[bcf653] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
[0aa122] | 4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
[94d5ac6] | 5 | *
|
---|
| 6 | *
|
---|
| 7 | * This file is part of MoleCuilder.
|
---|
| 8 | *
|
---|
| 9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
| 10 | * it under the terms of the GNU General Public License as published by
|
---|
| 11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
| 12 | * (at your option) any later version.
|
---|
| 13 | *
|
---|
| 14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | * GNU General Public License for more details.
|
---|
| 18 | *
|
---|
| 19 | * You should have received a copy of the GNU General Public License
|
---|
| 20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
[bcf653] | 21 | */
|
---|
| 22 |
|
---|
[357fba] | 23 | /*
|
---|
| 24 | * TesselationHelpers.cpp
|
---|
| 25 | *
|
---|
| 26 | * Created on: Aug 3, 2009
|
---|
| 27 | * Author: heber
|
---|
| 28 | */
|
---|
| 29 |
|
---|
[bf3817] | 30 | // include config.h
|
---|
| 31 | #ifdef HAVE_CONFIG_H
|
---|
| 32 | #include <config.h>
|
---|
| 33 | #endif
|
---|
| 34 |
|
---|
[ad011c] | 35 | #include "CodePatterns/MemDebug.hpp"
|
---|
[112b09] | 36 |
|
---|
[f66195] | 37 | #include <fstream>
|
---|
| 38 |
|
---|
[53c7fc] | 39 | #include "tesselationhelpers.hpp"
|
---|
| 40 |
|
---|
[d74077] | 41 | #include "BoundaryLineSet.hpp"
|
---|
| 42 | #include "BoundaryPointSet.hpp"
|
---|
| 43 | #include "BoundaryPolygonSet.hpp"
|
---|
| 44 | #include "BoundaryTriangleSet.hpp"
|
---|
| 45 | #include "CandidateForTesselation.hpp"
|
---|
[ad011c] | 46 | #include "CodePatterns/Info.hpp"
|
---|
| 47 | #include "CodePatterns/Log.hpp"
|
---|
| 48 | #include "CodePatterns/Verbose.hpp"
|
---|
[34c43a] | 49 | #include "LinearAlgebra/Line.hpp"
|
---|
| 50 | #include "LinearAlgebra/LinearSystemOfEquations.hpp"
|
---|
[57f243] | 51 | #include "LinearAlgebra/Plane.hpp"
|
---|
[cca9ef] | 52 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
[34c43a] | 53 | #include "LinearAlgebra/Vector.hpp"
|
---|
| 54 | #include "LinearAlgebra/vector_ops.hpp"
|
---|
[53c7fc] | 55 | #include "LinkedCell/IPointCloud.hpp"
|
---|
| 56 | #include "LinkedCell/linkedcell.hpp"
|
---|
[34c43a] | 57 | #include "tesselation.hpp"
|
---|
[357fba] | 58 |
|
---|
[c0f6c6] | 59 | void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
|
---|
[357fba] | 60 | {
|
---|
[ce7bfd] | 61 | //Info FunctionInfo(__func__);
|
---|
[cca9ef] | 62 | RealSpaceMatrix mat;
|
---|
[357fba] | 63 | double m11, m12, m13, m14;
|
---|
| 64 |
|
---|
| 65 | for(int i=0;i<3;i++) {
|
---|
[04ef48] | 66 | mat.set(i, 0, a[i]);
|
---|
| 67 | mat.set(i, 1, b[i]);
|
---|
| 68 | mat.set(i, 2, c[i]);
|
---|
[357fba] | 69 | }
|
---|
[04ef48] | 70 | m11 = mat.determinant();
|
---|
[357fba] | 71 |
|
---|
| 72 | for(int i=0;i<3;i++) {
|
---|
[04ef48] | 73 | mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
|
---|
| 74 | mat.set(i, 1, b[i]);
|
---|
| 75 | mat.set(i, 2, c[i]);
|
---|
[357fba] | 76 | }
|
---|
[04ef48] | 77 | m12 = mat.determinant();
|
---|
[357fba] | 78 |
|
---|
| 79 | for(int i=0;i<3;i++) {
|
---|
[04ef48] | 80 | mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
|
---|
| 81 | mat.set(i, 1, a[i]);
|
---|
| 82 | mat.set(i, 2, c[i]);
|
---|
[357fba] | 83 | }
|
---|
[04ef48] | 84 | m13 = mat.determinant();
|
---|
[357fba] | 85 |
|
---|
| 86 | for(int i=0;i<3;i++) {
|
---|
[04ef48] | 87 | mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
|
---|
| 88 | mat.set(i, 1, a[i]);
|
---|
| 89 | mat.set(i, 2, b[i]);
|
---|
[357fba] | 90 | }
|
---|
[04ef48] | 91 | m14 = mat.determinant();
|
---|
[357fba] | 92 |
|
---|
| 93 | if (fabs(m11) < MYEPSILON)
|
---|
[47d041] | 94 | ELOG(1, "three points are colinear.");
|
---|
[357fba] | 95 |
|
---|
[0a4f7f] | 96 | center->at(0) = 0.5 * m12/ m11;
|
---|
| 97 | center->at(1) = -0.5 * m13/ m11;
|
---|
| 98 | center->at(2) = 0.5 * m14/ m11;
|
---|
[357fba] | 99 |
|
---|
[1513a74] | 100 | if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
|
---|
[47d041] | 101 | ELOG(1, "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS.");
|
---|
[357fba] | 102 | };
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 |
|
---|
| 106 | /**
|
---|
| 107 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
| 108 | * @param Center this vector will be used for return
|
---|
| 109 | * @param a vector first point of triangle
|
---|
| 110 | * @param b vector second point of triangle
|
---|
| 111 | * @param c vector third point of triangle
|
---|
[c0f6c6] | 112 | * @param *Umkreismittelpunkt new center point of circumference
|
---|
[357fba] | 113 | * @param Direction vector indicates up/down
|
---|
[c0f6c6] | 114 | * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
|
---|
[357fba] | 115 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
[c0f6c6] | 116 | * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
[357fba] | 117 | * @param alpha double angle at a
|
---|
| 118 | * @param beta double, angle at b
|
---|
| 119 | * @param gamma, double, angle at c
|
---|
| 120 | * @param Radius, double
|
---|
| 121 | * @param Umkreisradius double radius of circumscribing circle
|
---|
| 122 | */
|
---|
[c0f6c6] | 123 | void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
|
---|
| 124 | const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
|
---|
[357fba] | 125 | {
|
---|
[ce7bfd] | 126 | //Info FunctionInfo(__func__);
|
---|
[357fba] | 127 | Vector TempNormal, helper;
|
---|
| 128 | double Restradius;
|
---|
| 129 | Vector OtherCenter;
|
---|
| 130 | Center->Zero();
|
---|
[273382] | 131 | helper = sin(2.*alpha) * a;
|
---|
| 132 | (*Center) += helper;
|
---|
| 133 | helper = sin(2.*beta) * b;
|
---|
| 134 | (*Center) += helper;
|
---|
| 135 | helper = sin(2.*gamma) * c;
|
---|
| 136 | (*Center) += helper;
|
---|
[357fba] | 137 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
| 138 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
[273382] | 139 | (*NewUmkreismittelpunkt) = (*Center);
|
---|
[ce7bfd] | 140 | LOG(4, "DEBUG: Center of new circumference is " << *NewUmkreismittelpunkt << ".");
|
---|
[357fba] | 141 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
