source: src/Tesselation/tesselation.cpp@ 7f1b51

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 7f1b51 was 7f1b51, checked in by Frederik Heber <heber@…>, 10 years ago

Merge branch 'GUI_Fixes' into stable

  • Property mode set to 100644
File size: 184.1 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 *
6 *
7 * This file is part of MoleCuilder.
8 *
9 * MoleCuilder is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * MoleCuilder is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23/*
24 * tesselation.cpp
25 *
26 * Created on: Aug 3, 2009
27 * Author: heber
28 */
29
30// include config.h
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35#include "CodePatterns/MemDebug.hpp"
36
37#include <fstream>
38#include <iomanip>
39#include <sstream>
40
41#include "tesselation.hpp"
42
43#include "BoundaryPointSet.hpp"
44#include "BoundaryLineSet.hpp"
45#include "BoundaryTriangleSet.hpp"
46#include "BoundaryPolygonSet.hpp"
47#include "CandidateForTesselation.hpp"
48#include "CodePatterns/Assert.hpp"
49#include "CodePatterns/Info.hpp"
50#include "CodePatterns/IteratorAdaptors.hpp"
51#include "CodePatterns/Log.hpp"
52#include "CodePatterns/Verbose.hpp"
53#include "Helpers/helpers.hpp"
54#include "LinearAlgebra/Exceptions.hpp"
55#include "LinearAlgebra/Line.hpp"
56#include "LinearAlgebra/Plane.hpp"
57#include "LinearAlgebra/Vector.hpp"
58#include "LinearAlgebra/vector_ops.hpp"
59#include "LinkedCell/IPointCloud.hpp"
60#include "LinkedCell/linkedcell.hpp"
61#include "LinkedCell/PointCloudAdaptor.hpp"
62#include "tesselationhelpers.hpp"
63#include "Atom/TesselPoint.hpp"
64#include "triangleintersectionlist.hpp"
65
66class molecule;
67
68const char *TecplotSuffix=".dat";
69const char *Raster3DSuffix=".r3d";
70const char *VRMLSUffix=".wrl";
71
72const double ParallelEpsilon=1e-3;
73const double Tesselation::HULLEPSILON = 1e-9;
74
75/** Constructor of class Tesselation.
76 */
77Tesselation::Tesselation() :
78 PointsOnBoundaryCount(0),
79 LinesOnBoundaryCount(0),
80 TrianglesOnBoundaryCount(0),
81 LastTriangle(NULL),
82 TriangleFilesWritten(0),
83 InternalPointer(PointsOnBoundary.begin())
84{
85 //Info FunctionInfo(__func__);
86}
87;
88
89/** Destructor of class Tesselation.
90 * We have to free all points, lines and triangles.
91 */
92Tesselation::~Tesselation()
93{
94 //Info FunctionInfo(__func__);
95 LOG(2, "INFO: Free'ing TesselStruct ... ");
96 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
97 if (runner->second != NULL) {
98 delete (runner->second);
99 runner->second = NULL;
100 } else
101 ELOG(1, "The triangle " << runner->first << " has already been free'd.");
102 }
103 LOG(1, "INFO: This envelope was written to file " << TriangleFilesWritten << " times(s).");
104}
105
106/** Performs tesselation of a given point \a cloud with rolling sphere of
107 * \a SPHERERADIUS.
108 *
109 * @param cloud point cloud to tesselate
110 * @param SPHERERADIUS radius of the rolling sphere
111 */
112void Tesselation::operator()(IPointCloud & cloud, const double SPHERERADIUS)
113{
114 // create linkedcell
115 LinkedCell_deprecated *LinkedList = new LinkedCell_deprecated(cloud, 2.*SPHERERADIUS);
116
117 // check for at least three points
118 {
119 bool ThreePointsFound = true;
120 cloud.GoToFirst();
121 for (size_t i=0;i<3;++i, cloud.GoToNext())
122 ThreePointsFound &= (!cloud.IsEnd());
123 cloud.GoToFirst();
124 if (ThreePointsFound == false) {
125 ELOG(2, "Less than 3 points in cloud, not enough for tesselation.");
126 return;
127 }
128 }
129
130 // find a starting triangle
131 FindStartingTriangle(SPHERERADIUS, LinkedList);
132
133 CandidateForTesselation *baseline = NULL;
134 BoundaryTriangleSet *T = NULL;
135 bool OneLoopWithoutSuccessFlag = true;
136 while ((!OpenLines.empty()) && (OneLoopWithoutSuccessFlag)) {
137 // 2a. fill all new OpenLines
138 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
139 baseline = Runner->second;
140 if (baseline->pointlist.empty()) {
141 T = (((baseline->BaseLine->triangles.begin()))->second);
142 //the line is there, so there is a triangle, but only one.
143 const bool TesselationFailFlag = FindNextSuitableTriangle(*baseline, *T, SPHERERADIUS, LinkedList);
144 ASSERT( TesselationFailFlag,
145 "Tesselation::operator() - no suitable candidate triangle found.");
146 }
147 }
148
149 // 2b. search for smallest ShortestAngle among all candidates
150 double ShortestAngle = 4.*M_PI;
151 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
152 if (Runner->second->ShortestAngle < ShortestAngle) {
153 baseline = Runner->second;
154 ShortestAngle = baseline->ShortestAngle;
155 }
156 }
157 if ((ShortestAngle == 4.*M_PI) || (baseline->pointlist.empty()))
158 OneLoopWithoutSuccessFlag = false;
159 else {
160 AddCandidatePolygon(*baseline, SPHERERADIUS, LinkedList);
161 }
162 }
163
164 delete LinkedList;
165}
166
167/** Determines the volume of a tesselated convex envelope.
168 *
169 * @param IsAngstroem unit of length is angstroem or bohr radii
170 * \return determined volume of envelope assumed being convex
171 */
172double Tesselation::getVolumeOfConvexEnvelope(const bool IsAngstroem) const
173{
174 double volume = 0.;
175 Vector x;
176 Vector y;
177
178 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
179 for (TriangleMap::const_iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++)
180 { // go through every triangle, calculate volume of its pyramid with CoG as peak
181 x = runner->second->getEndpoint(0) - runner->second->getEndpoint(1);
182 const double G = runner->second->getArea();
183 x = runner->second->getPlane().getNormal();
184 x.Scale(runner->second->getEndpoint(1).ScalarProduct(x));
185 const double h = x.Norm(); // distance of CoG to triangle
186 const double PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
187 LOG(1, "INFO: Area of triangle is " << setprecision(10) << G << " "
188 << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is "
189 << h << " and the volume is " << PyramidVolume << " "
190 << (IsAngstroem ? "angstrom" : "atomiclength") << "^3.");
191 volume += PyramidVolume;
192 }
193 LOG(0, "RESULT: The summed volume is " << setprecision(6)
194 << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3.");
195
196 return volume;
197}
198
199/** Determines the area of a tesselated envelope.
200 *
201 * @param IsAngstroem unit of length is angstroem or bohr radii
202 * \return determined surface area of the envelope
203 */
204double Tesselation::getAreaOfEnvelope(const bool IsAngstroem) const
205{
206 double surfacearea = 0.;
207 Vector x;
208 Vector y;
209
210 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
211 for (TriangleMap::const_iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++)
212 { // go through every triangle, calculate volume of its pyramid with CoG as peak
213 const double area = runner->second->getArea();
214 LOG(1, "INFO: Area of triangle is " << setprecision(10) << area << " "
215 << (IsAngstroem ? "angstrom" : "atomiclength") << "^2.");
216 surfacearea += area;
217 }
218 LOG(0, "RESULT: The summed surface area is " << setprecision(6)
219 << surfacearea << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3.");
220
221 return surfacearea;
222}
223
224
225/** Gueses first starting triangle of the convex envelope.
226 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
227 * \param *out output stream for debugging
228 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
229 */
230void Tesselation::GuessStartingTriangle()
231{
232 //Info FunctionInfo(__func__);
233 // 4b. create a starting triangle
234 // 4b1. create all distances
235 DistanceMultiMap DistanceMMap;
236 double distance, tmp;
237 Vector PlaneVector, TrialVector;
238 PointMap::iterator A, B, C; // three nodes of the first triangle
239 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
240
241 // with A chosen, take each pair B,C and sort
242 if (A != PointsOnBoundary.end()) {
243 B = A;
244 B++;
245 for (; B != PointsOnBoundary.end(); B++) {
246 C = B;
247 C++;
248 for (; C != PointsOnBoundary.end(); C++) {
249 tmp = A->second->node->DistanceSquared(B->second->node->getPosition());
250 distance = tmp * tmp;
251 tmp = A->second->node->DistanceSquared(C->second->node->getPosition());
252 distance += tmp * tmp;
253 tmp = B->second->node->DistanceSquared(C->second->node->getPosition());
254 distance += tmp * tmp;
255 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
256 }
257 }
258 }
259// // listing distances
260// if (DoLog(1)) {
261// std::stringstream output;
262// output << "Listing DistanceMMap:";
263// for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
264// output << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
265// }
266// LOG(1, output.str());
267// }
268 // 4b2. pick three baselines forming a triangle
269 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
270 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
271 for (; baseline != DistanceMMap.end(); baseline++) {
272 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
273 // 2. next, we have to check whether all points reside on only one side of the triangle
274 // 3. construct plane vector
275 PlaneVector = Plane(A->second->node->getPosition(),
276 baseline->second.first->second->node->getPosition(),
277 baseline->second.second->second->node->getPosition()).getNormal();
278 LOG(2, "Plane vector of candidate triangle is " << PlaneVector);
279 // 4. loop over all points
280 double sign = 0.;
281 PointMap::iterator checker = PointsOnBoundary.begin();
282 for (; checker != PointsOnBoundary.end(); checker++) {
283 // (neglecting A,B,C)
284 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
285 continue;
286 // 4a. project onto plane vector
287 TrialVector = (checker->second->node->getPosition() - A->second->node->getPosition());
288 distance = TrialVector.ScalarProduct(PlaneVector);
289 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
290 continue;
291 LOG(2, "Projection of " << checker->second->node->getName() << " yields distance of " << distance << ".");
292 tmp = distance / fabs(distance);
293 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
294 if ((sign != 0) && (tmp != sign)) {
295 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
296 LOG(2, "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leaves " << checker->second->node->getName() << " outside the convex hull.");
297 break;
298 } else { // note the sign for later
299 LOG(2, "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leave " << checker->second->node->getName() << " inside the convex hull.");
300 sign = tmp;
301 }
302 // 4d. Check whether the point is inside the triangle (check distance to each node
303 tmp = checker->second->node->DistanceSquared(A->second->node->getPosition());
304 int innerpoint = 0;
305 if ((tmp < A->second->node->DistanceSquared(baseline->second.first->second->node->getPosition())) && (tmp < A->second->node->DistanceSquared(baseline->second.second->second->node->getPosition())))
306 innerpoint++;
307 tmp = checker->second->node->DistanceSquared(baseline->second.first->second->node->getPosition());
308 if ((tmp < baseline->second.first->second->node->DistanceSquared(A->second->node->getPosition())) && (tmp < baseline->second.first->second->node->DistanceSquared(baseline->second.second->second->node->getPosition())))
309 innerpoint++;
310 tmp = checker->second->node->DistanceSquared(baseline->second.second->second->node->getPosition());
311 if ((tmp < baseline->second.second->second->node->DistanceSquared(baseline->second.first->second->node->getPosition())) && (tmp < baseline->second.second->second->node->DistanceSquared(A->second->node->getPosition())))
312 innerpoint++;
313 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
314 if (innerpoint == 3)
315 break;
316 }
317 // 5. come this far, all on same side? Then break 1. loop and construct triangle
318 if (checker == PointsOnBoundary.end()) {
319 LOG(2, "Looks like we have a candidate!");
320 break;
321 }
322 }
323 if (baseline != DistanceMMap.end()) {
324 BPS[0] = baseline->second.first->second;
325 BPS[1] = baseline->second.second->second;
326 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
327 BPS[0] = A->second;
328 BPS[1] = baseline->second.second->second;
329 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
330 BPS[0] = baseline->second.first->second;
331 BPS[1] = A->second;
332 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
333
334 // 4b3. insert created triangle
335 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
336 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
337 TrianglesOnBoundaryCount++;
338 for (int i = 0; i < NDIM; i++) {
339 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
340 LinesOnBoundaryCount++;
341 }
342
343 LOG(1, "Starting triangle is " << *BTS << ".");
344 } else {
345 ELOG(0, "No starting triangle found.");
346 }
347}
348;
349
350/** Tesselates the convex envelope of a cluster from a single starting triangle.
