
mat.set(i, 0, a[i]);
mat.set(i, 1, b[i]);
mat.set(i, 2, c[i]);
}
m11 = mat.determinant();
for(int i=0;i<3;i++) {
mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
mat.set(i, 1, b[i]);
mat.set(i, 2, c[i]);
}
m12 = mat.determinant();
for(int i=0;i<3;i++) {
mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
mat.set(i, 1, a[i]);
mat.set(i, 2, c[i]);
}
m13 = mat.determinant();
for(int i=0;i<3;i++) {
mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
mat.set(i, 1, a[i]);
mat.set(i, 2, b[i]);
}
m14 = mat.determinant();
if (fabs(m11) < MYEPSILON)
ELOG(1, "three points are colinear.");
center->at(0) = 0.5 * m12/ m11;
center->at(1) = -0.5 * m13/ m11;
center->at(2) = 0.5 * m14/ m11;
if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
ELOG(1, "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS.");
};
/**
* Function returns center of sphere with RADIUS, which rests on points a, b, c
* @param Center this vector will be used for return
* @param a vector first point of triangle
* @param b vector second point of triangle
* @param c vector third point of triangle
* @param *Umkreismittelpunkt new center point of circumference
* @param Direction vector indicates up/down
* @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
* @param Halfplaneindicator double indicates whether Direction is up or down
* @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
* @param alpha double angle at a
* @param beta double, angle at b
* @param gamma, double, angle at c
* @param Radius, double
* @param Umkreisradius double radius of circumscribing circle
*/
void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
{
//Info FunctionInfo(__func__);
Vector TempNormal, helper;
double Restradius;
Vector OtherCenter;
Center->Zero();
helper = sin(2.*alpha) * a;
(*Center) += helper;
helper = sin(2.*beta) * b;
(*Center) += helper;
helper = sin(2.*gamma) * c;
(*Center) += helper;
//*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
(*NewUmkreismittelpunkt) = (*Center);
LOG(4, "DEBUG: Center of new circumference is " << *NewUmkreismittelpunkt << ".");
// Here we calculated center of circumscribing circle, using barycentric coordinates
LOG(4, "DEBUG: Center of circumference is " << *Center << " in direction " << *Direction << ".");
TempNormal = a - b;
helper = a - c;
TempNormal.VectorProduct(helper);
if (fabs(HalfplaneIndicator) < MYEPSILON)
{
if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
{
TempNormal *= -1;
}
}
else
{
if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
{
TempNormal *= -1;
}
}
TempNormal.Normalize();
Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
LOG(5, "DEBUG: Height of center of circumference to center of sphere is " << Restradius << ".");
TempNormal.Scale(Restradius);
LOG(5, "DEBUG: Shift vector to sphere of circumference is " << TempNormal << ".");
(*Center) += TempNormal;
LOG(5, "DEBUG: Center of sphere of circumference is " << *Center << ".");
GetSphere(&OtherCenter, a, b, c, RADIUS);
LOG(5, "DEBUG: OtherCenter of sphere of circumference is " << OtherCenter << ".");
};
/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
* \param *Center new center on return
* \param *a first point
* \param *b second point
* \param *c third point
*/
void GetCenterofCircumcircle(Vector &Center, const Vector &a, const Vector &b, const Vector &c)
{
//Info FunctionInfo(__func__);
Vector helper;
Vector SideA = b - c;
Vector SideB = c - a;
Vector SideC = a - b;
helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared());
helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared());
helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared());
Center.Zero();
Center += helper[0] * a;
Center += helper[1] * b;
Center += helper[2] * c;
if (fabs(helper[0]+helper[1]+helper[2]) > MYEPSILON)
Center.Scale(1./(helper[0]+helper[1]+helper[2]));
LOG(4, "DEBUG: Center (2nd algo) is at " << Center << ".");
};
/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
* Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
* It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
* Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
* \param CircleCenter Center of the parameter circle
* \param CirclePlaneNormal normal vector to plane of the parameter circle
* \param CircleRadius radius of the parameter circle
* \param NewSphereCenter new center of a circumcircle
* \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
* \param NormalVector normal vector
* \param SearchDirection search direction to make angle unique on return.