[ce7bfd] | 142 | LOG(4, "DEBUG: Center of circumference is " << *Center << " in direction " << *Direction << ".");
|
---|
[357fba] | 143 |
|
---|
[273382] | 144 | TempNormal = a - b;
|
---|
| 145 | helper = a - c;
|
---|
| 146 | TempNormal.VectorProduct(helper);
|
---|
[357fba] | 147 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
| 148 | {
|
---|
[273382] | 149 | if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
|
---|
[357fba] | 150 | {
|
---|
[273382] | 151 | TempNormal *= -1;
|
---|
[357fba] | 152 | }
|
---|
| 153 | }
|
---|
| 154 | else
|
---|
| 155 | {
|
---|
[273382] | 156 | if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
|
---|
[357fba] | 157 | {
|
---|
[273382] | 158 | TempNormal *= -1;
|
---|
[357fba] | 159 | }
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | TempNormal.Normalize();
|
---|
| 163 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
[ce7bfd] | 164 | LOG(5, "DEBUG: Height of center of circumference to center of sphere is " << Restradius << ".");
|
---|
[357fba] | 165 | TempNormal.Scale(Restradius);
|
---|
[ce7bfd] | 166 | LOG(5, "DEBUG: Shift vector to sphere of circumference is " << TempNormal << ".");
|
---|
[273382] | 167 | (*Center) += TempNormal;
|
---|
[ce7bfd] | 168 | LOG(5, "DEBUG: Center of sphere of circumference is " << *Center << ".");
|
---|
[f1cccd] | 169 | GetSphere(&OtherCenter, a, b, c, RADIUS);
|
---|
[ce7bfd] | 170 | LOG(5, "DEBUG: OtherCenter of sphere of circumference is " << OtherCenter << ".");
|
---|
[357fba] | 171 | };
|
---|
| 172 |
|
---|
| 173 |
|
---|
| 174 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
| 175 | * \param *Center new center on return
|
---|
| 176 | * \param *a first point
|
---|
| 177 | * \param *b second point
|
---|
| 178 | * \param *c third point
|
---|
| 179 | */
|
---|
[d74077] | 180 | void GetCenterofCircumcircle(Vector &Center, const Vector &a, const Vector &b, const Vector &c)
|
---|
[357fba] | 181 | {
|
---|
[ce7bfd] | 182 | //Info FunctionInfo(__func__);
|
---|
[357fba] | 183 | Vector helper;
|
---|
[273382] | 184 | Vector SideA = b - c;
|
---|
| 185 | Vector SideB = c - a;
|
---|
| 186 | Vector SideC = a - b;
|
---|
[357fba] | 187 |
|
---|
[b32dbb] | 188 | helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared());
|
---|
| 189 | helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared());
|
---|
| 190 | helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared());
|
---|
| 191 |
|
---|
[d74077] | 192 | Center.Zero();
|
---|
| 193 | Center += helper[0] * a;
|
---|
| 194 | Center += helper[1] * b;
|
---|
| 195 | Center += helper[2] * c;
|
---|
[a19d73e] | 196 | if (fabs(helper[0]+helper[1]+helper[2]) > MYEPSILON)
|
---|
| 197 | Center.Scale(1./(helper[0]+helper[1]+helper[2]));
|
---|
[ce7bfd] | 198 | LOG(4, "DEBUG: Center (2nd algo) is at " << Center << ".");
|
---|
[357fba] | 199 | };
|
---|
| 200 |
|
---|
| 201 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
| 202 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
| 203 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
| 204 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
| 205 | * \param CircleCenter Center of the parameter circle
|
---|
| 206 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
| 207 | * \param CircleRadius radius of the parameter circle
|
---|
| 208 | * \param NewSphereCenter new center of a circumcircle
|
---|
| 209 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
| 210 | * \param NormalVector normal vector
|
---|
| 211 | * \param SearchDirection search direction to make angle unique on return.
|
---|
[88b400] | 212 | * \param HULLEPSILON machine precision for tesselation points
|
---|
[357fba] | 213 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
| 214 | */
|
---|
[88b400] | 215 | double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection, const double HULLEPSILON)
|
---|
[357fba] | 216 | {
|
---|
[ce7bfd] | 217 | //Info FunctionInfo(__func__);
|
---|
[357fba] | 218 | Vector helper;
|
---|
| 219 | double radius, alpha;
|
---|
[273382] | 220 |
|
---|
| 221 | Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
|
---|
| 222 | Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
|
---|
| 223 | helper = RelativeNewSphereCenter;
|
---|
[357fba] | 224 | // test whether new center is on the parameter circle's plane
|
---|
[273382] | 225 | if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
|
---|
[47d041] | 226 | ELOG(1, "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!");
|
---|
[273382] | 227 | helper.ProjectOntoPlane(CirclePlaneNormal);
|
---|
[357fba] | 228 | }
|
---|
[b998c3] | 229 | radius = helper.NormSquared();
|
---|
[357fba] | 230 | // test whether the new center vector has length of CircleRadius
|
---|
| 231 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
[47d041] | 232 | ELOG(1, "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << ".");
|
---|
[273382] | 233 | alpha = helper.Angle(RelativeOldSphereCenter);
|
---|
[357fba] | 234 | // make the angle unique by checking the halfplanes/search direction
|
---|
[273382] | 235 | if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
[357fba] | 236 | alpha = 2.*M_PI - alpha;
|
---|
[b8d215] | 237 | LOG(5, "DEBUG: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << ".");
|
---|
[1513a74] | 238 | radius = helper.distance(RelativeOldSphereCenter);
|
---|
[273382] | 239 | helper.ProjectOntoPlane(NormalVector);
|
---|
[357fba] | 240 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
| 241 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
[b8d215] | 242 | LOG(6, "DEBUG: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << ".");
|
---|
[357fba] | 243 | return alpha;
|
---|
| 244 | } else {
|
---|
[b8d215] | 245 | LOG(5, "DEBUG: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << ".");
|
---|
[357fba] | 246 | return 2.*M_PI;
|
---|
| 247 | }
|
---|
| 248 | };
|
---|
| 249 |
|
---|
| 250 | struct Intersection {
|
---|
| 251 | Vector x1;
|
---|
| 252 | Vector x2;
|
---|
| 253 | Vector x3;
|
---|
| 254 | Vector x4;
|
---|
| 255 | };
|
---|
| 256 |
|
---|
[57066a] | 257 | /** Gets the angle between a point and a reference relative to the provided center.