351 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
352 * 2 triangles. Hence, we go through all current lines:
353 * -# if the lines contains to only one triangle
354 * -# We search all points in the boundary
355 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
356 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
357 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
358 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
359 * \param *out output stream for debugging
360 * \param *configuration for IsAngstroem
361 * \param *cloud cluster of points
362 */
363void Tesselation::TesselateOnBoundary(IPointCloud & cloud)
364{
365 //Info FunctionInfo(__func__);
366 bool flag;
367 PointMap::iterator winner;
368 class BoundaryPointSet *peak = NULL;
369 double SmallestAngle, TempAngle;
370 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
371 LineMap::iterator LineChecker[2];
372
373 Center = cloud.GetCenter();
374 // create a first tesselation with the given BoundaryPoints
375 do {
376 flag = false;
377 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
378 if (baseline->second->triangles.size() == 1) {
379 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
380 SmallestAngle = M_PI;
381
382 // get peak point with respect to this base line's only triangle
383 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
384 LOG(3, "DEBUG: Current baseline is between " << *(baseline->second) << ".");
385 for (int i = 0; i < 3; i++)
386 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
387 peak = BTS->endpoints[i];
388 LOG(3, "DEBUG: and has peak " << *peak << ".");
389
390 // prepare some auxiliary vectors
391 Vector BaseLineCenter, BaseLine;
392 BaseLineCenter = 0.5 * ((baseline->second->endpoints[0]->node->getPosition()) +
393 (baseline->second->endpoints[1]->node->getPosition()));
394 BaseLine = (baseline->second->endpoints[0]->node->getPosition()) - (baseline->second->endpoints[1]->node->getPosition());
395
396 // offset to center of triangle
397 CenterVector.Zero();
398 for (int i = 0; i < 3; i++)
399 CenterVector += BTS->getEndpoint(i);
400 CenterVector.Scale(1. / 3.);
401 LOG(2, "CenterVector of base triangle is " << CenterVector);
402
403 // normal vector of triangle
404 NormalVector = (*Center) - CenterVector;
405 BTS->GetNormalVector(NormalVector);
406 NormalVector = BTS->NormalVector;
407 LOG(4, "DEBUG: NormalVector of base triangle is " << NormalVector);
408
409 // vector in propagation direction (out of triangle)
410 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
411 PropagationVector = Plane(BaseLine, NormalVector,0).getNormal();
412 TempVector = CenterVector - (baseline->second->endpoints[0]->node->getPosition()); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
413 //LOG(0, "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << ".");
414 if (PropagationVector.ScalarProduct(TempVector) > 0) // make sure normal propagation vector points outward from baseline
415 PropagationVector.Scale(-1.);
416 LOG(4, "DEBUG: PropagationVector of base triangle is " << PropagationVector);
417 winner = PointsOnBoundary.end();
418
419 // loop over all points and calculate angle between normal vector of new and present triangle
420 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
421 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
422 LOG(4, "DEBUG: Target point is " << *(target->second) << ":");
423
424 // first check direction, so that triangles don't intersect
425 VirtualNormalVector = (target->second->node->getPosition()) - BaseLineCenter;
426 VirtualNormalVector.ProjectOntoPlane(NormalVector);
427 TempAngle = VirtualNormalVector.Angle(PropagationVector);
428 LOG(5, "DEBUG: VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << ".");
429 if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees)
430 LOG(5, "DEBUG: Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!");
431 continue;
432 } else
433 LOG(5, "DEBUG: Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!");
434
435 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
436 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
437 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
438 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
439 LOG(5, "DEBUG: " << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles.");
440 continue;
441 }
442 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
443 LOG(5, "DEBUG: " << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles.");
444 continue;
445 }
446
447 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
448 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
449 LOG(6, "DEBUG: Current target is peak!");
450 continue;
451 }
452
453 // check for linear dependence
454 TempVector = (baseline->second->endpoints[0]->node->getPosition()) - (target->second->node->getPosition());
455 helper = (baseline->second->endpoints[1]->node->getPosition()) - (target->second->node->getPosition());
456 helper.ProjectOntoPlane(TempVector);
457 if (fabs(helper.NormSquared()) < MYEPSILON) {
458 LOG(2, "Chosen set of vectors is linear dependent.");
459 continue;
460 }
461
462 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
463 flag = true;
464 VirtualNormalVector = Plane((baseline->second->endpoints[0]->node->getPosition()),
465 (baseline->second->endpoints[1]->node->getPosition()),
466 (target->second->node->getPosition())).getNormal();
467 TempVector = (1./3.) * ((baseline->second->endpoints[0]->node->getPosition()) +
468 (baseline->second->endpoints[1]->node->getPosition()) +
469 (target->second->node->getPosition()));
470 TempVector -= (*Center);
471 // make it always point outward
472 if (VirtualNormalVector.ScalarProduct(TempVector) < 0)
473 VirtualNormalVector.Scale(-1.);
474 // calculate angle
475 TempAngle = NormalVector.Angle(VirtualNormalVector);
476 LOG(5, "DEBUG: NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << ".");
477 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
478 SmallestAngle = TempAngle;
479 winner = target;
480 LOG(5, "DEBUG: New winner " << *winner->second->node << " due to smaller angle between normal vectors.");
481 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
482 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
483 helper = (target->second->node->getPosition()) - BaseLineCenter;
484 helper.ProjectOntoPlane(BaseLine);
485 // ...the one with the smaller angle is the better candidate
486 TempVector = (target->second->node->getPosition()) - BaseLineCenter;
487 TempVector.ProjectOntoPlane(VirtualNormalVector);
488 TempAngle = TempVector.Angle(helper);
489 TempVector = (winner->second->node->getPosition()) - BaseLineCenter;
490 TempVector.ProjectOntoPlane(VirtualNormalVector);
491 if (TempAngle < TempVector.Angle(helper)) {
492 TempAngle = NormalVector.Angle(VirtualNormalVector);
493 SmallestAngle = TempAngle;
494 winner = target;
495 LOG(5, "DEBUG: New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction.");
496 } else
497 LOG(5, "DEBUG: Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction.");
498 } else
499 LOG(5, "DEBUG: Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors.");
500 }
501 } // end of loop over all boundary points
502
503 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
504 if (winner != PointsOnBoundary.end()) {
505 LOG(3, "DEBUG: Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << ".");
506 // create the lins of not yet present
507 BLS[0] = baseline->second;
508 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
509 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
510 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
511 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
512 BPS[0] = baseline->second->endpoints[0];
513 BPS[1] = winner->second;
514 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
515 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
516 LinesOnBoundaryCount++;
517 } else
518 BLS[1] = LineChecker[0]->second;
519 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
520 BPS[0] = baseline->second->endpoints[1];
521 BPS[1] = winner->second;
522 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
523 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
524 LinesOnBoundaryCount++;
525 } else
526 BLS[2] = LineChecker[1]->second;
527 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
528 BTS->GetCenter(helper);
529 helper -= (*Center);
530 helper *= -1;
531 BTS->GetNormalVector(helper);
532 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
533 TrianglesOnBoundaryCount++;
534 } else {
535 ELOG(2, "I could not determine a winner for this baseline " << *(baseline->second) << ".");
536 }
537
538 // 5d. If the set of lines is not yet empty, go to 5. and continue
539 } else
540 LOG(3, "DEBUG: Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << ".");
541 } while (flag);
542
543 // exit
544 delete (Center);
545}
546;
547
548/** Inserts all points outside of the tesselated surface into it by adding new triangles.
549 * \param *out output stream for debugging
550 * \param *cloud cluster of points
551 * \param *LC LinkedCell_deprecated structure to find nearest point quickly
552 * \return true - all straddling points insert, false - something went wrong
553 */
554bool Tesselation::InsertStraddlingPoints(IPointCloud & cloud, const LinkedCell_deprecated *LC)
555{
556 //Info FunctionInfo(__func__);
557 Vector Intersection, Normal;
558 TesselPoint *Walker = NULL;
559 Vector *Center = cloud.GetCenter();
560 TriangleList *triangles = NULL;
561 bool AddFlag = false;
562 LinkedCell_deprecated *BoundaryPoints = NULL;
563 bool SuccessFlag = true;
564
565 cloud.GoToFirst();
566 PointCloudAdaptor< Tesselation, MapValueIterator<Tesselation::iterator> > newcloud(this, cloud.GetName());
567 BoundaryPoints = new LinkedCell_deprecated(newcloud, 5.);
568 while (!cloud.IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
569 if (AddFlag) {
570 delete (BoundaryPoints);
571 BoundaryPoints = new LinkedCell_deprecated(newcloud, 5.);
572 AddFlag = false;
573 }
574 Walker = cloud.GetPoint();
575 LOG(3, "DEBUG: Current point is " << *Walker << ".");
576 // get the next triangle
577 triangles = FindClosestTrianglesToVector(Walker->getPosition(), BoundaryPoints);
578 if (triangles != NULL)
579 BTS = triangles->front();
580 else
581 BTS = NULL;
582 delete triangles;
583 if ((BTS == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
584 LOG(3, "DEBUG: No triangles found, probably a tesselation point itself.");
585 cloud.GoToNext();
586 continue;
587 } else {
588 }
589 LOG(3, "DEBUG: Closest triangle is " << *BTS << ".");
590 // get the intersection point
591 if (BTS->GetIntersectionInsideTriangle(*Center, Walker->getPosition(), Intersection)) {
592 LOG(3, "DEBUG: We have an intersection at " << Intersection << ".");
593 // we have the intersection, check whether in- or outside of boundary
594 if ((Center->DistanceSquared(Walker->getPosition()) - Center->DistanceSquared(Intersection)) < -MYEPSILON) {
595 // inside, next!
596 LOG(3, "DEBUG: " << *Walker << " is inside wrt triangle " << *BTS << ".");
597 } else {
598 // outside!
599 LOG(3, "DEBUG: " << *Walker << " is outside wrt triangle " << *BTS << ".");
600 class BoundaryLineSet *OldLines[3], *NewLines[3];
601 class BoundaryPointSet *OldPoints[3], *NewPoint;
602 // store the three old lines and old points
603 for (int i = 0; i < 3; i++) {
604 OldLines[i] = BTS->lines[i];
605 OldPoints[i] = BTS->endpoints[i];
606 }
607 Normal = BTS->NormalVector;
608 // add Walker to boundary points
609 LOG(3, "DEBUG: Adding " << *Walker << " to BoundaryPoints.");
610 AddFlag = true;
611 if (AddBoundaryPoint(Walker, 0))
612 NewPoint = BPS[0];
613 else
614 continue;
615 // remove triangle
616 LOG(3, "DEBUG: Erasing triangle " << *BTS << ".");
617 TrianglesOnBoundary.erase(BTS->Nr);
618 delete (BTS);
619 // create three new boundary lines
620 for (int i = 0; i < 3; i++) {
621 BPS[0] = NewPoint;
622 BPS[1] = OldPoints[i];
623 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
624 LOG(4, "DEBUG: Creating new line " << *NewLines[i] << ".");
625 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
626 LinesOnBoundaryCount++;
627 }
628 // create three new triangle with new point
629 for (int i = 0; i < 3; i++) { // find all baselines
630 BLS[0] = OldLines[i];
631 int n = 1;
632 for (int j = 0; j < 3; j++) {
633 if (NewLines[j]->IsConnectedTo(BLS[0])) {
634 if (n > 2) {
635 ELOG(2, BLS[0] << " connects to all of the new lines?!");
636 return false;
637 } else
638 BLS[n++] = NewLines[j];
639 }
640 }
641 // create the triangle
642 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
643 Normal.Scale(-1.);
644 BTS->GetNormalVector(Normal);
645 Normal.Scale(-1.);
646 LOG(3, "DEBUG: Created new triangle " << *BTS << ".");
647 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
648 TrianglesOnBoundaryCount++;
649 }
650 }
651 } else { // something is wrong with FindClosestTriangleToPoint!
652 ELOG(1, "The closest triangle did not produce an intersection!");
653 SuccessFlag = false;
654 break;
655 }
656 cloud.GoToNext();
657 }
658
659 // exit
660 delete (Center);
661 delete (BoundaryPoints);
662 return SuccessFlag;
663}
664;
665
666/** Adds a point to the tesselation::PointsOnBoundary list.
667 * \param *Walker point to add
668 * \param n TesselStruct::BPS index to put pointer into
669 * \return true - new point was added, false - point already present
670 */
671bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
672{
673 //Info FunctionInfo(__func__);
674 PointTestPair InsertUnique;
675 BPS[n] = new class BoundaryPointSet(Walker);
676 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->getNr(), BPS[n]));
677 if (InsertUnique.second) { // if new point was not present before, increase counter
678 PointsOnBoundaryCount++;
679 return true;
680 } else {
681 delete (BPS[n]);
682 BPS[n] = InsertUnique.first->second;
683 return false;
684 }
685}
686;
687
688/** Adds point to Tesselation::PointsOnBoundary if not yet present.
689 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
690 * @param Candidate point to add
691 * @param n index for this point in Tesselation::TPS array
692 */
693void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
694{
695 //Info FunctionInfo(__func__);
696 PointTestPair InsertUnique;
697 TPS[n] = new class BoundaryPointSet(Candidate);
698 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->getNr(), TPS[n]));
699 if (InsertUnique.second) { // if new point was not present before, increase counter
700 PointsOnBoundaryCount++;
701 } else {
702 delete TPS[n];
703 LOG(4, "DEBUG: Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary.");
704 TPS[n] = (InsertUnique.first)->second;
705 }
706}
707;
708
709/** Sets point to a present Tesselation::PointsOnBoundary.
710 * Tesselation::TPS is set to the existing one or NULL if not found.
711 * @param Candidate point to set to
712 * @param n index for this point in Tesselation::TPS array
713 */
714void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
715{
716 //Info FunctionInfo(__func__);
717 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->getNr());
718 if (FindPoint != PointsOnBoundary.end())
719 TPS[n] = FindPoint->second;
720 else
721 TPS[n] = NULL;
722}
723;
724
725/** Function tries to add line from current Points in BPS to BoundaryLineSet.
726 * If successful it raises the line count and inserts the new line into the BLS,
727 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
728 * @param *OptCenter desired OptCenter if there are more than one candidate line
729 * @param *candidate third point of the triangle to be, for checking between multiple open line candidates
730 * @param *a first endpoint
731 * @param *b second endpoint
732 * @param n index of Tesselation::BLS giving the line with both endpoints
733 */
734void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
735{
736 bool insertNewLine = true;
737 LineMap::iterator FindLine = a->lines.find(b->node->getNr());
738 BoundaryLineSet *WinningLine = NULL;
739 if (FindLine != a->lines.end()) {
740 LOG(3, "DEBUG: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << ".");
741
742 pair<LineMap::iterator, LineMap::iterator> FindPair;
743 FindPair = a->lines.equal_range(b->node->getNr());
744
745 for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) {
746 LOG(3, "DEBUG: Checking line " << *(FindLine->second) << " ...");
747 // If there is a line with less than two attached triangles, we don't need a new line.
748 if (FindLine->second->triangles.size() == 1) {
749 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
750 if (!Finder->second->pointlist.empty())
751 LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << ".");
752 else
753 LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with no candidate.");
754 // get open line
755 for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) {
756 if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || OptCenter->DistanceSquared(Finder->second->OptCenter) < MYEPSILON )) { // stop searching if candidate matches
757 LOG(4, "ACCEPT: Candidate " << *(*CandidateChecker) << " has the right center " << Finder->second->OptCenter << ".");
758 insertNewLine = false;
759 WinningLine = FindLine->second;
760 break;
761 } else {
762 LOG(5, "REJECT: Candidate " << *(*CandidateChecker) << "'s center " << Finder->second->OptCenter << " does not match desired on " << *OptCenter << ".");
763 }
764 }
765 }
766 }
767 }
768
769 if (insertNewLine) {
770 AddNewTesselationTriangleLine(a, b, n);
771 } else {
772 AddExistingTesselationTriangleLine(WinningLine, n);
773 }
774}
775;
776
777/**
778 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
779 * Raises the line count and inserts the new line into the BLS.
780 *
781 * @param *a first endpoint
782 * @param *b second endpoint
783 * @param n index of Tesselation::BLS giving the line with both endpoints
784 */
785void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
786{
787 //Info FunctionInfo(__func__);
788 LOG(2, "DEBUG: Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << ".");
789 BPS[0] = a;
790 BPS[1] = b;
791 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
792 // add line to global map
793 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
794 // increase counter
795 LinesOnBoundaryCount++;
796 // also add to open lines
797 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
798 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
799}
800;
801
802/** Uses an existing line for a new triangle.
803 * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines.
804 * \param *FindLine the line to add
805 * \param n index of the line to set in Tesselation::BLS
806 */
807void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n)
808{
809 //Info FunctionInfo(__func__);
810 LOG(5, "DEBUG: Using existing line " << *Line);
811
812 // set endpoints and line
813 BPS[0] = Line->endpoints[0];
814 BPS[1] = Line->endpoints[1];
815 BLS[n] = Line;
816 // remove existing line from OpenLines
817 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
818 if (CandidateLine != OpenLines.end()) {
819 LOG(6, "DEBUG: Removing line from OpenLines.");
820 delete (CandidateLine->second);
821 OpenLines.erase(CandidateLine);
822 } else {
823 ELOG(1, "Line exists and is attached to less than two triangles, but not in OpenLines!");
824 }
825}
826;
827
828/** Function adds triangle to global list.