* \param HULLEPSILON machine precision for tesselation points
* \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
*/
double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection, const double HULLEPSILON)
{
//Info FunctionInfo(__func__);
Vector helper;
double radius, alpha;
Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
helper = RelativeNewSphereCenter;
// test whether new center is on the parameter circle's plane
if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
ELOG(1, "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " < HULLEPSILON)
ELOG(1, "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << ".");
alpha = helper.Angle(RelativeOldSphereCenter);
// make the angle unique by checking the halfplanes/search direction
if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
alpha = 2.*M_PI - alpha;
LOG(5, "DEBUG: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << ".");
radius = helper.distance(RelativeOldSphereCenter);
helper.ProjectOntoPlane(NormalVector);
// check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
LOG(6, "DEBUG: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << ".");
return alpha;
} else {
LOG(5, "DEBUG: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << ".");
return 2.*M_PI;
}
};
struct Intersection {
Vector x1;
Vector x2;
Vector x3;
Vector x4;
};
/** Gets the angle between a point and a reference relative to the provided center.
* We have two shanks point and reference between which the angle is calculated
* and by scalar product with OrthogonalVector we decide the interval.
* @param point to calculate the angle for
* @param reference to which to calculate the angle
* @param OrthogonalVector points in direction of [pi,2pi] interval
*
* @return angle between point and reference
*/
double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
{
//Info FunctionInfo(__func__);
if (reference.IsZero())
return M_PI;
// calculate both angles and correct with in-plane vector
if (point.IsZero())
return M_PI;
double phi = point.Angle(reference);
if (OrthogonalVector.ScalarProduct(point) > 0) {
phi = 2.*M_PI - phi;
}
LOG(4, "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << ".");
return phi;
}
/** Calculates the volume of a general tetraeder.
* \param *a first vector
* \param *b second vector
* \param *c third vector
* \param *d fourth vector
* \return \f$ \frac{1}{6} | (a-d) \cdot \bigl ( (b-d) \times (c-d) \bigr ) | \f$
*/
double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
{
//Info FunctionInfo(__func__);
Vector Point, TetraederVector[3];
double volume;
TetraederVector[0] = a;
TetraederVector[1] = b;
TetraederVector[2] = c;
for (int j=0;j<3;j++)
TetraederVector[j].SubtractVector(d);
Point = TetraederVector[1];
Point.VectorProduct(TetraederVector[2]);
volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[0]));
return volume;
};
/** Calculates the area of a general triangle.
* We use the Heron's formula of area, [Bronstein, S. 138]
* \param &A first vector
* \param &B second vector
* \param &C third vector
* \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
*/
double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C)
{
//Info FunctionInfo(__func__);
const double sidea = B.distance(C);
const double sideb = A.distance(C);
const double sidec = A.distance(B);
const double s = (sidea+sideb+sidec)/2.;
const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec));
return area;
};
/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
* This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
* make it bigger (i.e. closing one (the baseline) and opening two new ones).
* \param TPS[3] nodes of the triangle
* \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
*/
bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
{
//Info FunctionInfo(__func__);
bool result = false;
int counter = 0;
// check all three points
for (int i=0;i<3;i++)
for (int j=i+1; j<3; j++) {
if (nodes[i] == NULL) {
LOG(1, "Node nr. " << i << " is not yet present.");
result = true;
} else if (nodes[i]->lines.find(nodes[j]->node->getNr()) != nodes[i]->lines.end()) { // there already is a line
LineMap::const_iterator FindLine;
pair FindPair;
FindPair = nodes[i]->lines.equal_range(nodes[j]->node->getNr());
for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
// If there is a line with less than two attached triangles, we don't need a new line.
if (FindLine->second->triangles.size() < 2) {
counter++;
break; // increase counter only once per edge
}
}
} else { // no line
LOG(1, "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle.");
result = true;
}
}
if ((!result) && (counter > 1)) {
LOG(1, "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used.");
result = true;
}
return result;
};
///** Sort function for the candidate list.