|
---|
| 258 | * We have two shanks point and reference between which the angle is calculated
|
---|
| 259 | * and by scalar product with OrthogonalVector we decide the interval.
|
---|
| 260 | * @param point to calculate the angle for
|
---|
| 261 | * @param reference to which to calculate the angle
|
---|
| 262 | * @param OrthogonalVector points in direction of [pi,2pi] interval
|
---|
| 263 | *
|
---|
| 264 | * @return angle between point and reference
|
---|
| 265 | */
|
---|
[c0f6c6] | 266 | double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
|
---|
[57066a] | 267 | {
|
---|
[ce7bfd] | 268 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 269 | if (reference.IsZero())
|
---|
| 270 | return M_PI;
|
---|
| 271 |
|
---|
| 272 | // calculate both angles and correct with in-plane vector
|
---|
| 273 | if (point.IsZero())
|
---|
| 274 | return M_PI;
|
---|
[273382] | 275 | double phi = point.Angle(reference);
|
---|
| 276 | if (OrthogonalVector.ScalarProduct(point) > 0) {
|
---|
[57066a] | 277 | phi = 2.*M_PI - phi;
|
---|
| 278 | }
|
---|
| 279 |
|
---|
[b8d215] | 280 | LOG(4, "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << ".");
|
---|
[57066a] | 281 |
|
---|
| 282 | return phi;
|
---|
| 283 | }
|
---|
| 284 |
|
---|
[91e7e4a] | 285 |
|
---|
| 286 | /** Calculates the volume of a general tetraeder.
|
---|
| 287 | * \param *a first vector
|
---|
[b32dbb] | 288 | * \param *b second vector
|
---|
| 289 | * \param *c third vector
|
---|
| 290 | * \param *d fourth vector
|
---|
[dfe054] | 291 | * \return \f$ \frac{1}{6} | (a-d) \cdot \bigl ( (b-d) \times (c-d) \bigr ) | \f$
|
---|
[91e7e4a] | 292 | */
|
---|
[c0f6c6] | 293 | double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
|
---|
[91e7e4a] | 294 | {
|
---|
[ce7bfd] | 295 | //Info FunctionInfo(__func__);
|
---|
[91e7e4a] | 296 | Vector Point, TetraederVector[3];
|
---|
| 297 | double volume;
|
---|
| 298 |
|
---|
[1bd79e] | 299 | TetraederVector[0] = a;
|
---|
| 300 | TetraederVector[1] = b;
|
---|
| 301 | TetraederVector[2] = c;
|
---|
[91e7e4a] | 302 | for (int j=0;j<3;j++)
|
---|
[273382] | 303 | TetraederVector[j].SubtractVector(d);
|
---|
[dfe054] | 304 | Point = TetraederVector[1];
|
---|
| 305 | Point.VectorProduct(TetraederVector[2]);
|
---|
| 306 | volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[0]));
|
---|
[91e7e4a] | 307 | return volume;
|
---|
| 308 | };
|
---|
[357fba] | 309 |
|
---|
[b32dbb] | 310 | /** Calculates the area of a general triangle.
|
---|
| 311 | * We use the Heron's formula of area, [Bronstein, S. 138]
|
---|
| 312 | * \param &A first vector
|
---|
| 313 | * \param &B second vector
|
---|
| 314 | * \param &C third vector
|
---|
| 315 | * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
|
---|
| 316 | */
|
---|
| 317 | double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C)
|
---|
| 318 | {
|
---|
[ce7bfd] | 319 | //Info FunctionInfo(__func__);
|
---|
[b32dbb] | 320 |
|
---|
| 321 | const double sidea = B.distance(C);
|
---|
| 322 | const double sideb = A.distance(C);
|
---|
| 323 | const double sidec = A.distance(B);
|
---|
| 324 | const double s = (sidea+sideb+sidec)/2.;
|
---|
| 325 |
|
---|
| 326 | const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec));
|
---|
| 327 | return area;
|
---|
| 328 | };
|
---|
| 329 |
|
---|
[57066a] | 330 |
|
---|
| 331 | /** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
|
---|
| 332 | * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
|
---|
| 333 | * make it bigger (i.e. closing one (the baseline) and opening two new ones).
|
---|
| 334 | * \param TPS[3] nodes of the triangle
|
---|
| 335 | * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
|
---|
| 336 | */
|
---|
[c0f6c6] | 337 | bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
|
---|
[57066a] | 338 | {
|
---|
[ce7bfd] | 339 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 340 | bool result = false;
|
---|
| 341 | int counter = 0;
|
---|
| 342 |
|
---|
| 343 | // check all three points
|
---|
| 344 | for (int i=0;i<3;i++)
|
---|
| 345 | for (int j=i+1; j<3; j++) {
|
---|
[f1ef60a] | 346 | if (nodes[i] == NULL) {
|
---|
[47d041] | 347 | LOG(1, "Node nr. " << i << " is not yet present.");
|
---|
[f1ef60a] | 348 | result = true;
|
---|
[735b1c] | 349 | } else if (nodes[i]->lines.find(nodes[j]->node->getNr()) != nodes[i]->lines.end()) { // there already is a line
|
---|
[776b64] | 350 | LineMap::const_iterator FindLine;
|
---|
| 351 | pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
|
---|
[735b1c] | 352 | FindPair = nodes[i]->lines.equal_range(nodes[j]->node->getNr());
|
---|
[57066a] | 353 | for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
|
---|
| 354 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
| 355 | if (FindLine->second->triangles.size() < 2) {
|
---|
| 356 | counter++;
|
---|
| 357 | break; // increase counter only once per edge
|
---|
| 358 | }
|
---|
| 359 | }
|
---|
| 360 | } else { // no line
|
---|
[47d041] | 361 | LOG(1, "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle.");
|
---|
[57066a] | 362 | result = true;
|
---|
| 363 | }
|
---|
| 364 | }
|
---|
| 365 | if ((!result) && (counter > 1)) {
|
---|
[47d041] | 366 | LOG(1, "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used.");
|
---|
[57066a] | 367 | result = true;
|
---|
| 368 | }
|
---|
| 369 | return result;
|
---|
| 370 | };
|
---|
| 371 |
|
---|
| 372 |
|
---|
[f67b6e] | 373 | ///** Sort function for the candidate list.