829 * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
830 */
831void Tesselation::AddTesselationTriangle()
832{
833 //Info FunctionInfo(__func__);
834 LOG(4, "DEBUG: Adding triangle to global TrianglesOnBoundary map.");
835
836 // add triangle to global map
837 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
838 TrianglesOnBoundaryCount++;
839
840 // set as last new triangle
841 LastTriangle = BTS;
842
843 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
844}
845;
846
847/** Function adds triangle to global list.
848 * Furthermore, the triangle number is set to \a Nr.
849 * \param getNr() triangle number
850 */
851void Tesselation::AddTesselationTriangle(const int nr)
852{
853 //Info FunctionInfo(__func__);
854 LOG(4, "DEBUG: Adding triangle to global TrianglesOnBoundary map.");
855
856 // add triangle to global map
857 TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
858
859 // set as last new triangle
860 LastTriangle = BTS;
861
862 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
863}
864;
865
866/** Removes a triangle from the tesselation.
867 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
868 * Removes itself from memory.
869 * \param *triangle to remove
870 */
871void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
872{
873 //Info FunctionInfo(__func__);
874 if (triangle == NULL)
875 return;
876 for (int i = 0; i < 3; i++) {
877 if (triangle->lines[i] != NULL) {
878 LOG(4, "DEBUG: Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << ".");
879 triangle->lines[i]->triangles.erase(triangle->Nr);
880 std::stringstream output;
881 output << *triangle->lines[i] << " is ";
882 if (triangle->lines[i]->triangles.empty()) {
883 output << "no more attached to any triangle, erasing.";
884 RemoveTesselationLine(triangle->lines[i]);
885 } else {
886 output << "still attached to another triangle: ";
887 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
888 for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
889 output << "\t[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
890 }
891 LOG(3, "DEBUG: " << output.str());
892 triangle->lines[i] = NULL; // free'd or not: disconnect
893 } else
894 ELOG(1, "This line " << i << " has already been free'd.");
895 }
896
897 if (TrianglesOnBoundary.erase(triangle->Nr))
898 LOG(3, "DEBUG: Removing triangle Nr. " << triangle->Nr << ".");
899 delete (triangle);
900}
901;
902
903/** Removes a line from the tesselation.
904 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
905 * \param *line line to remove
906 */
907void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
908{
909 //Info FunctionInfo(__func__);
910 int Numbers[2];
911
912 if (line == NULL)
913 return;
914 // get other endpoint number for finding copies of same line
915 if (line->endpoints[1] != NULL)
916 Numbers[0] = line->endpoints[1]->Nr;
917 else
918 Numbers[0] = -1;
919 if (line->endpoints[0] != NULL)
920 Numbers[1] = line->endpoints[0]->Nr;
921 else
922 Numbers[1] = -1;
923
924 for (int i = 0; i < 2; i++) {
925 if (line->endpoints[i] != NULL) {
926 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
927 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
928 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
929 if ((*Runner).second == line) {
930 LOG(4, "DEBUG: Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << ".");
931 line->endpoints[i]->lines.erase(Runner);
932 break;
933 }
934 } else { // there's just a single line left
935 if (line->endpoints[i]->lines.erase(line->Nr))
936 LOG(4, "DEBUG: Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << ".");
937 }
938 if (line->endpoints[i]->lines.empty()) {
939 LOG(4, "DEBUG: " << *line->endpoints[i] << " has no more lines it's attached to, erasing.");
940 RemoveTesselationPoint(line->endpoints[i]);
941 } else if (DoLog(0)) {
942 std::stringstream output;
943 output << "DEBUG: " << *line->endpoints[i] << " has still lines it's attached to: ";
944 for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
945 output << "[" << *(LineRunner->second) << "] \t";
946 LOG(4, output.str());
947 }
948 line->endpoints[i] = NULL; // free'd or not: disconnect
949 } else
950 ELOG(4, "DEBUG: Endpoint " << i << " has already been free'd.");
951 }
952 if (!line->triangles.empty())
953 ELOG(2, "Memory Leak! I " << *line << " am still connected to some triangles.");
954
955 if (LinesOnBoundary.erase(line->Nr))
956 LOG(4, "DEBUG: Removing line Nr. " << line->Nr << ".");
957 delete (line);
958}
959;
960
961/** Removes a point from the tesselation.
962 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
963 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
964 * \param *point point to remove
965 */
966void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
967{
968 //Info FunctionInfo(__func__);
969 if (point == NULL)
970 return;
971 if (PointsOnBoundary.erase(point->Nr))
972 LOG(4, "DEBUG: Removing point Nr. " << point->Nr << ".");
973 delete (point);
974}
975;
976
977/** Checks validity of a given sphere of a candidate line.
978 * \sa CandidateForTesselation::CheckValidity(), which is more evolved.
979 * We check CandidateForTesselation::OtherOptCenter
980 * \param &CandidateLine contains other degenerated candidates which we have to subtract as well
981 * \param RADIUS radius of sphere
982 * \param *LC LinkedCell_deprecated structure with other atoms
983 * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated
984 */
985bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell_deprecated *LC) const
986{
987 //Info FunctionInfo(__func__);
988
989 LOG(3, "DEBUG: Checking whether sphere contains no others points ...");
990 bool flag = true;
991
992 LOG(3, "DEBUG: Check by: draw sphere {" << CandidateLine.OtherOptCenter[0] << " " << CandidateLine.OtherOptCenter[1] << " " << CandidateLine.OtherOptCenter[2] << "} radius " << RADIUS << " resolution 30");
993 // get all points inside the sphere
994 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter);
995
996 LOG(3, "DEBUG: The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":");
997 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
998 LOG(3, "DEBUG: " << *(*Runner) << " with distance " << (*Runner)->distance(CandidateLine.OtherOptCenter) << ".");
999
1000 // remove triangles's endpoints
1001 for (int i = 0; i < 2; i++)
1002 ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node);
1003
1004 // remove other candidates
1005 for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner)
1006 ListofPoints->remove(*Runner);
1007
1008 // check for other points
1009 if (!ListofPoints->empty()) {
1010 LOG(3, "DEBUG: CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere.");
1011 flag = false;
1012 LOG(3, "DEBUG: External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":");
1013 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
1014 LOG(3, "DEBUG: " << *(*Runner) << " with distance " << (*Runner)->distance(CandidateLine.OtherOptCenter) << ".");
1015 }
1016 delete ListofPoints;
1017
1018 return flag;
1019}
1020;
1021
1022/** Checks whether the triangle consisting of the three points is already present.
1023 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1024 * lines. If any of the three edges already has two triangles attached, false is
1025 * returned.
1026 * \param *out output stream for debugging
1027 * \param *Candidates endpoints of the triangle candidate
1028 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1029 * triangles exist which is the maximum for three points
1030 */
1031int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
1032{
1033 //Info FunctionInfo(__func__);
1034 int adjacentTriangleCount = 0;
1035 class BoundaryPointSet *Points[3];
1036
1037 // builds a triangle point set (Points) of the end points
1038 for (int i = 0; i < 3; i++) {
1039 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->getNr());
1040 if (FindPoint != PointsOnBoundary.end()) {
1041 Points[i] = FindPoint->second;
1042 } else {
1043 Points[i] = NULL;
1044 }
1045 }
1046
1047 // checks lines between the points in the Points for their adjacent triangles
1048 for (int i = 0; i < 3; i++) {
1049 if (Points[i] != NULL) {
1050 for (int j = i; j < 3; j++) {
1051 if (Points[j] != NULL) {
1052 LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->getNr());
1053 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->getNr()); FindLine++) {
1054 TriangleMap *triangles = &FindLine->second->triangles;
1055 LOG(5, "DEBUG: Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << ".");
1056 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1057 if (FindTriangle->second->IsPresentTupel(Points)) {
1058 adjacentTriangleCount++;
1059 }
1060 }
1061 }
1062 // Only one of the triangle lines must be considered for the triangle count.
1063 //LOG(5, "DEBUG: Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
1064 //return adjacentTriangleCount;
1065 }
1066 }
1067 }
1068 }
1069
1070 LOG(3, "DEBUG: Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
1071 return adjacentTriangleCount;
1072}
1073;
1074
1075/** Checks whether the triangle consisting of the three points is already present.
1076 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1077 * lines. If any of the three edges already has two triangles attached, false is
1078 * returned.
1079 * \param *out output stream for debugging
1080 * \param *Candidates endpoints of the triangle candidate
1081 * \return NULL - none found or pointer to triangle
1082 */
1083class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
1084{
1085 //Info FunctionInfo(__func__);
1086 class BoundaryTriangleSet *triangle = NULL;
1087 class BoundaryPointSet *Points[3];
1088
1089 // builds a triangle point set (Points) of the end points
1090 for (int i = 0; i < 3; i++) {
1091 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->getNr());
1092 if (FindPoint != PointsOnBoundary.end()) {
1093 Points[i] = FindPoint->second;
1094 } else {
1095 Points[i] = NULL;
1096 }
1097 }
1098
1099 // checks lines between the points in the Points for their adjacent triangles
1100 for (int i = 0; i < 3; i++) {
1101 if (Points[i] != NULL) {
1102 for (int j = i; j < 3; j++) {
1103 if (Points[j] != NULL) {
1104 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->getNr());
1105 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->getNr()); FindLine++) {
1106 TriangleMap *triangles = &FindLine->second->triangles;
1107 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1108 if (FindTriangle->second->IsPresentTupel(Points)) {
1109 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
1110 triangle = FindTriangle->second;
1111 }
1112 }
1113 }
1114 // Only one of the triangle lines must be considered for the triangle count.
1115 //LOG(5, "DEBUG: Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
1116 //return adjacentTriangleCount;
1117 }
1118 }
1119 }
1120 }
1121
1122 return triangle;
1123}
1124;
1125
1126/** Finds the starting triangle for FindNonConvexBorder().
1127 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
1128 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
1129 * point are called.
1130 * \param *out output stream for debugging
1131 * \param RADIUS radius of virtual rolling sphere
1132 * \param *LC LinkedCell_deprecated structure with neighbouring TesselPoint's
1133 * \return true - a starting triangle has been created, false - no valid triple of points found
1134 */
1135bool Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell_deprecated *LC)
1136{
1137 //Info FunctionInfo(__func__);
1138 int i = 0;
1139 TesselPoint* MaxPoint[NDIM];
1140 TesselPoint* Temporary;
1141 double maxCoordinate[NDIM];
1142 BoundaryLineSet *BaseLine = NULL;
1143 Vector helper;
1144 Vector Chord;
1145 Vector SearchDirection;
1146 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
1147 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
1148 Vector SphereCenter;
1149 Vector NormalVector;
1150
1151 NormalVector.Zero();
1152
1153 for (i = 0; i < 3; i++) {
1154 MaxPoint[i] = NULL;
1155 maxCoordinate[i] = -10e30;
1156 }
1157
1158 // 1. searching topmost point with respect to each axis
1159 for (int i = 0; i < NDIM; i++) { // each axis
1160 LC->n[i] = LC->N[i] - 1; // current axis is topmost cell
1161 const int map[NDIM] = {i, (i + 1) % NDIM, (i + 2) % NDIM};
1162 for (LC->n[map[1]] = 0; LC->n[map[1]] < LC->N[map[1]]; LC->n[map[1]]++)
1163 for (LC->n[map[2]] = 0; LC->n[map[2]] < LC->N[map[2]]; LC->n[map[2]]++) {
1164 const TesselPointSTLList *List = LC->GetCurrentCell();
1165 //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
1166 if (List != NULL) {
1167 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
1168 if ((*Runner)->at(map[0]) > maxCoordinate[map[0]]) {
1169 LOG(4, "DEBUG: New maximal for axis " << map[0] << " node is " << *(*Runner) << " at " << (*Runner)->getPosition() << ".");
1170 maxCoordinate[map[0]] = (*Runner)->at(map[0]);
1171 MaxPoint[map[0]] = (*Runner);
1172 }
1173 }
1174 } else {
1175 ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
1176 }
1177 }
1178 }
1179
1180 if (DoLog(1)) {
1181 std::stringstream output;
1182 output << "Found maximum coordinates: ";
1183 for (int i = 0; i < NDIM; i++)
1184 output << i << ": " << *MaxPoint[i] << "\t";
1185 LOG(3, "DEBUG: " << output.str());
1186 }
1187
1188 BTS = NULL;
1189 for (int k = 0; k < NDIM; k++) {
1190 NormalVector.Zero();
1191 NormalVector[k] = 1.;
1192 BaseLine = new BoundaryLineSet();
1193 BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
1194 LOG(2, "DEBUG: Coordinates of start node at " << *BaseLine->endpoints[0]->node << ".");
1195
1196 double ShortestAngle;
1197 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1198
1199 Temporary = NULL;
1200 FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
1201 if (Temporary == NULL) {
1202 // have we found a second point?
1203 delete BaseLine;
1204 continue;
1205 }
1206 BaseLine->endpoints[1] = new BoundaryPointSet(Temporary);
1207 LOG(1, "INFO: Second node is at " << *Temporary << ".");
1208
1209 // construct center of circle
1210 CircleCenter = 0.5 * ((BaseLine->endpoints[0]->node->getPosition()) + (BaseLine->endpoints[1]->node->getPosition()));
1211 LOG(1, "INFO: CircleCenter is at " << CircleCenter << ".");
1212
1213 // construct normal vector of circle
1214 CirclePlaneNormal = (BaseLine->endpoints[0]->node->getPosition()) - (BaseLine->endpoints[1]->node->getPosition());
1215 LOG(1, "INFO: CirclePlaneNormal is at " << CirclePlaneNormal << ".");
1216
1217 double radius = CirclePlaneNormal.NormSquared();
1218 double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.);
1219
1220 NormalVector.ProjectOntoPlane(CirclePlaneNormal);
1221 NormalVector.Normalize();
1222 LOG(1, "INFO: NormalVector is at " << NormalVector << ".");
1223 ShortestAngle = 2. * M_PI; // This will indicate the quadrant.
1224
1225 SphereCenter = (CircleRadius * NormalVector) + CircleCenter;
1226 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
1227
1228 // look in one direction of baseline for initial candidate
1229 try {
1230 SearchDirection = Plane(CirclePlaneNormal, NormalVector,0).getNormal(); // whether we look "left" first or "right" first is not important ...
1231 } catch(LinearAlgebraException) {
1232 ELOG(1, "Vectors are linear dependent: "
1233 << CirclePlaneNormal << ", " << NormalVector << ".");
1234 delete BaseLine;
1235 continue;
1236 }
1237
1238 // adding point 1 and point 2 and add the line between them
1239 LOG(2, "DEBUG: Found second point is at " << *BaseLine->endpoints[1]->node << ".");
1240
1241 //LOG(1, "INFO: OldSphereCenter is at " << helper << ".");
1242 CandidateForTesselation OptCandidates(BaseLine);
1243 FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
1244 {
1245 std::stringstream output;
1246 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++)
1247 output << *(*it);
1248 LOG(2, "DEBUG: List of third Points is: " << output.str());
1249 }
1250 if (!OptCandidates.pointlist.empty()) {
1251 BTS = NULL;
1252 AddCandidatePolygon(OptCandidates, RADIUS, LC);
1253 } else {
1254 delete BaseLine;
1255 continue;
1256 }
1257
1258 if (BTS != NULL) { // we have created one starting triangle
1259 delete BaseLine;
1260 break;
1261 } else {
1262 // remove all candidates from the list and then the list itself
1263 OptCandidates.pointlist.clear();
1264 }
1265 delete BaseLine;
1266 }
1267
1268 return (BTS != NULL);
1269}
1270;
1271
1272/** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
1273 * This is supposed to prevent early closing of the tesselation.