// */
//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
//{
// //Info FunctionInfo(__func__);
// Vector BaseLineVector, OrthogonalVector, helper;
// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
// ELOG(1, "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << ".");
// //return false;
// exit(1);
// }
// // create baseline vector
// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
// BaseLineVector.Normalize();
//
// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
// helper.SubtractVector(candidate1->point->node);
// OrthogonalVector.CopyVector(&helper);
// helper.VectorProduct(&BaseLineVector);
// OrthogonalVector.SubtractVector(&helper);
// OrthogonalVector.Normalize();
//
// // calculate both angles and correct with in-plane vector
// helper.CopyVector(candidate1->point->node);
// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
// double phi = BaseLineVector.Angle(&helper);
// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
// phi = 2.*M_PI - phi;
// }
// helper.CopyVector(candidate2->point->node);
// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
// double psi = BaseLineVector.Angle(&helper);
// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
// psi = 2.*M_PI - psi;
// }
//
// LOG(1, *candidate1->point << " has angle " << phi);
// LOG(1, *candidate2->point << " has angle " << psi);
//
// // return comparison
// return phi < psi;
//};
/**
* Finds the point which is second closest to the provided one.
*
* @param Point to which to find the second closest other point
* @param linked cell structure
*
* @return point which is second closest to the provided one
*/
TesselPoint* FindSecondClosestTesselPoint(const Vector& Point, const LinkedCell_deprecated* const LC)
{
//Info FunctionInfo(__func__);
TesselPoint* closestPoint = NULL;
TesselPoint* secondClosestPoint = NULL;
double distance = 1e16;
// double secondDistance = 1e16;
Vector helper;
int N[NDIM], Nlower[NDIM], Nupper[NDIM];
LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
for(int i=0;in[i];
LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
LC->GetNeighbourBounds(Nlower, Nupper);
for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
const TesselPointSTLList *List = LC->GetCurrentCell();
//LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
if (List != NULL) {
for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
helper = (Point) - ((*Runner)->getPosition());
double currentNorm = helper. Norm();
if (currentNorm < distance) {
// remember second point
// secondDistance = distance;
secondClosestPoint = closestPoint;
// mark down new closest point
distance = currentNorm;
closestPoint = (*Runner);
//LOG(2, "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << ".");
}
}
} else {
ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
}
}
return secondClosestPoint;
};
/**
* Finds the point which is closest to the provided one.
*
* @param Point to which to find the closest other point
* @param SecondPoint the second closest other point on return, NULL if none found
* @param linked cell structure
*
* @return point which is closest to the provided one, NULL if none found
*/
TesselPoint* FindClosestTesselPoint(const Vector& Point, TesselPoint *&SecondPoint, const LinkedCell_deprecated* const LC)
{
//Info FunctionInfo(__func__);
TesselPoint* closestPoint = NULL;
SecondPoint = NULL;
double distance = 1e16;
double secondDistance = 1e16;
Vector helper;
int N[NDIM], Nlower[NDIM], Nupper[NDIM];
LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
for(int i=0;in[i];
LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
LC->GetNeighbourBounds(Nlower, Nupper);
for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
const TesselPointSTLList *List = LC->GetCurrentCell();
//LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
if (List != NULL) {
for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
helper = (Point) - ((*Runner)->getPosition());
double currentNorm = helper.NormSquared();
if (currentNorm < distance) {
secondDistance = distance;
SecondPoint = closestPoint;
distance = currentNorm;
closestPoint = (*Runner);
//LOG(1, "INFO: New Nearest Neighbour is " << *closestPoint << ".");
} else if (currentNorm < secondDistance) {
secondDistance = currentNorm;
SecondPoint = (*Runner);
//LOG(1, "INFO: New Second Nearest Neighbour is " << *SecondPoint << ".");
}
}
} else {
ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
}
}
// output
if (closestPoint != NULL) {
if (DoLog(3)) {
std::stringstream output;
output << "Closest point is " << *closestPoint;
if (SecondPoint != NULL)
output << " and second closest is " << *SecondPoint;
LOG(3, "DEBUG: " << output.str() << ".");
}
}
return closestPoint;
};
/** Returns the closest point on \a *Base with respect to \a *OtherBase.