|
---|
| 374 | // */
|
---|
| 375 | //bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
|
---|
| 376 | //{
|
---|
[ce7bfd] | 377 | // //Info FunctionInfo(__func__);
|
---|
[f67b6e] | 378 | // Vector BaseLineVector, OrthogonalVector, helper;
|
---|
| 379 | // if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
|
---|
[47d041] | 380 | // ELOG(1, "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << ".");
|
---|
[f67b6e] | 381 | // //return false;
|
---|
| 382 | // exit(1);
|
---|
| 383 | // }
|
---|
| 384 | // // create baseline vector
|
---|
| 385 | // BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
|
---|
| 386 | // BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 387 | // BaseLineVector.Normalize();
|
---|
| 388 | //
|
---|
| 389 | // // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
|
---|
| 390 | // helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 391 | // helper.SubtractVector(candidate1->point->node);
|
---|
| 392 | // OrthogonalVector.CopyVector(&helper);
|
---|
| 393 | // helper.VectorProduct(&BaseLineVector);
|
---|
| 394 | // OrthogonalVector.SubtractVector(&helper);
|
---|
| 395 | // OrthogonalVector.Normalize();
|
---|
| 396 | //
|
---|
| 397 | // // calculate both angles and correct with in-plane vector
|
---|
| 398 | // helper.CopyVector(candidate1->point->node);
|
---|
| 399 | // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 400 | // double phi = BaseLineVector.Angle(&helper);
|
---|
| 401 | // if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 402 | // phi = 2.*M_PI - phi;
|
---|
| 403 | // }
|
---|
| 404 | // helper.CopyVector(candidate2->point->node);
|
---|
| 405 | // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 406 | // double psi = BaseLineVector.Angle(&helper);
|
---|
| 407 | // if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 408 | // psi = 2.*M_PI - psi;
|
---|
| 409 | // }
|
---|
| 410 | //
|
---|
[47d041] | 411 | // LOG(1, *candidate1->point << " has angle " << phi);
|
---|
| 412 | // LOG(1, *candidate2->point << " has angle " << psi);
|
---|
[f67b6e] | 413 | //
|
---|
| 414 | // // return comparison
|
---|
| 415 | // return phi < psi;
|
---|
| 416 | //};
|
---|
[57066a] | 417 |
|
---|
| 418 | /**
|
---|
| 419 | * Finds the point which is second closest to the provided one.
|
---|
| 420 | *
|
---|
| 421 | * @param Point to which to find the second closest other point
|
---|
| 422 | * @param linked cell structure
|
---|
| 423 | *
|
---|
| 424 | * @return point which is second closest to the provided one
|
---|
| 425 | */
|
---|
[6bd7e0] | 426 | TesselPoint* FindSecondClosestTesselPoint(const Vector& Point, const LinkedCell_deprecated* const LC)
|
---|
[57066a] | 427 | {
|
---|
[ce7bfd] | 428 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 429 | TesselPoint* closestPoint = NULL;
|
---|
| 430 | TesselPoint* secondClosestPoint = NULL;
|
---|
| 431 | double distance = 1e16;
|
---|
[a2a2f7] | 432 | // double secondDistance = 1e16;
|
---|
[57066a] | 433 | Vector helper;
|
---|
| 434 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 435 |
|
---|
| 436 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 437 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 438 | N[i] = LC->n[i];
|
---|
[ce7bfd] | 439 | LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
|
---|
[57066a] | 440 |
|
---|
| 441 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
| 442 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 443 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 444 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[34c43a] | 445 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[47d041] | 446 | //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
|
---|
[57066a] | 447 | if (List != NULL) {
|
---|
[34c43a] | 448 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[d74077] | 449 | helper = (Point) - ((*Runner)->getPosition());
|
---|
[57066a] | 450 | double currentNorm = helper. Norm();
|
---|
| 451 | if (currentNorm < distance) {
|
---|
| 452 | // remember second point
|
---|
[a2a2f7] | 453 | // secondDistance = distance;
|
---|
[57066a] | 454 | secondClosestPoint = closestPoint;
|
---|
| 455 | // mark down new closest point
|
---|
| 456 | distance = currentNorm;
|
---|
| 457 | closestPoint = (*Runner);
|
---|
[47d041] | 458 | //LOG(2, "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << ".");
|
---|
[57066a] | 459 | }
|
---|
| 460 | }
|
---|
| 461 | } else {
|
---|
[47d041] | 462 | ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
|
---|
[57066a] | 463 | }
|
---|
| 464 | }
|
---|
| 465 |
|
---|
| 466 | return secondClosestPoint;
|
---|
| 467 | };
|
---|
| 468 |
|
---|
| 469 | /**
|
---|
| 470 | * Finds the point which is closest to the provided one.
|
---|
| 471 | *
|
---|
| 472 | * @param Point to which to find the closest other point
|
---|
| 473 | * @param SecondPoint the second closest other point on return, NULL if none found
|
---|
| 474 | * @param linked cell structure
|
---|
| 475 | *
|
---|
| 476 | * @return point which is closest to the provided one, NULL if none found
|
---|
| 477 | */
|
---|
[6bd7e0] | 478 | TesselPoint* FindClosestTesselPoint(const Vector& Point, TesselPoint *&SecondPoint, const LinkedCell_deprecated* const LC)
|
---|
[57066a] | 479 | {
|
---|
[ce7bfd] | 480 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 481 | TesselPoint* closestPoint = NULL;
|
---|
| 482 | SecondPoint = NULL;
|
---|
| 483 | double distance = 1e16;
|
---|
| 484 | double secondDistance = 1e16;
|
---|
| 485 | Vector helper;
|
---|
| 486 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 487 |
|
---|
| 488 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 489 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 490 | N[i] = LC->n[i];
|
---|
[ce7bfd] | 491 | LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
|
---|
[57066a] | 492 |
|
---|
| 493 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
| 494 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 495 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 496 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[34c43a] | 497 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[47d041] | 498 | //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
|
---|
[57066a] | 499 | if (List != NULL) {
|
---|
[34c43a] | 500 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[d74077] | 501 | helper = (Point) - ((*Runner)->getPosition());
|
---|
[71b20e] | 502 | double currentNorm = helper.NormSquared();
|
---|
[57066a] | 503 | if (currentNorm < distance) {
|
---|
| 504 | secondDistance = distance;
|
---|
| 505 | SecondPoint = closestPoint;
|
---|
| 506 | distance = currentNorm;
|
---|
| 507 | closestPoint = (*Runner);
|
---|
[47d041] | 508 | //LOG(1, "INFO: New Nearest Neighbour is " << *closestPoint << ".");
|
---|
[57066a] | 509 | } else if (currentNorm < secondDistance) {
|
---|
| 510 | secondDistance = currentNorm;
|
---|
| 511 | SecondPoint = (*Runner);
|
---|
[47d041] | 512 | //LOG(1, "INFO: New Second Nearest Neighbour is " << *SecondPoint << ".");
|
---|
[57066a] | 513 | }
|
---|
| 514 | }
|
---|
| 515 | } else {
|
---|
[47d041] | 516 | ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
|
---|
[57066a] | 517 | }
|
---|
| 518 | }
|
---|
[a2028e] | 519 | // output
|
---|
| 520 | if (closestPoint != NULL) {
|
---|
[ce7bfd] | 521 | if (DoLog(3)) {
|
---|
[47d041] | 522 | std::stringstream output;
|
---|
| 523 | output << "Closest point is " << *closestPoint;
|
---|
| 524 | if (SecondPoint != NULL)
|
---|
| 525 | output << " and second closest is " << *SecondPoint;
|
---|
[ce7bfd] | 526 | LOG(3, "DEBUG: " << output.str() << ".");
|
---|
[47d041] | 527 | }
|
---|
[a2028e] | 528 | }
|
---|
[57066a] | 529 | return closestPoint;
|
---|
| 530 | };
|
---|
| 531 |
|
---|
| 532 | /** Returns the closest point on \a *Base with respect to \a *OtherBase.