1274 * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
1275 * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
1276 * \param RADIUS radius of sphere
1277 * \param *LC LinkedCell_deprecated structure
1278 * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
1279 */
1280//bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell_deprecated * const LC) const
1281//{
1282// //Info FunctionInfo(__func__);
1283// bool result = false;
1284// Vector CircleCenter;
1285// Vector CirclePlaneNormal;
1286// Vector OldSphereCenter;
1287// Vector SearchDirection;
1288// Vector helper;
1289// TesselPoint *OtherOptCandidate = NULL;
1290// double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1291// double radius, CircleRadius;
1292// BoundaryLineSet *Line = NULL;
1293// BoundaryTriangleSet *T = NULL;
1294//
1295// // check both other lines
1296// PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->getNr());
1297// if (FindPoint != PointsOnBoundary.end()) {
1298// for (int i=0;i<2;i++) {
1299// LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->getNr());
1300// if (FindLine != (FindPoint->second)->lines.end()) {
1301// Line = FindLine->second;
1302// LOG(0, "Found line " << *Line << ".");
1303// if (Line->triangles.size() == 1) {
1304// T = Line->triangles.begin()->second;
1305// // construct center of circle
1306// CircleCenter.CopyVector(Line->endpoints[0]->node->node);
1307// CircleCenter.AddVector(Line->endpoints[1]->node->node);
1308// CircleCenter.Scale(0.5);
1309//
1310// // construct normal vector of circle
1311// CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
1312// CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
1313//
1314// // calculate squared radius of circle
1315// radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1316// if (radius/4. < RADIUS*RADIUS) {
1317// CircleRadius = RADIUS*RADIUS - radius/4.;
1318// CirclePlaneNormal.Normalize();
1319// //LOG(1, "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
1320//
1321// // construct old center
1322// GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
1323// helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
1324// radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1325// helper.Scale(sqrt(RADIUS*RADIUS - radius));
1326// OldSphereCenter.AddVector(&helper);
1327// OldSphereCenter.SubtractVector(&CircleCenter);
1328// //LOG(1, "INFO: OldSphereCenter is at " << OldSphereCenter << ".");
1329//
1330// // construct SearchDirection
1331// SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
1332// helper.CopyVector(Line->endpoints[0]->node->node);
1333// helper.SubtractVector(ThirdNode->node);
1334// if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1335// SearchDirection.Scale(-1.);
1336// SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1337// SearchDirection.Normalize();
1338// LOG(1, "INFO: SearchDirection is " << SearchDirection << ".");
1339// if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1340// // rotated the wrong way!
1341// ELOG(1, "SearchDirection and RelativeOldSphereCenter are still not orthogonal!");
1342// }
1343//
1344// // add third point
1345// FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
1346// for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
1347// if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
1348// continue;
1349// LOG(1, "INFO: Third point candidate is " << (*it)
1350// << " with circumsphere's center at " << (*it)->OptCenter << ".");
1351// LOG(1, "INFO: Baseline is " << *BaseRay);
1352//
1353// // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
1354// TesselPoint *PointCandidates[3];
1355// PointCandidates[0] = (*it);
1356// PointCandidates[1] = BaseRay->endpoints[0]->node;
1357// PointCandidates[2] = BaseRay->endpoints[1]->node;
1358// bool check=false;
1359// int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
1360// // If there is no triangle, add it regularly.
1361// if (existentTrianglesCount == 0) {
1362// SetTesselationPoint((*it), 0);
1363// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
1364// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
1365//
1366// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
1367// OtherOptCandidate = (*it);
1368// check = true;
1369// }
1370// } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
1371// SetTesselationPoint((*it), 0);
1372// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
1373// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
1374//
1375// // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
1376// // i.e. at least one of the three lines must be present with TriangleCount <= 1
1377// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
1378// OtherOptCandidate = (*it);
1379// check = true;
1380// }
1381// }
1382//
1383// if (check) {
1384// if (ShortestAngle > OtherShortestAngle) {
1385// LOG(0, "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << ".");
1386// result = true;
1387// break;
1388// }
1389// }
1390// }
1391// delete(OptCandidates);
1392// if (result)
1393// break;
1394// } else {
1395// LOG(0, "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!");
1396// }
1397// } else {
1398// ELOG(2, "Baseline is connected to two triangles already?");
1399// }
1400// } else {
1401// LOG(1, "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << ".");
1402// }
1403// }
1404// } else {
1405// ELOG(1, "Could not find the TesselPoint " << *ThirdNode << ".");
1406// }
1407//
1408// return result;
1409//};
1410
1411/** This function finds a triangle to a line, adjacent to an existing one.
1412 * @param out output stream for debugging
1413 * @param CandidateLine current cadndiate baseline to search from
1414 * @param T current triangle which \a Line is edge of
1415 * @param RADIUS radius of the rolling ball
1416 * @param N number of found triangles
1417 * @param *LC LinkedCell_deprecated structure with neighbouring points
1418 * @return false - no suitable candidate found
1419 */
1420bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell_deprecated *LC)
1421{
1422 //Info FunctionInfo(__func__);
1423 Vector CircleCenter;
1424 Vector CirclePlaneNormal;
1425 Vector RelativeSphereCenter;
1426 Vector SearchDirection;
1427 Vector helper;
1428 BoundaryPointSet *ThirdPoint = NULL;
1429 LineMap::iterator testline;
1430 double radius, CircleRadius;
1431
1432 for (int i = 0; i < 3; i++)
1433 if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) {
1434 ThirdPoint = T.endpoints[i];
1435 break;
1436 }
1437 LOG(3, "DEBUG: Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << ".");
1438
1439 CandidateLine.T = &T;
1440
1441 // construct center of circle
1442 CircleCenter = 0.5 * ((CandidateLine.BaseLine->endpoints[0]->node->getPosition()) +
1443 (CandidateLine.BaseLine->endpoints[1]->node->getPosition()));
1444
1445 // construct normal vector of circle
1446 CirclePlaneNormal = (CandidateLine.BaseLine->endpoints[0]->node->getPosition()) -
1447 (CandidateLine.BaseLine->endpoints[1]->node->getPosition());
1448
1449 // calculate squared radius of circle
1450 radius = CirclePlaneNormal.ScalarProduct(CirclePlaneNormal);
1451 if (radius / 4. < RADIUS * RADIUS) {
1452 // construct relative sphere center with now known CircleCenter
1453 RelativeSphereCenter = T.SphereCenter - CircleCenter;
1454
1455 CircleRadius = RADIUS * RADIUS - radius / 4.;
1456 CirclePlaneNormal.Normalize();
1457 LOG(3, "DEBUG: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
1458
1459 LOG(3, "DEBUG: OldSphereCenter is at " << T.SphereCenter << ".");
1460
1461 // construct SearchDirection and an "outward pointer"
1462 SearchDirection = Plane(RelativeSphereCenter, CirclePlaneNormal,0).getNormal();
1463 helper = CircleCenter - (ThirdPoint->node->getPosition());
1464 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1465 SearchDirection.Scale(-1.);
1466 LOG(3, "DEBUG: SearchDirection is " << SearchDirection << ".");
1467 if (fabs(RelativeSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) {
1468 // rotated the wrong way!
1469 ELOG(3, "DEBUG: SearchDirection and RelativeOldSphereCenter are still not orthogonal!");
1470 }
1471
1472 // add third point
1473 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC);
1474
1475 } else {
1476 LOG(3, "DEBUG: Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!");
1477 }
1478
1479 if (CandidateLine.pointlist.empty()) {
1480 ELOG(4, "DEBUG: Could not find a suitable candidate.");
1481 return false;
1482 }
1483 {
1484 std::stringstream output;
1485 for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it)
1486 output << " " << *(*it);
1487 LOG(3, "DEBUG: Third Points are: " << output.str());
1488 }
1489
1490 return true;
1491}
1492;
1493
1494/** Walks through Tesselation::OpenLines() and finds candidates for newly created ones.
1495 * \param *&LCList atoms in LinkedCell_deprecated list
1496 * \param RADIUS radius of the virtual sphere
1497 * \return true - for all open lines without candidates so far, a candidate has been found,
1498 * false - at least one open line without candidate still
1499 */
1500bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell_deprecated *&LCList)
1501{
1502 bool TesselationFailFlag = true;
1503 CandidateForTesselation *baseline = NULL;
1504 BoundaryTriangleSet *T = NULL;
1505
1506 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
1507 baseline = Runner->second;
1508 if (baseline->pointlist.empty()) {
1509 ASSERT((baseline->BaseLine->triangles.size() == 1),"Open line without exactly one attached triangle");
1510 T = (((baseline->BaseLine->triangles.begin()))->second);
1511 LOG(4, "DEBUG: Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T);
1512 TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one.
1513 }
1514 }
1515 return TesselationFailFlag;
1516}
1517;
1518
1519/** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
1520 * \param CandidateLine triangle to add
1521 * \param RADIUS Radius of sphere
1522 * \param *LC LinkedCell_deprecated structure
1523 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in
1524 * AddTesselationLine() in AddCandidateTriangle()
1525 */
1526void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell_deprecated *LC)
1527{
1528 //Info FunctionInfo(__func__);
1529 Vector Center;
1530 TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
1531 TesselPointList::iterator Runner;
1532 TesselPointList::iterator Sprinter;
1533
1534 // fill the set of neighbours
1535 TesselPointSet SetOfNeighbours;
1536
1537 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
1538 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
1539 SetOfNeighbours.insert(*Runner);
1540 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->getPosition());
1541
1542 {
1543 std::stringstream output;
1544 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
1545 output << **TesselRunner;
1546 LOG(3, "DEBUG: List of Candidates for Turning Point " << *TurningPoint << ":");
1547 }
1548
1549 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
1550 Runner = connectedClosestPoints->begin();
1551 Sprinter = Runner;
1552 Sprinter++;
1553 while (Sprinter != connectedClosestPoints->end()) {
1554 LOG(3, "DEBUG: Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << ".");
1555
1556 AddTesselationPoint(TurningPoint, 0);
1557 AddTesselationPoint(*Runner, 1);
1558 AddTesselationPoint(*Sprinter, 2);
1559
1560 AddCandidateTriangle(CandidateLine, Opt);
1561
1562 Runner = Sprinter;
1563 Sprinter++;
1564 if (Sprinter != connectedClosestPoints->end()) {
1565 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
1566 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter); // Assume BTS contains last triangle
1567 LOG(2, "DEBUG: There are still more triangles to add.");
1568 }
1569 // pick candidates for other open lines as well
1570 FindCandidatesforOpenLines(RADIUS, LC);
1571
1572 // check whether we add a degenerate or a normal triangle
1573 if (CheckDegeneracy(CandidateLine, RADIUS, LC)) {
1574 // add normal and degenerate triangles
1575 LOG(3, "DEBUG: Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides.");
1576 AddCandidateTriangle(CandidateLine, OtherOpt);
1577
1578 if (Sprinter != connectedClosestPoints->end()) {
1579 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
1580 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter);
1581 }
1582 // pick candidates for other open lines as well
1583 FindCandidatesforOpenLines(RADIUS, LC);
1584 }
1585 }
1586 delete (connectedClosestPoints);
1587};
1588
1589/** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate.
1590 * \param *Sprinter next candidate to which internal open lines are set
1591 * \param *OptCenter OptCenter for this candidate
1592 */
1593void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter)
1594{
1595 //Info FunctionInfo(__func__);
1596
1597 pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->getNr());
1598 for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
1599 LOG(4, "DEBUG: Checking line " << *(FindLine->second) << " ...");
1600 // If there is a line with less than two attached triangles, we don't need a new line.
1601 if (FindLine->second->triangles.size() == 1) {
1602 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
1603 if (!Finder->second->pointlist.empty())
1604 LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << ".");
1605 else {
1606 LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter));
1607 Finder->second->T = BTS; // is last triangle
1608 Finder->second->pointlist.push_back(Sprinter);
1609 Finder->second->ShortestAngle = 0.;
1610 Finder->second->OptCenter = *OptCenter;
1611 }
1612 }
1613 }
1614};
1615
1616/** If a given \a *triangle is degenerated, this adds both sides.
1617 * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction.
1618 * Note that endpoints are stored in Tesselation::TPS
1619 * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine
1620 * \param RADIUS radius of sphere
1621 * \param *LC pointer to LinkedCell_deprecated structure
1622 */
1623void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell_deprecated *LC)
1624{
1625 //Info FunctionInfo(__func__);
1626 Vector Center;
1627 CandidateMap::const_iterator CandidateCheck = OpenLines.end();
1628 BoundaryTriangleSet *triangle = NULL;
1629
1630 /// 1. Create or pick the lines for the first triangle
1631 LOG(3, "DEBUG: Creating/Picking lines for first triangle ...");
1632 for (int i = 0; i < 3; i++) {
1633 BLS[i] = NULL;
1634 LOG(3, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
1635 AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
1636 }
1637
1638 /// 2. create the first triangle and NormalVector and so on
1639 LOG(3, "DEBUG: Adding first triangle with center at " << CandidateLine.OptCenter << " ...");
1640 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1641 AddTesselationTriangle();
1642
1643 // create normal vector
1644 BTS->GetCenter(Center);
1645 Center -= CandidateLine.OptCenter;
1646 BTS->SphereCenter = CandidateLine.OptCenter;
1647 BTS->GetNormalVector(Center);
1648 // give some verbose output about the whole procedure
1649 if (CandidateLine.T != NULL)
1650 LOG(2, "DEBUG: --> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
1651 else
1652 LOG(2, "DEBUG: --> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
1653 triangle = BTS;
1654
1655 /// 3. Gather candidates for each new line
1656 LOG(3, "DEBUG: Adding candidates to new lines ...");
1657 for (int i = 0; i < 3; i++) {
1658 LOG(4, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
1659 CandidateCheck = OpenLines.find(BLS[i]);
1660 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
1661 if (CandidateCheck->second->T == NULL)
1662 CandidateCheck->second->T = triangle;
1663 FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC);
1664 }
1665 }
1666
1667 /// 4. Create or pick the lines for the second triangle
1668 LOG(3, "DEBUG: Creating/Picking lines for second triangle ...");
1669 for (int i = 0; i < 3; i++) {
1670 LOG(4, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
1671 AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
1672 }
1673
1674 /// 5. create the second triangle and NormalVector and so on
1675 LOG(3, "DEBUG: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ...");
1676 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1677 AddTesselationTriangle();
1678
1679 BTS->SphereCenter = CandidateLine.OtherOptCenter;
1680 // create normal vector in other direction
1681 BTS->GetNormalVector(triangle->NormalVector);
1682 BTS->NormalVector.Scale(-1.);
1683 // give some verbose output about the whole procedure
1684 if (CandidateLine.T != NULL)
1685 LOG(2, "DEBUG: --> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
1686 else
1687 LOG(2, "DEBUG: --> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
1688
1689 /// 6. Adding triangle to new lines
1690 LOG(3, "DEBUG: Adding second triangles to new lines ...");
1691 for (int i = 0; i < 3; i++) {
1692 LOG(4, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
1693 CandidateCheck = OpenLines.find(BLS[i]);
1694 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
1695 if (CandidateCheck->second->T == NULL)
1696 CandidateCheck->second->T = BTS;
1697 }
1698 }
1699}
1700;
1701
1702/** Adds a triangle to the Tesselation structure from three given TesselPoint's.