* \param *out output stream for debugging
* \param *Base reference line
* \param *OtherBase other base line
* \return Vector on reference line that has closest distance
*/
Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
{
//Info FunctionInfo(__func__);
// construct the plane of the two baselines (i.e. take both their directional vectors)
Vector Baseline = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
Vector OtherBaseline = (OtherBase->endpoints[1]->node->getPosition()) - (OtherBase->endpoints[0]->node->getPosition());
Vector Normal = Baseline;
Normal.VectorProduct(OtherBaseline);
Normal.Normalize();
LOG(3, "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << ".");
// project one offset point of OtherBase onto this plane (and add plane offset vector)
Vector NewOffset = (OtherBase->endpoints[0]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
NewOffset.ProjectOntoPlane(Normal);
NewOffset += (Base->endpoints[0]->node->getPosition());
Vector NewDirection = NewOffset + OtherBaseline;
// calculate the intersection between this projected baseline and Base
Vector *Intersection = new Vector;
Line line1 = makeLineThrough((Base->endpoints[0]->node->getPosition()),(Base->endpoints[1]->node->getPosition()));
Line line2 = makeLineThrough(NewOffset, NewDirection);
*Intersection = line1.getIntersection(line2);
Normal = (*Intersection) - (Base->endpoints[0]->node->getPosition());
LOG(3, "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << ".");
return Intersection;
};
/** Returns the distance to the plane defined by \a *triangle
* \param *out output stream for debugging
* \param *x Vector to calculate distance to
* \param *triangle triangle defining plane
* \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
*/
double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
{
//Info FunctionInfo(__func__);
double distance = 0.;
if (x == NULL) {
return -1;
}
distance = x->DistanceToSpace(triangle->getPlane());
return distance;
};
/** Creates the objects in a VRML file.
* \param *out output stream for debugging
* \param *vrmlfile output stream for tecplot data
* \param *Tess Tesselation structure with constructed triangles
* \param *mol molecule structure with atom positions
*/
void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, IPointCloud & cloud)
{
//Info FunctionInfo(__func__);
TesselPoint *Walker = NULL;
int i;
Vector *center = cloud.GetCenter();
if (vrmlfile != NULL) {
LOG(1, "INFO: Writing Raster3D file ... ");
*vrmlfile << "#VRML V2.0 utf8" << endl;
*vrmlfile << "#Created by molecuilder" << endl;
*vrmlfile << "#All atoms as spheres" << endl;
cloud.GoToFirst();
while (!cloud.IsEnd()) {
Walker = cloud.GetPoint();
*vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
for (i=0;iat(i)-center->at(i) << " ";
*vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
cloud.GoToNext();
}
*vrmlfile << "# All tesselation triangles" << endl;
for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
*vrmlfile << "1" << endl << " "; // 1 is triangle type
for (i=0;i<3;i++) { // print each node
for (int j=0;jsecond->endpoints[i]->node->at(j)-center->at(j) << " ";
*vrmlfile << "\t";
}
*vrmlfile << "1. 0. 0." << endl; // red as colour
*vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
}
} else {
ELOG(1, "Given vrmlfile is " << vrmlfile << ".");
}
delete(center);
};
/** Writes additionally the current sphere (i.e. the last triangle to file).
* \param *out output stream for debugging
* \param *rasterfile output stream for tecplot data
* \param *Tess Tesselation structure with constructed triangles
* \param *mol molecule structure with atom positions
*/
void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
{
//Info FunctionInfo(__func__);
Vector helper;
if (Tess->LastTriangle != NULL) {
// include the current position of the virtual sphere in the temporary raster3d file
Vector *center = cloud.GetCenter();
// make the circumsphere's center absolute again
Vector helper = (1./3.) * ((Tess->LastTriangle->endpoints[0]->node->getPosition()) +
(Tess->LastTriangle->endpoints[1]->node->getPosition()) +
(Tess->LastTriangle->endpoints[2]->node->getPosition()));
helper -= (*center);
// and add to file plus translucency object
*rasterfile << "# current virtual sphere\n";
*rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
*rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
*rasterfile << "9\n terminating special property\n";
delete(center);
}
};
/** Creates the objects in a raster3d file (renderable with a header.r3d).