|
---|
| 533 | * \param *out output stream for debugging
|
---|
| 534 | * \param *Base reference line
|
---|
| 535 | * \param *OtherBase other base line
|
---|
| 536 | * \return Vector on reference line that has closest distance
|
---|
| 537 | */
|
---|
[e138de] | 538 | Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
|
---|
[57066a] | 539 | {
|
---|
[ce7bfd] | 540 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 541 | // construct the plane of the two baselines (i.e. take both their directional vectors)
|
---|
[d74077] | 542 | Vector Baseline = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
|
---|
| 543 | Vector OtherBaseline = (OtherBase->endpoints[1]->node->getPosition()) - (OtherBase->endpoints[0]->node->getPosition());
|
---|
[273382] | 544 | Vector Normal = Baseline;
|
---|
| 545 | Normal.VectorProduct(OtherBaseline);
|
---|
[57066a] | 546 | Normal.Normalize();
|
---|
[b8d215] | 547 | LOG(3, "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << ".");
|
---|
[57066a] | 548 |
|
---|
| 549 | // project one offset point of OtherBase onto this plane (and add plane offset vector)
|
---|
[d74077] | 550 | Vector NewOffset = (OtherBase->endpoints[0]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
|
---|
[273382] | 551 | NewOffset.ProjectOntoPlane(Normal);
|
---|
[d74077] | 552 | NewOffset += (Base->endpoints[0]->node->getPosition());
|
---|
[273382] | 553 | Vector NewDirection = NewOffset + OtherBaseline;
|
---|
[57066a] | 554 |
|
---|
| 555 | // calculate the intersection between this projected baseline and Base
|
---|
| 556 | Vector *Intersection = new Vector;
|
---|
[d74077] | 557 | Line line1 = makeLineThrough((Base->endpoints[0]->node->getPosition()),(Base->endpoints[1]->node->getPosition()));
|
---|
[643e76] | 558 | Line line2 = makeLineThrough(NewOffset, NewDirection);
|
---|
| 559 | *Intersection = line1.getIntersection(line2);
|
---|
[d74077] | 560 | Normal = (*Intersection) - (Base->endpoints[0]->node->getPosition());
|
---|
[b8d215] | 561 | LOG(3, "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << ".");
|
---|
[57066a] | 562 |
|
---|
| 563 | return Intersection;
|
---|
| 564 | };
|
---|
| 565 |
|
---|
[c4d4df] | 566 | /** Returns the distance to the plane defined by \a *triangle
|
---|
| 567 | * \param *out output stream for debugging
|
---|
| 568 | * \param *x Vector to calculate distance to
|
---|
| 569 | * \param *triangle triangle defining plane
|
---|
| 570 | * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
|
---|
| 571 | */
|
---|
[e138de] | 572 | double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
|
---|
[c4d4df] | 573 | {
|
---|
[ce7bfd] | 574 | //Info FunctionInfo(__func__);
|
---|
[c4d4df] | 575 | double distance = 0.;
|
---|
| 576 | if (x == NULL) {
|
---|
| 577 | return -1;
|
---|
| 578 | }
|
---|
[d4c9ae] | 579 | distance = x->DistanceToSpace(triangle->getPlane());
|
---|
[c4d4df] | 580 | return distance;
|
---|
| 581 | };
|
---|
[57066a] | 582 |
|
---|
| 583 | /** Creates the objects in a VRML file.
|
---|
| 584 | * \param *out output stream for debugging
|
---|
| 585 | * \param *vrmlfile output stream for tecplot data
|
---|
| 586 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 587 | * \param *mol molecule structure with atom positions
|
---|
| 588 | */
|
---|
[34c43a] | 589 | void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, IPointCloud & cloud)
|
---|
[57066a] | 590 | {
|
---|
[ce7bfd] | 591 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 592 | TesselPoint *Walker = NULL;
|
---|
| 593 | int i;
|
---|
[34c43a] | 594 | Vector *center = cloud.GetCenter();
|
---|
[57066a] | 595 | if (vrmlfile != NULL) {
|
---|
[47d041] | 596 | LOG(1, "INFO: Writing Raster3D file ... ");
|
---|
[57066a] | 597 | *vrmlfile << "#VRML V2.0 utf8" << endl;
|
---|
| 598 | *vrmlfile << "#Created by molecuilder" << endl;
|
---|
| 599 | *vrmlfile << "#All atoms as spheres" << endl;
|
---|
[34c43a] | 600 | cloud.GoToFirst();
|
---|
| 601 | while (!cloud.IsEnd()) {
|
---|
| 602 | Walker = cloud.GetPoint();
|
---|
[57066a] | 603 | *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
|
---|
| 604 | for (i=0;i<NDIM;i++)
|
---|
[d74077] | 605 | *vrmlfile << Walker->at(i)-center->at(i) << " ";
|
---|
[57066a] | 606 | *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
[34c43a] | 607 | cloud.GoToNext();
|
---|
[57066a] | 608 | }
|
---|
| 609 |
|
---|
| 610 | *vrmlfile << "# All tesselation triangles" << endl;
|
---|
[776b64] | 611 | for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[57066a] | 612 | *vrmlfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 613 | for (i=0;i<3;i++) { // print each node
|
---|
| 614 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
[d74077] | 615 | *vrmlfile << TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j) << " ";
|
---|
[57066a] | 616 | *vrmlfile << "\t";
|
---|
| 617 | }
|
---|
| 618 | *vrmlfile << "1. 0. 0." << endl; // red as colour
|
---|
| 619 | *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 620 | }
|
---|
| 621 | } else {
|
---|
[47d041] | 622 | ELOG(1, "Given vrmlfile is " << vrmlfile << ".");
|
---|
[57066a] | 623 | }
|
---|
| 624 | delete(center);
|
---|
| 625 | };
|
---|
| 626 |
|
---|
| 627 | /** Writes additionally the current sphere (i.e. the last triangle to file).