1703 * Note that endpoints are in Tesselation::TPS.
1704 * \param CandidateLine CandidateForTesselation structure contains other information
1705 * \param type which opt center to add (i.e. which side) and thus which NormalVector to take
1706 */
1707void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type)
1708{
1709 //Info FunctionInfo(__func__);
1710 Vector Center;
1711 Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter;
1712
1713 // add the lines
1714 AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0);
1715 AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1);
1716 AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2);
1717
1718 // add the triangles
1719 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1720 AddTesselationTriangle();
1721
1722 // create normal vector
1723 BTS->GetCenter(Center);
1724 Center.SubtractVector(*OptCenter);
1725 BTS->SphereCenter = *OptCenter;
1726 BTS->GetNormalVector(Center);
1727
1728 // give some verbose output about the whole procedure
1729 if (CandidateLine.T != NULL)
1730 LOG(2, "INFO: --> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
1731 else
1732 LOG(2, "INFO: --> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
1733}
1734;
1735
1736/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
1737 * We look whether the closest point on \a *Base with respect to the other baseline is outside
1738 * of the segment formed by both endpoints (concave) or not (convex).
1739 * \param *out output stream for debugging
1740 * \param *Base line to be flipped
1741 * \return NULL - convex, otherwise endpoint that makes it concave
1742 */
1743class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
1744{
1745 //Info FunctionInfo(__func__);
1746 class BoundaryPointSet *Spot = NULL;
1747 class BoundaryLineSet *OtherBase;
1748 Vector *ClosestPoint;
1749
1750 int m = 0;
1751 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1752 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
1753 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1754 BPS[m++] = runner->second->endpoints[j];
1755 OtherBase = new class BoundaryLineSet(BPS, -1);
1756
1757 LOG(3, "DEBUG: Current base line is " << *Base << ".");
1758 LOG(3, "DEBUG: Other base line is " << *OtherBase << ".");
1759
1760 // get the closest point on each line to the other line
1761 ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
1762
1763 // delete the temporary other base line
1764 delete (OtherBase);
1765
1766 // get the distance vector from Base line to OtherBase line
1767 Vector DistanceToIntersection[2], BaseLine;
1768 double distance[2];
1769 BaseLine = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
1770 for (int i = 0; i < 2; i++) {
1771 DistanceToIntersection[i] = (*ClosestPoint) - (Base->endpoints[i]->node->getPosition());
1772 distance[i] = BaseLine.ScalarProduct(DistanceToIntersection[i]);
1773 }
1774 delete (ClosestPoint);
1775 if ((distance[0] * distance[1]) > 0) { // have same sign?
1776 LOG(4, "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave.");
1777 if (distance[0] < distance[1]) {
1778 Spot = Base->endpoints[0];
1779 } else {
1780 Spot = Base->endpoints[1];
1781 }
1782 return Spot;
1783 } else { // different sign, i.e. we are in between
1784 LOG(3, "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex.");
1785 return NULL;
1786 }
1787
1788}
1789;
1790
1791void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
1792{
1793 //Info FunctionInfo(__func__);
1794 // print all lines
1795 std::stringstream output;
1796 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++)
1797 output << " " << *(PointRunner->second);
1798 LOG(3, "DEBUG: Printing all boundary points for debugging:" << output.str());
1799}
1800;
1801
1802void Tesselation::PrintAllBoundaryLines(ofstream *out) const
1803{
1804 //Info FunctionInfo(__func__);
1805 // print all lines
1806 std::stringstream output;
1807 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
1808 output << " " << *(LineRunner->second);
1809 LOG(3, "DEBUG: Printing all boundary lines for debugging:" << output.str());
1810}
1811;
1812
1813void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
1814{
1815 //Info FunctionInfo(__func__);
1816 // print all triangles
1817 std::stringstream output;
1818 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
1819 output << " " << *(TriangleRunner->second);
1820 LOG(3, "DEBUG: Printing all boundary triangles for debugging:" << output.str());
1821}
1822;
1823
1824/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
1825 * \param *out output stream for debugging
1826 * \param *Base line to be flipped
1827 * \return volume change due to flipping (0 - then no flipped occured)
1828 */
1829double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
1830{
1831 //Info FunctionInfo(__func__);
1832 class BoundaryLineSet *OtherBase;
1833 Vector *ClosestPoint[2];
1834 double volume;
1835
1836 int m = 0;
1837 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1838 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
1839 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1840 BPS[m++] = runner->second->endpoints[j];
1841 OtherBase = new class BoundaryLineSet(BPS, -1);
1842
1843 LOG(3, "DEBUG: Current base line is " << *Base << ".");
1844 LOG(3, "DEBUG: Other base line is " << *OtherBase << ".");
1845
1846 // get the closest point on each line to the other line
1847 ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
1848 ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
1849
1850 // get the distance vector from Base line to OtherBase line
1851 Vector Distance = (*ClosestPoint[1]) - (*ClosestPoint[0]);
1852
1853 // calculate volume
1854 volume = CalculateVolumeofGeneralTetraeder(Base->endpoints[1]->node->getPosition(), OtherBase->endpoints[0]->node->getPosition(), OtherBase->endpoints[1]->node->getPosition(), Base->endpoints[0]->node->getPosition());
1855
1856 // delete the temporary other base line and the closest points
1857 delete (ClosestPoint[0]);
1858 delete (ClosestPoint[1]);
1859 delete (OtherBase);
1860
1861 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
1862 LOG(3, "REJECT: Both lines have an intersection: Nothing to do.");
1863 return false;
1864 } else { // check for sign against BaseLineNormal
1865 Vector BaseLineNormal;
1866 BaseLineNormal.Zero();
1867 if (Base->triangles.size() < 2) {
1868 ELOG(1, "Less than two triangles are attached to this baseline!");
1869 return 0.;
1870 }
1871 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1872 LOG(4, "DEBUG: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << ".");
1873 BaseLineNormal += (runner->second->NormalVector);
1874 }
1875 BaseLineNormal.Scale(1. / 2.);
1876
1877 if (Distance.ScalarProduct(BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
1878 LOG(3, "ACCEPT: Other base line would be higher: Flipping baseline.");
1879 // calculate volume summand as a general tetraeder
1880 return volume;
1881 } else { // Base higher than OtherBase -> do nothing
1882 LOG(3, "REJECT: Base line is higher: Nothing to do.");
1883 return 0.;
1884 }
1885 }
1886}
1887;
1888
1889/** For a given baseline and its two connected triangles, flips the baseline.
1890 * I.e. we create the new baseline between the other two endpoints of these four
1891 * endpoints and reconstruct the two triangles accordingly.
1892 * \param *out output stream for debugging
1893 * \param *Base line to be flipped
1894 * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
1895 */
1896class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
1897{
1898 //Info FunctionInfo(__func__);
1899 class BoundaryLineSet *OldLines[4], *NewLine;
1900 class BoundaryPointSet *OldPoints[2];
1901 Vector BaseLineNormal;
1902 int OldTriangleNrs[2], OldBaseLineNr;
1903 int i, m;
1904
1905 // calculate NormalVector for later use
1906 BaseLineNormal.Zero();
1907 if (Base->triangles.size() < 2) {
1908 ELOG(1, "Less than two triangles are attached to this baseline!");
1909 return NULL;
1910 }
1911 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1912 LOG(1, "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << ".");
1913 BaseLineNormal += (runner->second->NormalVector);
1914 }
1915 BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
1916
1917 // get the two triangles
1918 // gather four endpoints and four lines
1919 for (int j = 0; j < 4; j++)
1920 OldLines[j] = NULL;
1921 for (int j = 0; j < 2; j++)
1922 OldPoints[j] = NULL;
1923 i = 0;
1924 m = 0;
1925
1926 // print OldLines and OldPoints for debugging
1927 if (DoLog(3)) {
1928 std::stringstream output;
1929 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1930 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
1931 if (runner->second->lines[j] != Base) // pick not the central baseline
1932 output << *runner->second->lines[j] << "\t";
1933 LOG(3, "DEBUG: The four old lines are: " << output.str());
1934 }
1935 if (DoLog(3)) {
1936 std::stringstream output;
1937 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1938 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
1939 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1940 output << *runner->second->endpoints[j] << "\t";
1941 LOG(3, "DEBUG: The two old points are: " << output.str());
1942 }
1943
1944 // index OldLines and OldPoints
1945 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1946 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
1947 if (runner->second->lines[j] != Base) // pick not the central baseline
1948 OldLines[i++] = runner->second->lines[j];
1949 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1950 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
1951 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1952 OldPoints[m++] = runner->second->endpoints[j];
1953
1954 // check whether everything is in place to create new lines and triangles
1955 if (i < 4) {
1956 ELOG(1, "We have not gathered enough baselines!");
1957 return NULL;
1958 }
1959 for (int j = 0; j < 4; j++)
1960 if (OldLines[j] == NULL) {
1961 ELOG(1, "We have not gathered enough baselines!");
1962 return NULL;
1963 }
1964 for (int j = 0; j < 2; j++)
1965 if (OldPoints[j] == NULL) {
1966 ELOG(1, "We have not gathered enough endpoints!");
1967 return NULL;
1968 }
1969
1970 // remove triangles and baseline removes itself
1971 LOG(3, "DEBUG: Deleting baseline " << *Base << " from global list.");
1972 OldBaseLineNr = Base->Nr;
1973 m = 0;
1974 // first obtain all triangle to delete ... (otherwise we pull the carpet (Base) from under the for-loop's feet)
1975 list <BoundaryTriangleSet *> TrianglesOfBase;
1976 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); ++runner)
1977 TrianglesOfBase.push_back(runner->second);
1978 // .. then delete each triangle (which deletes the line as well)
1979 for (list <BoundaryTriangleSet *>::iterator runner = TrianglesOfBase.begin(); !TrianglesOfBase.empty(); runner = TrianglesOfBase.begin()) {
1980 LOG(3, "DEBUG: Deleting triangle " << *(*runner) << ".");
1981 OldTriangleNrs[m++] = (*runner)->Nr;
1982 RemoveTesselationTriangle((*runner));
1983 TrianglesOfBase.erase(runner);
1984 }
1985
1986 // construct new baseline (with same number as old one)
1987 BPS[0] = OldPoints[0];
1988 BPS[1] = OldPoints[1];
1989 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
1990 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
1991 LOG(3, "DEBUG: Created new baseline " << *NewLine << ".");
1992
1993 // construct new triangles with flipped baseline
1994 i = -1;
1995 if (OldLines[0]->IsConnectedTo(OldLines[2]))
1996 i = 2;
1997 if (OldLines[0]->IsConnectedTo(OldLines[3]))
1998 i = 3;
1999 if (i != -1) {
2000 BLS[0] = OldLines[0];
2001 BLS[1] = OldLines[i];
2002 BLS[2] = NewLine;
2003 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
2004 BTS->GetNormalVector(BaseLineNormal);
2005 AddTesselationTriangle(OldTriangleNrs[0]);
2006 LOG(3, "DEBUG: Created new triangle " << *BTS << ".");
2007
2008 BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]);
2009 BLS[1] = OldLines[1];
2010 BLS[2] = NewLine;
2011 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
2012 BTS->GetNormalVector(BaseLineNormal);
2013 AddTesselationTriangle(OldTriangleNrs[1]);
2014 LOG(3, "DEBUG: Created new triangle " << *BTS << ".");
2015 } else {
2016 ELOG(0, "The four old lines do not connect, something's utterly wrong here!");
2017 return NULL;
2018 }
2019
2020 return NewLine;
2021}
2022;
2023
2024/** Finds the second point of starting triangle.
2025 * \param *a first node
2026 * \param Oben vector indicating the outside
2027 * \param OptCandidate reference to recommended candidate on return
2028 * \param Storage[3] array storing angles and other candidate information
2029 * \param RADIUS radius of virtual sphere
2030 * \param *LC LinkedCell_deprecated structure with neighbouring points
2031 */
2032void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell_deprecated *LC)
2033{
2034 //Info FunctionInfo(__func__);
2035 Vector AngleCheck;
2036 class TesselPoint* Candidate = NULL;
2037 double norm = -1.;
2038 double angle = 0.;
2039 int N[NDIM];
2040 int Nlower[NDIM];
2041 int Nupper[NDIM];
2042
2043 if (LC->SetIndexToNode(a)) { // get cell for the starting point
2044 for (int i = 0; i < NDIM; i++) // store indices of this cell
2045 N[i] = LC->n[i];
2046 } else {
2047 ELOG(1, "Point " << *a << " is not found in cell " << LC->index << ".");
2048 return;
2049 }
2050 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2051 for (int i = 0; i < NDIM; i++) {
2052 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
2053 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
2054 }
2055 LOG(3, "DEBUG: LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], ");
2056
2057 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2058 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2059 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2060 const TesselPointSTLList *List = LC->GetCurrentCell();
2061 //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
2062 if (List != NULL) {
2063 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2064 Candidate = (*Runner);
2065 // check if we only have one unique point yet ...
2066 if (a != Candidate) {
2067 // Calculate center of the circle with radius RADIUS through points a and Candidate
2068 Vector OrthogonalizedOben, aCandidate, Center;
2069 double distance, scaleFactor;
2070
2071 OrthogonalizedOben = Oben;
2072 aCandidate = (a->getPosition()) - (Candidate->getPosition());
2073 OrthogonalizedOben.ProjectOntoPlane(aCandidate);
2074 OrthogonalizedOben.Normalize();
2075 distance = 0.5 * aCandidate.Norm();
2076 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2077 OrthogonalizedOben.Scale(scaleFactor);
2078
2079 Center = 0.5 * ((Candidate->getPosition()) + (a->getPosition()));
2080 Center += OrthogonalizedOben;
2081
2082 AngleCheck = Center - (a->getPosition());
2083 norm = aCandidate.Norm();
2084 // second point shall have smallest angle with respect to Oben vector
2085 if (norm < RADIUS * 2.) {
2086 angle = AngleCheck.Angle(Oben);
2087 if (angle < Storage[0]) {
2088 //LOG(1, "INFO: Old values of Storage is " << Storage[0] << ", " << Storage[1]);
2089 LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".");
2090 OptCandidate = Candidate;
2091 Storage[0] = angle;
2092 //LOG(4, "DEBUG: Changing something in Storage is " << Storage[0] << ", " << Storage[1]);
2093 } else {
2094 //LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate);
2095 }
2096 } else {
2097 //LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Refused due to Radius " << norm);
2098 }
2099 } else {
2100 //LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << ".");
2101 }
2102 }
2103 } else {
2104 LOG(4, "DEBUG: Linked cell list is empty.");
2105 }
2106 }
2107}
2108;
2109
2110/** This recursive function finds a third point, to form a triangle with two given ones.