* \param *out output stream for debugging
* \param *rasterfile output stream for tecplot data
* \param *Tess Tesselation structure with constructed triangles
* \param *mol molecule structure with atom positions
*/
void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
{
//Info FunctionInfo(__func__);
TesselPoint *Walker = NULL;
int i;
Vector *center = cloud.GetCenter();
if (rasterfile != NULL) {
LOG(1, "INFO: Writing Raster3D file ... ");
*rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
*rasterfile << "@header.r3d" << endl;
*rasterfile << "# All atoms as spheres" << endl;
cloud.GoToFirst();
while (!cloud.IsEnd()) {
Walker = cloud.GetPoint();
*rasterfile << "2" << endl << " "; // 2 is sphere type
for (int j=0;jat(j)-center->at(j);
*rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
}
*rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
cloud.GoToNext();
}
*rasterfile << "# All tesselation triangles" << endl;
*rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
*rasterfile << "1" << endl << " "; // 1 is triangle type
for (i=0;i<3;i++) { // print each node
for (int j=0;jsecond->endpoints[i]->node->at(j)-center->at(j);
*rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
}
*rasterfile << "\t";
}
*rasterfile << "1. 0. 0." << endl; // red as colour
//*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
}
*rasterfile << "9\n# terminating special property\n";
} else {
ELOG(1, "Given rasterfile is " << rasterfile << ".");
}
IncludeSphereinRaster3D(rasterfile, Tess, cloud);
delete(center);
};
/** This function creates the tecplot file, displaying the tesselation of the hull.
* \param *out output stream for debugging
* \param *tecplot output stream for tecplot data
* \param N arbitrary number to differentiate various zones in the tecplot format
*/
void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, IPointCloud & cloud, const int N)
{
//Info FunctionInfo(__func__);
if ((tecplot != NULL) && (TesselStruct != NULL)) {
// write header
*tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
*tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
*tecplot << "ZONE T=\"";
if (N < 0) {
*tecplot << cloud.GetName();
} else {
*tecplot << N << "-";
if (TesselStruct->LastTriangle != NULL) {
for (int i=0;i<3;i++)
*tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
} else {
*tecplot << "none";
}
}
*tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
const int MaxId=cloud.GetMaxId();
ASSERT(MaxId >= 0, "WriteTecplotFile() - negative MaxId? No atoms present?");
int *LookupList = new int[MaxId+1];
for (int i=0; i<= MaxId ; i++){
LookupList[i] = -1;
}
// print atom coordinates
int Counter = 1;
TesselPoint *Walker = NULL;
for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
Walker = target->second->node;
ASSERT(Walker->getNr() <= MaxId, "WriteTecplotFile() - Id of particle greater than MaxId.");
LookupList[Walker->getNr()] = Counter++;
for (int i=0;iat(i);
*tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
}
*tecplot << target->second->value << endl;
}
*tecplot << endl;
// print connectivity
LOG(4, "DEBUG: The following triangles were created:");
for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
LOG(4, " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName());
*tecplot << LookupList[runner->second->endpoints[0]->node->getNr()] << " " << LookupList[runner->second->endpoints[1]->node->getNr()] << " " << LookupList[runner->second->endpoints[2]->node->getNr()] << endl;
}
delete[] (LookupList);
}
};
/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
* Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
* \param *out output stream for debugging
* \param *TesselStruct pointer to Tesselation structure
*/
void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
{
//Info FunctionInfo(__func__);
class BoundaryPointSet *point = NULL;
class BoundaryLineSet *line = NULL;
class BoundaryTriangleSet *triangle = NULL;
double ConcavityPerLine = 0.;
double ConcavityPerTriangle = 0.;
double area = 0.;
double totalarea = 0.;
for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
point = PointRunner->second;
LOG(2, "INFO: Current point is " << *point << ".");
// calculate mean concavity over all connected line
ConcavityPerLine = 0.;
for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
line = LineRunner->second;
//LOG(1, "INFO: Current line of point " << *point << " is " << *line << ".");
ConcavityPerLine -= line->CalculateConvexity();
}
ConcavityPerLine /= point->lines.size();
// weigh with total area of the surrounding triangles
totalarea = 0.;
TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second);
for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
totalarea += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
}
ConcavityPerLine *= totalarea;
// calculate mean concavity over all attached triangles
ConcavityPerTriangle = 0.;
for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
line = (*TriangleRunner)->GetThirdLine(PointRunner->second);
triangle = line->GetOtherTriangle(*TriangleRunner);
area = CalculateAreaofGeneralTriangle(triangle->endpoints[0]->node->getPosition() , triangle->endpoints[1]->node->getPosition() , triangle->endpoints[2]->node->getPosition());
area += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
area *= -line->CalculateConvexity();
if (area > 0)
ConcavityPerTriangle += area;
// else
// ConcavityPerTriangle -= area;
}
ConcavityPerTriangle /= triangles->size()/totalarea;
delete(triangles);
// add up
point->value = ConcavityPerLine + ConcavityPerTriangle;
}
};
/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
* Sets BoundaryPointSet::value equal to the nearest distance to convex envelope.