|
---|
| 628 | * \param *out output stream for debugging
|
---|
| 629 | * \param *rasterfile output stream for tecplot data
|
---|
| 630 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 631 | * \param *mol molecule structure with atom positions
|
---|
| 632 | */
|
---|
[34c43a] | 633 | void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
|
---|
[57066a] | 634 | {
|
---|
[ce7bfd] | 635 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 636 | Vector helper;
|
---|
[6a7f78c] | 637 |
|
---|
| 638 | if (Tess->LastTriangle != NULL) {
|
---|
| 639 | // include the current position of the virtual sphere in the temporary raster3d file
|
---|
[34c43a] | 640 | Vector *center = cloud.GetCenter();
|
---|
[6a7f78c] | 641 | // make the circumsphere's center absolute again
|
---|
[d74077] | 642 | Vector helper = (1./3.) * ((Tess->LastTriangle->endpoints[0]->node->getPosition()) +
|
---|
| 643 | (Tess->LastTriangle->endpoints[1]->node->getPosition()) +
|
---|
| 644 | (Tess->LastTriangle->endpoints[2]->node->getPosition()));
|
---|
[273382] | 645 | helper -= (*center);
|
---|
[6a7f78c] | 646 | // and add to file plus translucency object
|
---|
| 647 | *rasterfile << "# current virtual sphere\n";
|
---|
| 648 | *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
|
---|
[0a4f7f] | 649 | *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
|
---|
[6a7f78c] | 650 | *rasterfile << "9\n terminating special property\n";
|
---|
| 651 | delete(center);
|
---|
| 652 | }
|
---|
[57066a] | 653 | };
|
---|
| 654 |
|
---|
| 655 | /** Creates the objects in a raster3d file (renderable with a header.r3d).
|
---|
| 656 | * \param *out output stream for debugging
|
---|
| 657 | * \param *rasterfile output stream for tecplot data
|
---|
| 658 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 659 | * \param *mol molecule structure with atom positions
|
---|
| 660 | */
|
---|
[34c43a] | 661 | void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
|
---|
[57066a] | 662 | {
|
---|
[ce7bfd] | 663 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 664 | TesselPoint *Walker = NULL;
|
---|
| 665 | int i;
|
---|
[34c43a] | 666 | Vector *center = cloud.GetCenter();
|
---|
[57066a] | 667 | if (rasterfile != NULL) {
|
---|
[47d041] | 668 | LOG(1, "INFO: Writing Raster3D file ... ");
|
---|
[57066a] | 669 | *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
|
---|
| 670 | *rasterfile << "@header.r3d" << endl;
|
---|
| 671 | *rasterfile << "# All atoms as spheres" << endl;
|
---|
[34c43a] | 672 | cloud.GoToFirst();
|
---|
| 673 | while (!cloud.IsEnd()) {
|
---|
| 674 | Walker = cloud.GetPoint();
|
---|
[57066a] | 675 | *rasterfile << "2" << endl << " "; // 2 is sphere type
|
---|
[15b670] | 676 | for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
|
---|
[d74077] | 677 | const double tmp = Walker->at(j)-center->at(j);
|
---|
[15b670] | 678 | *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
|
---|
| 679 | }
|
---|
[57066a] | 680 | *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
[34c43a] | 681 | cloud.GoToNext();
|
---|
[57066a] | 682 | }
|
---|
| 683 |
|
---|
| 684 | *rasterfile << "# All tesselation triangles" << endl;
|
---|
| 685 | *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
|
---|
[776b64] | 686 | for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[57066a] | 687 | *rasterfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 688 | for (i=0;i<3;i++) { // print each node
|
---|
[15b670] | 689 | for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
|
---|
[d74077] | 690 | const double tmp = TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j);
|
---|
[15b670] | 691 | *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
|
---|
| 692 | }
|
---|
[57066a] | 693 | *rasterfile << "\t";
|
---|
| 694 | }
|
---|
| 695 | *rasterfile << "1. 0. 0." << endl; // red as colour
|
---|
| 696 | //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 697 | }
|
---|
| 698 | *rasterfile << "9\n# terminating special property\n";
|
---|
| 699 | } else {
|
---|
[47d041] | 700 | ELOG(1, "Given rasterfile is " << rasterfile << ".");
|
---|
[57066a] | 701 | }
|
---|
[e138de] | 702 | IncludeSphereinRaster3D(rasterfile, Tess, cloud);
|
---|
[57066a] | 703 | delete(center);
|
---|
| 704 | };
|
---|
| 705 |
|
---|
| 706 | /** This function creates the tecplot file, displaying the tesselation of the hull.