2111 * Note that this function is for the starting triangle.
2112 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2113 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2114 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2115 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2116 * us the "null" on this circle, the new center of the candidate point will be some way along this
2117 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2118 * by the normal vector of the base triangle that always points outwards by construction.
2119 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2120 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2121 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2122 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2123 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2124 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2125 * both.
2126 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2127 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2128 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2129 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2130 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2131 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
2132 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
2133 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2134 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2135 * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
2136 * @param ThirdPoint third point to avoid in search
2137 * @param RADIUS radius of sphere
2138 * @param *LC LinkedCell_deprecated structure with neighbouring points
2139 */
2140void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell_deprecated *LC) const
2141{
2142 //Info FunctionInfo(__func__);
2143 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2144 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2145 Vector SphereCenter;
2146 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2147 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2148 Vector NewNormalVector; // normal vector of the Candidate's triangle
2149 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2150 Vector RelativeOldSphereCenter;
2151 Vector NewPlaneCenter;
2152 double CircleRadius; // radius of this circle
2153 double radius;
2154 double otherradius;
2155 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2156 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2157 TesselPoint *Candidate = NULL;
2158
2159 LOG(3, "DEBUG: NormalVector of BaseTriangle is " << NormalVector << ".");
2160
2161 // copy old center
2162 CandidateLine.OldCenter = OldSphereCenter;
2163 CandidateLine.ThirdPoint = ThirdPoint;
2164 CandidateLine.pointlist.clear();
2165
2166 // construct center of circle
2167 CircleCenter = 0.5 * ((CandidateLine.BaseLine->endpoints[0]->node->getPosition()) +
2168 (CandidateLine.BaseLine->endpoints[1]->node->getPosition()));
2169
2170 // construct normal vector of circle
2171 CirclePlaneNormal = (CandidateLine.BaseLine->endpoints[0]->node->getPosition()) -
2172 (CandidateLine.BaseLine->endpoints[1]->node->getPosition());
2173
2174 RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
2175
2176 // calculate squared radius TesselPoint *ThirdPoint,f circle
2177 radius = CirclePlaneNormal.NormSquared() / 4.;
2178 if (radius < RADIUS * RADIUS) {
2179 CircleRadius = RADIUS * RADIUS - radius;
2180 CirclePlaneNormal.Normalize();
2181 LOG(3, "DEBUG: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
2182
2183 // test whether old center is on the band's plane
2184 if (fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
2185 ELOG(1, "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) << "!");
2186 RelativeOldSphereCenter.ProjectOntoPlane(CirclePlaneNormal);
2187 }
2188 radius = RelativeOldSphereCenter.NormSquared();
2189 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2190 LOG(3, "DEBUG: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << ".");
2191
2192 // check SearchDirection
2193 LOG(3, "DEBUG: SearchDirection is " << SearchDirection << ".");
2194 if (fabs(RelativeOldSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2195 ELOG(1, "SearchDirection and RelativeOldSphereCenter are not orthogonal!");
2196 }
2197
2198 // get cell for the starting point
2199 if (LC->SetIndexToVector(CircleCenter)) {
2200 for (int i = 0; i < NDIM; i++) // store indices of this cell
2201 N[i] = LC->n[i];
2202 //LOG(1, "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
2203 } else {
2204 ELOG(1, "Vector " << CircleCenter << " is outside of LinkedCell's bounding box.");
2205 return;
2206 }
2207 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2208// if (DoLog(3)) {
2209// std::stringstream output;
2210// output << "LC Intervals:";
2211// for (int i = 0; i < NDIM; i++)
2212// output << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2213// LOG(0, output.str());
2214// }
2215 for (int i = 0; i < NDIM; i++) {
2216 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
2217 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
2218 }
2219 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2220 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2221 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2222 const TesselPointSTLList *List = LC->GetCurrentCell();
2223 //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
2224 if (List != NULL) {
2225 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2226 Candidate = (*Runner);
2227
2228 // check for three unique points
2229 LOG(4, "DEBUG: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << ".");
2230 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) {
2231
2232 // find center on the plane
2233 GetCenterofCircumcircle(NewPlaneCenter, CandidateLine.BaseLine->endpoints[0]->node->getPosition(), CandidateLine.BaseLine->endpoints[1]->node->getPosition(), Candidate->getPosition());
2234 LOG(3, "DEBUG: NewPlaneCenter is " << NewPlaneCenter << ".");
2235
2236 try {
2237 NewNormalVector = Plane((CandidateLine.BaseLine->endpoints[0]->node->getPosition()),
2238 (CandidateLine.BaseLine->endpoints[1]->node->getPosition()),
2239 (Candidate->getPosition())).getNormal();
2240 LOG(3, "DEBUG: NewNormalVector is " << NewNormalVector << ".");
2241 radius = CandidateLine.BaseLine->endpoints[0]->node->DistanceSquared(NewPlaneCenter);
2242 LOG(3, "DEBUG: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
2243 LOG(3, "DEBUG: SearchDirection is " << SearchDirection << ".");
2244 LOG(3, "DEBUG: Radius of CircumCenterCircle is " << radius << ".");
2245 if (radius < RADIUS * RADIUS) {
2246 otherradius = CandidateLine.BaseLine->endpoints[1]->node->DistanceSquared(NewPlaneCenter);
2247 if (fabs(radius - otherradius) < HULLEPSILON) {
2248 // construct both new centers
2249 NewSphereCenter = NewPlaneCenter;
2250 OtherNewSphereCenter= NewPlaneCenter;
2251 helper = NewNormalVector;
2252 helper.Scale(sqrt(RADIUS * RADIUS - radius));
2253 LOG(4, "DEBUG: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << ".");
2254 NewSphereCenter += helper;
2255 LOG(4, "DEBUG: NewSphereCenter is at " << NewSphereCenter << ".");
2256 // OtherNewSphereCenter is created by the same vector just in the other direction
2257 helper.Scale(-1.);
2258 OtherNewSphereCenter += helper;
2259 LOG(4, "DEBUG: OtherNewSphereCenter is at " << OtherNewSphereCenter << ".");
2260 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection, HULLEPSILON);
2261 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection, HULLEPSILON);
2262 if ((ThirdPoint != NULL) && (Candidate == ThirdPoint->node)) { // in that case only the other circlecenter is valid
2263 if (OldSphereCenter.DistanceSquared(NewSphereCenter) < OldSphereCenter.DistanceSquared(OtherNewSphereCenter))
2264 alpha = Otheralpha;
2265 } else
2266 alpha = min(alpha, Otheralpha);
2267 // if there is a better candidate, drop the current list and add the new candidate
2268 // otherwise ignore the new candidate and keep the list
2269 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
2270 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2271 CandidateLine.OptCenter = NewSphereCenter;
2272 CandidateLine.OtherOptCenter = OtherNewSphereCenter;
2273 } else {
2274 CandidateLine.OptCenter = OtherNewSphereCenter;
2275 CandidateLine.OtherOptCenter = NewSphereCenter;
2276 }
2277 // if there is an equal candidate, add it to the list without clearing the list
2278 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
2279 CandidateLine.pointlist.push_back(Candidate);
2280 LOG(2, "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << ".");
2281 } else {
2282 // remove all candidates from the list and then the list itself
2283 CandidateLine.pointlist.clear();
2284 CandidateLine.pointlist.push_back(Candidate);
2285 LOG(2, "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << ".");
2286 }
2287 CandidateLine.ShortestAngle = alpha;
2288 LOG(2, "DEBUG: There are " << CandidateLine.pointlist.size() << " candidates in the list now.");
2289 } else {
2290 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
2291 LOG(3, "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " .");
2292 } else {
2293 LOG(3, "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected.");
2294 }
2295 }
2296 } else {
2297 ELOG(0, "REJECT: Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius));
2298 }
2299 } else {
2300 LOG(3, "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << ".");
2301 }
2302 }
2303 catch (LinearDependenceException &excp){
2304 LOG(3, boost::diagnostic_information(excp));
2305 LOG(3, "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent.");
2306 }
2307 } else {
2308 if (ThirdPoint != NULL) {
2309 LOG(3, "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << ".");
2310 } else {
2311 LOG(3, "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << ".");
2312 }
2313 }
2314 }
2315 }
2316 }
2317 } else {
2318 ELOG(1, "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << ".");
2319 }
2320 } else {
2321 if (ThirdPoint != NULL)
2322 LOG(3, "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!");
2323 else
2324 LOG(3, "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!");
2325 }
2326
2327 LOG(2, "DEBUG: Sorting candidate list ...");
2328 if (CandidateLine.pointlist.size() > 1) {
2329 CandidateLine.pointlist.unique();
2330 CandidateLine.pointlist.sort(); //SortCandidates);
2331 }
2332
2333 if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) {
2334 ELOG(0, "There were other points contained in the rolling sphere as well!");
2335 performCriticalExit();
2336 }
2337}
2338;
2339
2340/** Finds the endpoint two lines are sharing.
2341 * \param *line1 first line
2342 * \param *line2 second line
2343 * \return point which is shared or NULL if none
2344 */
2345class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
2346{
2347 //Info FunctionInfo(__func__);
2348 const BoundaryLineSet * lines[2] = { line1, line2 };
2349 class BoundaryPointSet *node = NULL;
2350 PointMap OrderMap;
2351 PointTestPair OrderTest;
2352 for (int i = 0; i < 2; i++)
2353 // for both lines
2354 for (int j = 0; j < 2; j++) { // for both endpoints
2355 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
2356 if (!OrderTest.second) { // if insertion fails, we have common endpoint
2357 node = OrderTest.first->second;
2358 LOG(1, "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << ".");
2359 j = 2;
2360 i = 2;
2361 break;
2362 }
2363 }
2364 return node;
2365}
2366;
2367
2368/** Finds the boundary points that are closest to a given Vector \a *x.
2369 * \param *out output stream for debugging
2370 * \param *x Vector to look from
2371 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
2372 */
2373DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector &x, const LinkedCell_deprecated* LC) const
2374{
2375 //Info FunctionInfo(__func__);
2376 PointMap::const_iterator FindPoint;
2377 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2378
2379 if (LinesOnBoundary.empty()) {
2380 ELOG(1, "There is no tesselation structure to compare the point with, please create one first.");
2381 return NULL;
2382 }
2383
2384 // gather all points close to the desired one
2385 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
2386 for (int i = 0; i < NDIM; i++) // store indices of this cell
2387 N[i] = LC->n[i];
2388 LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
2389 DistanceToPointMap * points = new DistanceToPointMap;
2390 LC->GetNeighbourBounds(Nlower, Nupper);
2391 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2392 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2393 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2394 const TesselPointSTLList *List = LC->GetCurrentCell();
2395 //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
2396 if (List != NULL) {
2397 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2398 FindPoint = PointsOnBoundary.find((*Runner)->getNr());
2399 if (FindPoint != PointsOnBoundary.end()) {
2400 // when the closest point is on the edge of a triangle (and hence
2401 // we find two closes triangles due to it having an adjacent one)
2402 // we should make sure that both triangles end up in the same entry
2403 // in the distance multimap. Hence, we round to 6 digit precision.
2404 const double distance =
2405 1e-6*floor(FindPoint->second->node->DistanceSquared(x)*1e+6);
2406 points->insert(DistanceToPointPair(distance, FindPoint->second));
2407 LOG(3, "DEBUG: Putting " << *FindPoint->second << " into the list.");
2408 }
2409 }
2410 } else {
2411 ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
2412 }
2413 }
2414
2415 // check whether we found some points
2416 if (points->empty()) {
2417 ELOG(1, "There is no nearest point: too far away from the surface.");
2418 delete (points);
2419 return NULL;
2420 }
2421 return points;
2422}
2423;
2424
2425/** Finds the boundary line that is closest to a given Vector \a *x.
2426 * \param *out output stream for debugging
2427 * \param *x Vector to look from
2428 * \return closest BoundaryLineSet or NULL in degenerate case.
2429 */
2430BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector &x, const LinkedCell_deprecated* LC) const
2431{
2432 //Info FunctionInfo(__func__);
2433 // get closest points
2434 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
2435 if (points == NULL) {
2436 ELOG(1, "There is no nearest point: too far away from the surface.");
2437 return NULL;
2438 }
2439
2440 // for each point, check its lines, remember closest
2441 LOG(1, "Finding closest BoundaryLine to " << x << " ... ");
2442 BoundaryLineSet *ClosestLine = NULL;
2443 double MinDistance = -1.;
2444 Vector helper;
2445 Vector Center;
2446 Vector BaseLine;
2447 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
2448 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
2449 // calculate closest point on line to desired point
2450 helper = 0.5 * (((LineRunner->second)->endpoints[0]->node->getPosition()) +
2451 ((LineRunner->second)->endpoints[1]->node->getPosition()));
2452 Center = (x) - helper;
2453 BaseLine = ((LineRunner->second)->endpoints[0]->node->getPosition()) -
2454 ((LineRunner->second)->endpoints[1]->node->getPosition());
2455 Center.ProjectOntoPlane(BaseLine);
2456 const double distance = Center.NormSquared();
2457 if ((ClosestLine == NULL) || (distance < MinDistance)) {
2458 // additionally calculate intersection on line (whether it's on the line section or not)
2459 helper = (x) - ((LineRunner->second)->endpoints[0]->node->getPosition()) - Center;
2460 const double lengthA = helper.ScalarProduct(BaseLine);
2461 helper = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition()) - Center;
2462 const double lengthB = helper.ScalarProduct(BaseLine);
2463 if (lengthB * lengthA < 0) { // if have different sign
2464 ClosestLine = LineRunner->second;
2465 MinDistance = distance;
2466 LOG(1, "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << ".");
2467 } else {
2468 LOG(1, "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << ".");
2469 }
2470 } else {
2471 LOG(1, "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << ".");
2472 }
2473 }
2474 }
2475 delete (points);
2476 // check whether closest line is "too close" :), then it's inside
2477 if (ClosestLine == NULL) {
2478 LOG(2, "DEBUG: Is the only point, no one else is closeby.");
2479 return NULL;
2480 }
2481 return ClosestLine;
2482}
2483;
2484
2485/** Finds the triangle that is closest to a given Vector \a *x.
2486 * \param *out output stream for debugging
2487 * \param *x Vector to look from
2488 * \return BoundaryTriangleSet of nearest triangle or NULL.