* \param *out output stream for debugging
* \param *TesselStruct pointer to Tesselation structure
* \param *Convex pointer to convex Tesselation structure as reference
*/
void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex)
{
//Info FunctionInfo(__func__);
double distance = 0.;
for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
ELOG(1, "INFO: Current point is " << * PointRunner->second << ".");
distance = 0.;
for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) {
const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(PointRunner->second->node->getPosition() , TriangleRunner->second);
if (CurrentDistance < distance)
distance = CurrentDistance;
}
PointRunner->second->value = distance;
}
};
/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
* \param *out output stream for debugging
* \param *TesselStruct
* \return true - all have exactly two triangles, false - some not, list is printed to screen
*/
bool CheckListOfBaselines(const Tesselation * const TesselStruct)
{
//Info FunctionInfo(__func__);
LineMap::const_iterator testline;
bool result = false;
int counter = 0;
LOG(1, "Check: List of Baselines with not two connected triangles:");
for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
if (testline->second->triangles.size() != 2) {
LOG(2, *testline->second << "\t" << testline->second->triangles.size());
counter++;
}
}
if (counter == 0) {
LOG(1, "None.");
result = true;
}
return result;
}
/** Counts the number of triangle pairs that contain the given polygon.
* \param *P polygon with endpoints to look for
* \param *T set of triangles to create pairs from containing \a *P
*/
int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
{
//Info FunctionInfo(__func__);
// check number of endpoints in *P
if (P->endpoints.size() != 4) {
ELOG(1, "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!");
return 0;
}
// check number of triangles in *T
if (T->size() < 2) {
ELOG(1, "Not enough triangles to have pairs!");
return 0;
}
LOG(3, "DEBUG: Polygon is " << *P);
// create each pair, get the endpoints and check whether *P is contained.
int counter = 0;
PointSet Trianglenodes;
class BoundaryPolygonSet PairTrianglenodes;
for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
for (int i=0;i<3;i++)
Trianglenodes.insert((*Walker)->endpoints[i]);
for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
if (Walker != PairWalker) { // skip first
PairTrianglenodes.endpoints = Trianglenodes;
for (int i=0;i<3;i++)
PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
const int size = PairTrianglenodes.endpoints.size();
if (size == 4) {
LOG(4, "DEBUG: Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes);
// now check
if (PairTrianglenodes.ContainsPresentTupel(P)) {
counter++;
LOG(5, " ACCEPT: Matches with " << *P);
} else {
LOG(5, " REJECT: No match with " << *P);
}
} else {
LOG(5, " REJECT: Less than four endpoints.");
}
}
}
Trianglenodes.clear();
}
return counter;
};
/** Checks whether two give polygons have two or more points in common.
* \param *P1 first polygon
* \param *P2 second polygon
* \return true - are connected, false = are note
*/
bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
{
//Info FunctionInfo(__func__);
int counter = 0;
for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
if (P2->ContainsBoundaryPoint((*Runner))) {
counter++;
LOG(5, "DEBUG: " << *(*Runner) << " of second polygon is found in the first one.");
return true;
}
}
return false;
};
/** Combines second into the first and deletes the second.
* \param *P1 first polygon, contains all nodes on return
* \param *&P2 second polygon, is deleted.
*/
void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
{
//Info FunctionInfo(__func__);
pair Tester;
for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
Tester = P1->endpoints.insert((*Runner));
if (Tester.second)
LOG(4, "DEBUG: Inserting endpoint " << *(*Runner) << " into first polygon.");
}
P2->endpoints.clear();
delete(P2);
};