|
---|
| 707 | * \param *out output stream for debugging
|
---|
| 708 | * \param *tecplot output stream for tecplot data
|
---|
| 709 | * \param N arbitrary number to differentiate various zones in the tecplot format
|
---|
| 710 | */
|
---|
[34c43a] | 711 | void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, IPointCloud & cloud, const int N)
|
---|
[57066a] | 712 | {
|
---|
[ce7bfd] | 713 | //Info FunctionInfo(__func__);
|
---|
[57066a] | 714 | if ((tecplot != NULL) && (TesselStruct != NULL)) {
|
---|
| 715 | // write header
|
---|
| 716 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
| 717 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
|
---|
[6a7f78c] | 718 | *tecplot << "ZONE T=\"";
|
---|
| 719 | if (N < 0) {
|
---|
[34c43a] | 720 | *tecplot << cloud.GetName();
|
---|
[6a7f78c] | 721 | } else {
|
---|
| 722 | *tecplot << N << "-";
|
---|
[b60a29] | 723 | if (TesselStruct->LastTriangle != NULL) {
|
---|
| 724 | for (int i=0;i<3;i++)
|
---|
[68f03d] | 725 | *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
|
---|
[b60a29] | 726 | } else {
|
---|
| 727 | *tecplot << "none";
|
---|
| 728 | }
|
---|
[6a7f78c] | 729 | }
|
---|
[57066a] | 730 | *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
[34c43a] | 731 | const int MaxId=cloud.GetMaxId();
|
---|
| 732 | ASSERT(MaxId >= 0, "WriteTecplotFile() - negative MaxId? No atoms present?");
|
---|
| 733 | int *LookupList = new int[MaxId+1];
|
---|
| 734 | for (int i=0; i<= MaxId ; i++){
|
---|
[57066a] | 735 | LookupList[i] = -1;
|
---|
[c72112] | 736 | }
|
---|
[57066a] | 737 |
|
---|
| 738 | // print atom coordinates
|
---|
| 739 | int Counter = 1;
|
---|
| 740 | TesselPoint *Walker = NULL;
|
---|
[c72112] | 741 | for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
|
---|
[57066a] | 742 | Walker = target->second->node;
|
---|
[735b1c] | 743 | ASSERT(Walker->getNr() <= MaxId, "WriteTecplotFile() - Id of particle greater than MaxId.");
|
---|
| 744 | LookupList[Walker->getNr()] = Counter++;
|
---|
[15b670] | 745 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 746 | const double tmp = Walker->at(i);
|
---|
[15b670] | 747 | *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
|
---|
| 748 | }
|
---|
| 749 | *tecplot << target->second->value << endl;
|
---|
[57066a] | 750 | }
|
---|
| 751 | *tecplot << endl;
|
---|
| 752 | // print connectivity
|
---|
[b8d215] | 753 | LOG(4, "DEBUG: The following triangles were created:");
|
---|
[776b64] | 754 | for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
|
---|
[b8d215] | 755 | LOG(4, " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName());
|
---|
[735b1c] | 756 | *tecplot << LookupList[runner->second->endpoints[0]->node->getNr()] << " " << LookupList[runner->second->endpoints[1]->node->getNr()] << " " << LookupList[runner->second->endpoints[2]->node->getNr()] << endl;
|
---|
[57066a] | 757 | }
|
---|
| 758 | delete[] (LookupList);
|
---|
| 759 | }
|
---|
| 760 | };
|
---|
[7dea7c] | 761 |
|
---|
| 762 | /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
|
---|
| 763 | * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
|
---|
| 764 | * \param *out output stream for debugging
|
---|
| 765 | * \param *TesselStruct pointer to Tesselation structure
|
---|
| 766 | */
|
---|
[e138de] | 767 | void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
|
---|
[7dea7c] | 768 | {
|
---|
[ce7bfd] | 769 | //Info FunctionInfo(__func__);
|
---|
[7dea7c] | 770 | class BoundaryPointSet *point = NULL;
|
---|
| 771 | class BoundaryLineSet *line = NULL;
|
---|
[b32dbb] | 772 | class BoundaryTriangleSet *triangle = NULL;
|
---|
| 773 | double ConcavityPerLine = 0.;
|
---|
| 774 | double ConcavityPerTriangle = 0.;
|
---|
| 775 | double area = 0.;
|
---|
| 776 | double totalarea = 0.;
|
---|
[7dea7c] | 777 |
|
---|
[776b64] | 778 | for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
|
---|
[7dea7c] | 779 | point = PointRunner->second;
|
---|
[b8d215] | 780 | LOG(2, "INFO: Current point is " << *point << ".");
|
---|
[b32dbb] | 781 |
|
---|
| 782 | // calculate mean concavity over all connected line
|
---|
| 783 | ConcavityPerLine = 0.;
|
---|
[7dea7c] | 784 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
|
---|
| 785 | line = LineRunner->second;
|
---|
[47d041] | 786 | //LOG(1, "INFO: Current line of point " << *point << " is " << *line << ".");
|
---|
[b32dbb] | 787 | ConcavityPerLine -= line->CalculateConvexity();
|
---|
| 788 | }
|
---|
| 789 | ConcavityPerLine /= point->lines.size();
|
---|
| 790 |
|
---|
| 791 | // weigh with total area of the surrounding triangles
|
---|
| 792 | totalarea = 0.;
|
---|
| 793 | TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second);
|
---|
| 794 | for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
|
---|
[d74077] | 795 | totalarea += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
|
---|
[b32dbb] | 796 | }
|
---|
| 797 | ConcavityPerLine *= totalarea;
|
---|
| 798 |
|
---|
| 799 | // calculate mean concavity over all attached triangles
|
---|
| 800 | ConcavityPerTriangle = 0.;
|
---|
| 801 | for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
|
---|
| 802 | line = (*TriangleRunner)->GetThirdLine(PointRunner->second);
|
---|
| 803 | triangle = line->GetOtherTriangle(*TriangleRunner);
|
---|
[d74077] | 804 | area = CalculateAreaofGeneralTriangle(triangle->endpoints[0]->node->getPosition() , triangle->endpoints[1]->node->getPosition() , triangle->endpoints[2]->node->getPosition());
|
---|
| 805 | area += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
|
---|
[b32dbb] | 806 | area *= -line->CalculateConvexity();
|
---|
| 807 | if (area > 0)
|
---|
| 808 | ConcavityPerTriangle += area;
|
---|
| 809 | // else
|
---|
| 810 | // ConcavityPerTriangle -= area;
|
---|
[7dea7c] | 811 | }
|
---|
[b32dbb] | 812 | ConcavityPerTriangle /= triangles->size()/totalarea;
|
---|
| 813 | delete(triangles);
|
---|
| 814 |
|
---|
| 815 | // add up
|
---|
| 816 | point->value = ConcavityPerLine + ConcavityPerTriangle;
|
---|
[7dea7c] | 817 | }
|
---|
| 818 | };
|
---|
| 819 |
|
---|
| 820 |
|
---|
[b32dbb] | 821 |
|
---|
| 822 | /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
|
---|
| 823 | * Sets BoundaryPointSet::value equal to the nearest distance to convex envelope.