2489 */
2490TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector &x, const LinkedCell_deprecated* LC) const
2491{
2492 //Info FunctionInfo(__func__);
2493 // get closest points
2494 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
2495 if (points == NULL) {
2496 ELOG(1, "There is no nearest point: too far away from the surface.");
2497 return NULL;
2498 }
2499
2500 // for each point, check its lines, remember closest
2501 LOG(1, "Finding closest BoundaryTriangle to " << x << " ... ");
2502 LineSet ClosestLines;
2503 double MinDistance = 1e+16;
2504 Vector BaseLineIntersection;
2505 Vector Center;
2506 Vector BaseLine;
2507 Vector BaseLineCenter;
2508 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
2509 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
2510
2511 BaseLine = ((LineRunner->second)->endpoints[0]->node->getPosition()) -
2512 ((LineRunner->second)->endpoints[1]->node->getPosition());
2513 const double lengthBase = BaseLine.NormSquared();
2514
2515 BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[0]->node->getPosition());
2516 const double lengthEndA = BaseLineIntersection.NormSquared();
2517
2518 BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition());
2519 const double lengthEndB = BaseLineIntersection.NormSquared();
2520
2521 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
2522 const double lengthEnd = std::min(lengthEndA, lengthEndB);
2523 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
2524 ClosestLines.clear();
2525 ClosestLines.insert(LineRunner->second);
2526 MinDistance = lengthEnd;
2527 LOG(1, "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << ".");
2528 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
2529 ClosestLines.insert(LineRunner->second);
2530 LOG(1, "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << ".");
2531 } else { // line is worse
2532 LOG(1, "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << ".");
2533 }
2534 } else { // intersection is closer, calculate
2535 // calculate closest point on line to desired point
2536 BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition());
2537 Center = BaseLineIntersection;
2538 Center.ProjectOntoPlane(BaseLine);
2539 BaseLineIntersection -= Center;
2540 const double distance = BaseLineIntersection.NormSquared();
2541 if (Center.NormSquared() > BaseLine.NormSquared()) {
2542 ELOG(0, "Algorithmic error: In second case we have intersection outside of baseline!");
2543 }
2544 if ((ClosestLines.empty()) || (distance < MinDistance)) {
2545 ClosestLines.insert(LineRunner->second);
2546 MinDistance = distance;
2547 LOG(1, "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << ".");
2548 } else {
2549 LOG(2, "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << ".");
2550 }
2551 }
2552 }
2553 }
2554 delete (points);
2555
2556 // check whether closest line is "too close" :), then it's inside
2557 if (ClosestLines.empty()) {
2558 LOG(2, "DEBUG: Is the only point, no one else is closeby.");
2559 return NULL;
2560 }
2561 TriangleList * candidates = new TriangleList;
2562 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
2563 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
2564 candidates->push_back(Runner->second);
2565 }
2566 return candidates;
2567}
2568;
2569
2570/** Finds closest triangle to a point.
2571 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
2572 * \param *out output stream for debugging
2573 * \param *x Vector to look from
2574 * \param &distance contains found distance on return
2575 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
2576 */
2577class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector &x, const LinkedCell_deprecated* LC) const
2578{
2579 //Info FunctionInfo(__func__);
2580 class BoundaryTriangleSet *result = NULL;
2581 TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
2582 TriangleList candidates;
2583 Vector Center;
2584 Vector helper;
2585
2586 if ((triangles == NULL) || (triangles->empty()))
2587 return NULL;
2588
2589 // go through all and pick the one with the best alignment to x
2590 double MinAlignment = 2. * M_PI;
2591 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
2592 (*Runner)->GetCenter(Center);
2593 helper = (x) - Center;
2594 const double Alignment = helper.Angle((*Runner)->NormalVector);
2595 if (Alignment < MinAlignment) {
2596 result = *Runner;
2597 MinAlignment = Alignment;
2598 LOG(1, "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << ".");
2599 } else {
2600 LOG(1, "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << ".");
2601 }
2602 }
2603 delete (triangles);
2604
2605 return result;
2606}
2607;
2608
2609/** Checks whether the provided Vector is within the Tesselation structure.
2610 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
2611 * @param point of which to check the position
2612 * @param *LC LinkedCell_deprecated structure
2613 *
2614 * @return true if the point is inside the Tesselation structure, false otherwise
2615 */
2616bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell_deprecated* const LC) const
2617{
2618 TriangleIntersectionList Intersections(Point, this, LC);
2619 return Intersections.IsInside();
2620}
2621
2622Vector Tesselation::getNormal(const Vector &Point, const LinkedCell_deprecated* const LC) const
2623{
2624 TriangleIntersectionList Intersections(Point, this, LC);
2625 BoundaryTriangleSet *triangle = Intersections.GetClosestTriangle();
2626 if (triangle != NULL) {
2627 return triangle->NormalVector;
2628 } else
2629 return zeroVec;
2630}
2631
2632/** Returns the distance to the surface given by the tesselation.
2633 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
2634 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
2635 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
2636 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
2637 * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
2638 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
2639 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
2640 * -# If inside, take it to calculate closest distance
2641 * -# If not, take intersection with BoundaryLine as distance
2642 *
2643 * @note distance is squared despite it still contains a sign to determine in-/outside!
2644 *
2645 * @param point of which to check the position
2646 * @param *LC LinkedCell_deprecated structure
2647 *
2648 * @return >0 if outside, ==0 if on surface, <0 if inside
2649 */
2650double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
2651{
2652 //Info FunctionInfo(__func__);
2653 Vector Center;
2654 Vector helper;
2655 Vector DistanceToCenter;
2656 Vector Intersection;
2657 double distance = 0.;
2658
2659 if (triangle == NULL) {// is boundary point or only point in point cloud?
2660 LOG(1, "No triangle given!");
2661 return -1.;
2662 } else {
2663 LOG(1, "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << ".");
2664 }
2665
2666 triangle->GetCenter(Center);
2667 LOG(2, "INFO: Central point of the triangle is " << Center << ".");
2668 DistanceToCenter = Center - Point;
2669 LOG(2, "INFO: Vector from point to test to center is " << DistanceToCenter << ".");
2670
2671 // check whether we are on boundary
2672 if (fabs(DistanceToCenter.ScalarProduct(triangle->NormalVector)) < MYEPSILON) {
2673 // calculate whether inside of triangle
2674 DistanceToCenter = Point + triangle->NormalVector; // points outside
2675 Center = Point - triangle->NormalVector; // points towards MolCenter
2676 LOG(1, "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << ".");
2677 if (triangle->GetIntersectionInsideTriangle(Center, DistanceToCenter, Intersection)) {
2678 LOG(1, Point << " is inner point: sufficiently close to boundary, " << Intersection << ".");
2679 return 0.;
2680 } else {
2681 LOG(1, Point << " is NOT an inner point: on triangle plane but outside of triangle bounds.");
2682 return false;
2683 }
2684 } else {
2685 // calculate smallest distance
2686 distance = triangle->GetClosestPointInsideTriangle(Point, Intersection);
2687 LOG(1, "Closest point on triangle is " << Intersection << ".");
2688
2689 // then check direction to boundary
2690 if (DistanceToCenter.ScalarProduct(triangle->NormalVector) > MYEPSILON) {
2691 LOG(1, Point << " is an inner point, " << distance << " below surface.");
2692 return -distance;
2693 } else {
2694 LOG(1, Point << " is NOT an inner point, " << distance << " above surface.");
2695 return +distance;
2696 }
2697 }
2698}
2699;
2700
2701/** Calculates minimum distance from \a&Point to a tesselated surface.
2702 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
2703 * \param &Point point to calculate distance from
2704 * \param *LC needed for finding closest points fast
2705 * \return distance squared to closest point on surface
2706 */
2707double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell_deprecated* const LC) const
2708{
2709 //Info FunctionInfo(__func__);
2710 TriangleIntersectionList Intersections(Point, this, LC);
2711
2712 return Intersections.GetSmallestDistance();
2713}
2714;
2715
2716/** Calculates minimum distance from \a&Point to a tesselated surface.
2717 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
2718 * \param &Point point to calculate distance from
2719 * \param *LC needed for finding closest points fast
2720 * \return distance squared to closest point on surface
2721 */
2722BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell_deprecated* const LC) const
2723{
2724 //Info FunctionInfo(__func__);
2725 TriangleIntersectionList Intersections(Point, this, LC);
2726
2727 return Intersections.GetClosestTriangle();
2728}
2729;
2730
2731/** Gets all points connected to the provided point by triangulation lines.
2732 *
2733 * @param *Point of which get all connected points
2734 *
2735 * @return set of the all points linked to the provided one
2736 */
2737TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
2738{
2739 //Info FunctionInfo(__func__);
2740 TesselPointSet *connectedPoints = new TesselPointSet;
2741 class BoundaryPointSet *ReferencePoint = NULL;
2742 TesselPoint* current;
2743 bool takePoint = false;
2744 // find the respective boundary point
2745 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->getNr());
2746 if (PointRunner != PointsOnBoundary.end()) {
2747 ReferencePoint = PointRunner->second;
2748 } else {
2749 ELOG(2, "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << ".");
2750 ReferencePoint = NULL;
2751 }
2752
2753 // little trick so that we look just through lines connect to the BoundaryPoint
2754 // OR fall-back to look through all lines if there is no such BoundaryPoint
2755 const LineMap *Lines;
2756 ;
2757 if (ReferencePoint != NULL)
2758 Lines = &(ReferencePoint->lines);
2759 else
2760 Lines = &LinesOnBoundary;
2761 LineMap::const_iterator findLines = Lines->begin();
2762 while (findLines != Lines->end()) {
2763 takePoint = false;
2764
2765 if (findLines->second->endpoints[0]->Nr == Point->getNr()) {
2766 takePoint = true;
2767 current = findLines->second->endpoints[1]->node;
2768 } else if (findLines->second->endpoints[1]->Nr == Point->getNr()) {
2769 takePoint = true;
2770 current = findLines->second->endpoints[0]->node;
2771 }
2772
2773 if (takePoint) {
2774 LOG(1, "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted.");
2775 connectedPoints->insert(current);
2776 }
2777
2778 findLines++;
2779 }
2780
2781 if (connectedPoints->empty()) { // if have not found any points
2782 ELOG(1, "We have not found any connected points to " << *Point << ".");
2783 return NULL;
2784 }
2785
2786 return connectedPoints;
2787}
2788;
2789
2790/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
2791 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2792 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2793 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2794 * triangle we are looking for.
2795 *
2796 * @param *out output stream for debugging
2797 * @param *SetOfNeighbours all points for which the angle should be calculated
2798 * @param *Point of which get all connected points
2799 * @param *Reference Reference vector for zero angle or NULL for no preference
2800 * @return list of the all points linked to the provided one
2801 */
2802TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector &Reference) const
2803{
2804 //Info FunctionInfo(__func__);
2805 map<double, TesselPoint*> anglesOfPoints;
2806 TesselPointList *connectedCircle = new TesselPointList;
2807 Vector PlaneNormal;
2808 Vector AngleZero;
2809 Vector OrthogonalVector;
2810 Vector helper;
2811 const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL };
2812 TriangleList *triangles = NULL;
2813
2814 if (SetOfNeighbours == NULL) {
2815 ELOG(2, "Could not find any connected points!");
2816 delete (connectedCircle);
2817 return NULL;
2818 }
2819
2820 // calculate central point
2821 triangles = FindTriangles(TrianglePoints);
2822 if ((triangles != NULL) && (!triangles->empty())) {
2823 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
2824 PlaneNormal += (*Runner)->NormalVector;
2825 } else {
2826 ELOG(0, "Could not find any triangles for point " << *Point << ".");
2827 performCriticalExit();
2828 }
2829 PlaneNormal.Scale(1.0 / triangles->size());
2830 LOG(4, "DEBUG: Calculated PlaneNormal of all circle points is " << PlaneNormal << ".");
2831 PlaneNormal.Normalize();
2832
2833 // construct one orthogonal vector
2834 AngleZero = (Reference) - (Point->getPosition());
2835 AngleZero.ProjectOntoPlane(PlaneNormal);
2836 if ((AngleZero.NormSquared() < MYEPSILON)) {
2837 LOG(4, "DEBUG: Using alternatively " << (*SetOfNeighbours->begin())->getPosition() << " as angle 0 referencer.");
2838 AngleZero = ((*SetOfNeighbours->begin())->getPosition()) - (Point->getPosition());
2839 AngleZero.ProjectOntoPlane(PlaneNormal);
2840 if (AngleZero.NormSquared() < MYEPSILON) {
2841 ELOG(0, "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!");
2842 performCriticalExit();
2843 }
2844 }
2845 LOG(4, "DEBUG: Reference vector on this plane representing angle 0 is " << AngleZero << ".");
2846 if (AngleZero.NormSquared() > MYEPSILON)
2847 OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal();
2848 else
2849 OrthogonalVector.MakeNormalTo(PlaneNormal);
2850 LOG(4, "DEBUG: OrthogonalVector on plane is " << OrthogonalVector << ".");
2851
2852 // go through all connected points and calculate angle
2853 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
2854 helper = ((*listRunner)->getPosition()) - (Point->getPosition());
2855 helper.ProjectOntoPlane(PlaneNormal);
2856 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
2857 LOG(4, "DEBUG" << angle << " for point " << **listRunner << ".");
2858 anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
2859 }
2860
2861 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
2862 connectedCircle->push_back(AngleRunner->second);
2863 }
2864
2865 return connectedCircle;
2866}
2867
2868/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
2869 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2870 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2871 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2872 * triangle we are looking for.