|
---|
| 824 | * \param *out output stream for debugging
|
---|
| 825 | * \param *TesselStruct pointer to Tesselation structure
|
---|
| 826 | * \param *Convex pointer to convex Tesselation structure as reference
|
---|
| 827 | */
|
---|
| 828 | void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex)
|
---|
| 829 | {
|
---|
[ce7bfd] | 830 | //Info FunctionInfo(__func__);
|
---|
[b32dbb] | 831 | double distance = 0.;
|
---|
| 832 |
|
---|
| 833 | for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
|
---|
[47d041] | 834 | ELOG(1, "INFO: Current point is " << * PointRunner->second << ".");
|
---|
[b32dbb] | 835 |
|
---|
| 836 | distance = 0.;
|
---|
| 837 | for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[d74077] | 838 | const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(PointRunner->second->node->getPosition() , TriangleRunner->second);
|
---|
[b32dbb] | 839 | if (CurrentDistance < distance)
|
---|
| 840 | distance = CurrentDistance;
|
---|
| 841 | }
|
---|
| 842 |
|
---|
| 843 | PointRunner->second->value = distance;
|
---|
| 844 | }
|
---|
| 845 | };
|
---|
| 846 |
|
---|
[7dea7c] | 847 | /** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
|
---|
| 848 | * \param *out output stream for debugging
|
---|
| 849 | * \param *TesselStruct
|
---|
| 850 | * \return true - all have exactly two triangles, false - some not, list is printed to screen
|
---|
| 851 | */
|
---|
[e138de] | 852 | bool CheckListOfBaselines(const Tesselation * const TesselStruct)
|
---|
[7dea7c] | 853 | {
|
---|
[ce7bfd] | 854 | //Info FunctionInfo(__func__);
|
---|
[776b64] | 855 | LineMap::const_iterator testline;
|
---|
[7dea7c] | 856 | bool result = false;
|
---|
| 857 | int counter = 0;
|
---|
| 858 |
|
---|
[47d041] | 859 | LOG(1, "Check: List of Baselines with not two connected triangles:");
|
---|
[7dea7c] | 860 | for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
|
---|
| 861 | if (testline->second->triangles.size() != 2) {
|
---|
[47d041] | 862 | LOG(2, *testline->second << "\t" << testline->second->triangles.size());
|
---|
[7dea7c] | 863 | counter++;
|
---|
| 864 | }
|
---|
| 865 | }
|
---|
| 866 | if (counter == 0) {
|
---|
[47d041] | 867 | LOG(1, "None.");
|
---|
[7dea7c] | 868 | result = true;
|
---|
| 869 | }
|
---|
| 870 | return result;
|
---|
| 871 | }
|
---|
| 872 |
|
---|
[262bae] | 873 | /** Counts the number of triangle pairs that contain the given polygon.
|
---|
| 874 | * \param *P polygon with endpoints to look for
|
---|
| 875 | * \param *T set of triangles to create pairs from containing \a *P
|
---|
| 876 | */
|
---|
| 877 | int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
|
---|
| 878 | {
|
---|
[ce7bfd] | 879 | //Info FunctionInfo(__func__);
|
---|
[262bae] | 880 | // check number of endpoints in *P
|
---|
| 881 | if (P->endpoints.size() != 4) {
|
---|
[47d041] | 882 | ELOG(1, "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!");
|
---|
[262bae] | 883 | return 0;
|
---|
| 884 | }
|
---|
| 885 |
|
---|
| 886 | // check number of triangles in *T
|
---|
| 887 | if (T->size() < 2) {
|
---|
[47d041] | 888 | ELOG(1, "Not enough triangles to have pairs!");
|
---|
[262bae] | 889 | return 0;
|
---|
| 890 | }
|
---|
| 891 |
|
---|
[ce7bfd] | 892 | LOG(3, "DEBUG: Polygon is " << *P);
|
---|
[262bae] | 893 | // create each pair, get the endpoints and check whether *P is contained.
|
---|
| 894 | int counter = 0;
|
---|
| 895 | PointSet Trianglenodes;
|
---|
| 896 | class BoundaryPolygonSet PairTrianglenodes;
|
---|
| 897 | for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
|
---|
| 898 | for (int i=0;i<3;i++)
|
---|
| 899 | Trianglenodes.insert((*Walker)->endpoints[i]);
|
---|
| 900 |
|
---|
| 901 | for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
|
---|
| 902 | if (Walker != PairWalker) { // skip first
|
---|
| 903 | PairTrianglenodes.endpoints = Trianglenodes;
|
---|
| 904 | for (int i=0;i<3;i++)
|
---|
| 905 | PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
|
---|
[856098] | 906 | const int size = PairTrianglenodes.endpoints.size();
|
---|
| 907 | if (size == 4) {
|
---|
[ce7bfd] | 908 | LOG(4, "DEBUG: Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes);
|
---|
[856098] | 909 | // now check
|
---|
| 910 | if (PairTrianglenodes.ContainsPresentTupel(P)) {
|
---|
| 911 | counter++;
|
---|
[ce7bfd] | 912 | LOG(5, " ACCEPT: Matches with " << *P);
|
---|
[856098] | 913 | } else {
|
---|
[ce7bfd] | 914 | LOG(5, " REJECT: No match with " << *P);
|
---|
[856098] | 915 | }
|
---|
[262bae] | 916 | } else {
|
---|
[ce7bfd] | 917 | LOG(5, " REJECT: Less than four endpoints.");
|
---|
[262bae] | 918 | }
|
---|
| 919 | }
|
---|
| 920 | }
|
---|
[856098] | 921 | Trianglenodes.clear();
|
---|
[262bae] | 922 | }
|
---|
| 923 | return counter;
|
---|
| 924 | };
|
---|
| 925 |
|
---|
| 926 | /** Checks whether two give polygons have two or more points in common.
|
---|
| 927 | * \param *P1 first polygon
|
---|
| 928 | * \param *P2 second polygon
|
---|
| 929 | * \return true - are connected, false = are note
|
---|
| 930 | */
|
---|
| 931 | bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
|
---|
| 932 | {
|
---|
[ce7bfd] | 933 | //Info FunctionInfo(__func__);
|
---|
[262bae] | 934 | int counter = 0;
|
---|
| 935 | for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
|
---|
| 936 | if (P2->ContainsBoundaryPoint((*Runner))) {
|
---|
| 937 | counter++;
|
---|
[ce7bfd] | 938 | LOG(5, "DEBUG: " << *(*Runner) << " of second polygon is found in the first one.");
|
---|
[262bae] | 939 | return true;
|
---|
| 940 | }
|
---|
| 941 | }
|
---|
| 942 | return false;
|
---|
| 943 | };
|
---|
| 944 |
|
---|
| 945 | /** Combines second into the first and deletes the second.
|
---|
| 946 | * \param *P1 first polygon, contains all nodes on return
|
---|
| 947 | * \param *&P2 second polygon, is deleted.
|
---|
| 948 | */
|
---|
| 949 | void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
|
---|
| 950 | {
|
---|
[ce7bfd] | 951 | //Info FunctionInfo(__func__);
|
---|
[856098] | 952 | pair <PointSet::iterator, bool> Tester;
|
---|
| 953 | for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
|
---|
| 954 | Tester = P1->endpoints.insert((*Runner));
|
---|
| 955 | if (Tester.second)
|
---|
[ce7bfd] | 956 | LOG(4, "DEBUG: Inserting endpoint " << *(*Runner) << " into first polygon.");
|
---|
[262bae] | 957 | }
|
---|
| 958 | P2->endpoints.clear();
|
---|
| 959 | delete(P2);
|
---|
| 960 | };
|
---|
| 961 |
|
---|