2873 *
2874 * @param *SetOfNeighbours all points for which the angle should be calculated
2875 * @param *Point of which get all connected points
2876 * @param *Reference Reference vector for zero angle or (0,0,0) for no preference
2877 * @return list of the all points linked to the provided one
2878 */
2879TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector &Reference) const
2880{
2881 //Info FunctionInfo(__func__);
2882 map<double, TesselPoint*> anglesOfPoints;
2883 TesselPointList *connectedCircle = new TesselPointList;
2884 Vector center;
2885 Vector PlaneNormal;
2886 Vector AngleZero;
2887 Vector OrthogonalVector;
2888 Vector helper;
2889
2890 if (SetOfNeighbours == NULL) {
2891 ELOG(2, "Could not find any connected points!");
2892 delete (connectedCircle);
2893 return NULL;
2894 }
2895
2896 // check whether there's something to do
2897 if (SetOfNeighbours->size() < 3) {
2898 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
2899 connectedCircle->push_back(*TesselRunner);
2900 return connectedCircle;
2901 }
2902
2903 LOG(1, "INFO: Point is " << *Point << " and Reference is " << Reference << ".");
2904 // calculate central point
2905 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
2906 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
2907 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
2908 TesselB++;
2909 TesselC++;
2910 TesselC++;
2911 int counter = 0;
2912 while (TesselC != SetOfNeighbours->end()) {
2913 helper = Plane(((*TesselA)->getPosition()),
2914 ((*TesselB)->getPosition()),
2915 ((*TesselC)->getPosition())).getNormal();
2916 LOG(5, "DEBUG: Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper);
2917 counter++;
2918 TesselA++;
2919 TesselB++;
2920 TesselC++;
2921 PlaneNormal += helper;
2922 }
2923 //LOG(0, "Summed vectors " << center << "; number of points " << connectedPoints.size() << "; scale factor " << counter);
2924 PlaneNormal.Scale(1.0 / (double) counter);
2925 // LOG(1, "INFO: Calculated center of all circle points is " << center << ".");
2926 //
2927 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
2928 // PlaneNormal.CopyVector(Point->node);
2929 // PlaneNormal.SubtractVector(&center);
2930 // PlaneNormal.Normalize();
2931 LOG(4, "DEBUG: Calculated plane normal of circle is " << PlaneNormal << ".");
2932
2933 // construct one orthogonal vector
2934 if (!Reference.IsZero()) {
2935 AngleZero = (Reference) - (Point->getPosition());
2936 AngleZero.ProjectOntoPlane(PlaneNormal);
2937 }
2938 if ((Reference.IsZero()) || (AngleZero.NormSquared() < MYEPSILON )) {
2939 LOG(4, "DEBUG: Using alternatively " << (*SetOfNeighbours->begin())->getPosition() << " as angle 0 referencer.");
2940 AngleZero = ((*SetOfNeighbours->begin())->getPosition()) - (Point->getPosition());
2941 AngleZero.ProjectOntoPlane(PlaneNormal);
2942 if (AngleZero.NormSquared() < MYEPSILON) {
2943 ELOG(0, "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!");
2944 performCriticalExit();
2945 }
2946 }
2947 LOG(4, "DEBUG: Reference vector on this plane representing angle 0 is " << AngleZero << ".");
2948 if (AngleZero.NormSquared() > MYEPSILON)
2949 OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal();
2950 else
2951 OrthogonalVector.MakeNormalTo(PlaneNormal);
2952 LOG(4, "DEBUG: OrthogonalVector on plane is " << OrthogonalVector << ".");
2953
2954 // go through all connected points and calculate angle
2955 pair<map<double, TesselPoint*>::iterator, bool> InserterTest;
2956 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
2957 helper = ((*listRunner)->getPosition()) - (Point->getPosition());
2958 helper.ProjectOntoPlane(PlaneNormal);
2959 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
2960 if (angle > M_PI) // the correction is of no use here (and not desired)
2961 angle = 2. * M_PI - angle;
2962 LOG(4, "DEBUG: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << ".");
2963 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
2964 if (!InserterTest.second) {
2965 ELOG(0, "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner));
2966 performCriticalExit();
2967 }
2968 }
2969
2970 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
2971 connectedCircle->push_back(AngleRunner->second);
2972 }
2973
2974 return connectedCircle;
2975}
2976
2977/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
2978 *
2979 * @param *out output stream for debugging
2980 * @param *Point of which get all connected points
2981 * @return list of the all points linked to the provided one
2982 */
2983ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
2984{
2985 //Info FunctionInfo(__func__);
2986 map<double, TesselPoint*> anglesOfPoints;
2987 list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ;
2988 TesselPointList *connectedPath = NULL;
2989 Vector center;
2990 Vector PlaneNormal;
2991 Vector AngleZero;
2992 Vector OrthogonalVector;
2993 Vector helper;
2994 class BoundaryPointSet *ReferencePoint = NULL;
2995 class BoundaryPointSet *CurrentPoint = NULL;
2996 class BoundaryTriangleSet *triangle = NULL;
2997 class BoundaryLineSet *CurrentLine = NULL;
2998 class BoundaryLineSet *StartLine = NULL;
2999 // find the respective boundary point
3000 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->getNr());
3001 if (PointRunner != PointsOnBoundary.end()) {
3002 ReferencePoint = PointRunner->second;
3003 } else {
3004 ELOG(1, "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << ".");
3005 return NULL;
3006 }
3007
3008 map<class BoundaryLineSet *, bool> TouchedLine;
3009 map<class BoundaryTriangleSet *, bool> TouchedTriangle;
3010 map<class BoundaryLineSet *, bool>::iterator LineRunner;
3011 map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
3012 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
3013 TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false));
3014 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
3015 TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false));
3016 }
3017 if (!ReferencePoint->lines.empty()) {
3018 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
3019 LineRunner = TouchedLine.find(runner->second);
3020 if (LineRunner == TouchedLine.end()) {
3021 ELOG(1, "I could not find " << *runner->second << " in the touched list.");
3022 } else if (!LineRunner->second) {
3023 LineRunner->second = true;
3024 connectedPath = new TesselPointList;
3025 triangle = NULL;
3026 CurrentLine = runner->second;
3027 StartLine = CurrentLine;
3028 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
3029 LOG(1, "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << ".");
3030 do {
3031 // push current one
3032 LOG(1, "INFO: Putting " << *CurrentPoint << " at end of path.");
3033 connectedPath->push_back(CurrentPoint->node);
3034
3035 // find next triangle
3036 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
3037 LOG(1, "INFO: Inspecting triangle " << *Runner->second << ".");
3038 if ((Runner->second != triangle)) { // look for first triangle not equal to old one
3039 triangle = Runner->second;
3040 TriangleRunner = TouchedTriangle.find(triangle);
3041 if (TriangleRunner != TouchedTriangle.end()) {
3042 if (!TriangleRunner->second) {
3043 TriangleRunner->second = true;
3044 LOG(1, "INFO: Connecting triangle is " << *triangle << ".");
3045 break;
3046 } else {
3047 LOG(1, "INFO: Skipping " << *triangle << ", as we have already visited it.");
3048 triangle = NULL;
3049 }
3050 } else {
3051 ELOG(1, "I could not find " << *triangle << " in the touched list.");
3052 triangle = NULL;
3053 }
3054 }
3055 }
3056 if (triangle == NULL)
3057 break;
3058 // find next line
3059 for (int i = 0; i < 3; i++) {
3060 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
3061 CurrentLine = triangle->lines[i];
3062 LOG(1, "INFO: Connecting line is " << *CurrentLine << ".");
3063 break;
3064 }
3065 }
3066 LineRunner = TouchedLine.find(CurrentLine);
3067 if (LineRunner == TouchedLine.end())
3068 ELOG(1, "I could not find " << *CurrentLine << " in the touched list.");
3069 else
3070 LineRunner->second = true;
3071 // find next point
3072 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
3073
3074 } while (CurrentLine != StartLine);
3075 // last point is missing, as it's on start line
3076 LOG(1, "INFO: Putting " << *CurrentPoint << " at end of path.");
3077 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
3078 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
3079
3080 ListOfPaths->push_back(connectedPath);
3081 } else {
3082 LOG(1, "INFO: Skipping " << *runner->second << ", as we have already visited it.");
3083 }
3084 }
3085 } else {
3086 ELOG(1, "There are no lines attached to " << *ReferencePoint << ".");
3087 }
3088
3089 return ListOfPaths;
3090}
3091
3092/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
3093 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
3094 * @param *out output stream for debugging
3095 * @param *Point of which get all connected points
3096 * @return list of the closed paths
3097 */
3098ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
3099{
3100 //Info FunctionInfo(__func__);
3101 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
3102 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;
3103 TesselPointList *connectedPath = NULL;
3104 TesselPointList *newPath = NULL;
3105 int count = 0;
3106 TesselPointList::iterator CircleRunner;
3107 TesselPointList::iterator CircleStart;
3108
3109 for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
3110 connectedPath = *ListRunner;
3111
3112 LOG(1, "INFO: Current path is " << connectedPath << ".");
3113
3114 // go through list, look for reappearance of starting Point and count
3115 CircleStart = connectedPath->begin();
3116 // go through list, look for reappearance of starting Point and create list
3117 TesselPointList::iterator Marker = CircleStart;
3118 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
3119 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
3120 // we have a closed circle from Marker to new Marker
3121 if (DoLog(1)) {
3122 std::stringstream output;
3123 output << count + 1 << ". closed path consists of: ";
3124 for (TesselPointList::iterator CircleSprinter = Marker;
3125 CircleSprinter != CircleRunner;
3126 CircleSprinter++)
3127 output << (**CircleSprinter) << " <-> ";
3128 LOG(1, output.str());
3129 }
3130 newPath = new TesselPointList;
3131 TesselPointList::iterator CircleSprinter = Marker;
3132 for (; CircleSprinter != CircleRunner; CircleSprinter++)
3133 newPath->push_back(*CircleSprinter);
3134 count++;
3135 Marker = CircleRunner;
3136
3137 // add to list
3138 ListofClosedPaths->push_back(newPath);
3139 }
3140 }
3141 }
3142 LOG(1, "INFO: " << count << " closed additional path(s) have been created.");
3143
3144 // delete list of paths
3145 while (!ListofPaths->empty()) {
3146 connectedPath = *(ListofPaths->begin());
3147 ListofPaths->remove(connectedPath);
3148 delete (connectedPath);
3149 }
3150 delete (ListofPaths);
3151
3152 // exit
3153 return ListofClosedPaths;
3154}
3155;
3156
3157/** Gets all belonging triangles for a given BoundaryPointSet.
3158 * \param *out output stream for debugging
3159 * \param *Point BoundaryPoint
3160 * \return pointer to allocated list of triangles
3161 */
3162TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
3163{
3164 //Info FunctionInfo(__func__);
3165 TriangleSet *connectedTriangles = new TriangleSet;
3166
3167 if (Point == NULL) {
3168 ELOG(1, "Point given is NULL.");
3169 } else {
3170 // go through its lines and insert all triangles
3171 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
3172 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
3173 connectedTriangles->insert(TriangleRunner->second);
3174 }
3175 }
3176
3177 return connectedTriangles;
3178}
3179;
3180
3181/** Removes a boundary point from the envelope while keeping it closed.
3182 * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
3183 * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
3184 * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
3185 * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
3186 * -# the surface is closed, when the path is empty
3187 * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
3188 * \param *out output stream for debugging
3189 * \param *point point to be removed
3190 * \return volume added to the volume inside the tesselated surface by the removal
3191 */
3192double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point)
3193{
3194 class BoundaryLineSet *line = NULL;
3195 class BoundaryTriangleSet *triangle = NULL;
3196 Vector OldPoint, NormalVector;
3197 double volume = 0;
3198 int count = 0;
3199
3200 if (point == NULL) {
3201 ELOG(1, "Cannot remove the point " << point << ", it's NULL!");
3202 return 0.;
3203 } else
3204 LOG(4, "DEBUG: Removing point " << *point << " from tesselated boundary ...");
3205
3206 // copy old location for the volume
3207 OldPoint = (point->node->getPosition());
3208
3209 // get list of connected points
3210 if (point->lines.empty()) {
3211 ELOG(1, "Cannot remove the point " << *point << ", it's connected to no lines!");
3212 return 0.;
3213 }
3214
3215 list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
3216 TesselPointList *connectedPath = NULL;
3217
3218 // gather all triangles
3219 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
3220 count += LineRunner->second->triangles.size();
3221 TriangleMap Candidates;
3222 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
3223 line = LineRunner->second;
3224 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
3225 triangle = TriangleRunner->second;
3226 Candidates.insert(TrianglePair(triangle->Nr, triangle));
3227 }
3228 }
3229
3230 // remove all triangles
3231 count = 0;
3232 NormalVector.Zero();
3233 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
3234 LOG(1, "INFO: Removing triangle " << *(Runner->second) << ".");
3235 NormalVector -= Runner->second->NormalVector; // has to point inward
3236 RemoveTesselationTriangle(Runner->second);
3237 count++;
3238 }
3239 LOG(1, count << " triangles were removed.");
3240
3241 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
3242 list<TesselPointList *>::iterator ListRunner = ListAdvance;
3243// TriangleMap::iterator NumberRunner = Candidates.begin();
3244 TesselPointList::iterator StartNode, MiddleNode, EndNode;
3245 double angle;
3246 double smallestangle;
3247 Vector Point, Reference, OrthogonalVector;
3248 if (count > 2) { // less than three triangles, then nothing will be created
3249 class TesselPoint *TriangleCandidates[3];
3250 count = 0;
3251 for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
3252 if (ListAdvance != ListOfClosedPaths->end())
3253 ListAdvance++;
3254
3255 connectedPath = *ListRunner;
3256 // re-create all triangles by going through connected points list
3257 LineList NewLines;
3258 for (; !connectedPath->empty();) {
3259 // search middle node with widest angle to next neighbours
3260 EndNode = connectedPath->end();
3261 smallestangle = 0.;
3262 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
3263 LOG(1, "INFO: MiddleNode is " << **MiddleNode << ".");
3264 // construct vectors to next and previous neighbour
3265 StartNode = MiddleNode;
3266 if (StartNode == connectedPath->begin())
3267 StartNode = connectedPath->end();
3268 StartNode--;
3269 //LOG(3, "INFO: StartNode is " << **StartNode << ".");
3270 Point = ((*StartNode)->getPosition()) - ((*MiddleNode)->getPosition());
3271 StartNode = MiddleNode;
3272 StartNode++;
3273 if (StartNode == connectedPath->end())
3274 StartNode = connectedPath->begin();
3275 //LOG(3, "INFO: EndNode is " << **StartNode << ".");
3276 Reference = ((*StartNode)->getPosition()) - ((*MiddleNode)->getPosition());
3277 OrthogonalVector = ((*MiddleNode)->getPosition()) - OldPoint;
3278 OrthogonalVector.MakeNormalTo(Reference);
3279 angle = GetAngle(Point, Reference, OrthogonalVector);
3280 //if (angle < M_PI) // no wrong-sided triangles, please?
3281 if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
3282 smallestangle = angle;
3283 EndNode = MiddleNode;
3284 }
3285 }
3286 MiddleNode = EndNode;
3287 if (MiddleNode == connectedPath->end()) {
3288 ELOG(0, "CRITICAL: Could not find a smallest angle!");
3289 performCriticalExit();
3290 }
3291 StartNode = MiddleNode;
3292 if (StartNode == connectedPath->begin())
3293 StartNode = connectedPath->end();
3294 StartNode--;
3295 EndNode++;
3296 if (EndNode == connectedPath->end())
3297 EndNode = connectedPath->begin();
3298 LOG(2, "INFO: StartNode is " << **StartNode << ".");
3299 LOG(2, "INFO: MiddleNode is " << **MiddleNode << ".");
3300 LOG(2, "INFO: EndNode is " << **EndNode << ".");
3301 LOG(1, "INFO: Attempting to create triangle " << (*StartNode)->getName() << ", " << (*MiddleNode)->getName() << " and " << (*EndNode)->getName() << ".");
3302 TriangleCandidates[0] = *StartNode;
3303 TriangleCandidates[1] = *MiddleNode;
3304 TriangleCandidates[2] = *EndNode;
3305 triangle = GetPresentTriangle(TriangleCandidates);
3306 if (triangle != NULL) {
3307 ELOG(0, "New triangle already present, skipping!");
3308 StartNode++;
3309 MiddleNode++;
3310 EndNode++;
3311 if (StartNode == connectedPath->end())
3312 StartNode = connectedPath->begin();
3313 if (MiddleNode == connectedPath->end())
3314 MiddleNode = connectedPath->begin();
3315 if (EndNode == connectedPath->end())
3316 EndNode = connectedPath->begin();
3317 continue;
3318 }
3319 LOG(3, "Adding new triangle points.");
3320 AddTesselationPoint(*StartNode, 0);
3321 AddTesselationPoint(*MiddleNode, 1);
3322 AddTesselationPoint(*EndNode, 2);
3323 LOG(3, "Adding new triangle lines.");
3324 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
3325 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
3326 NewLines.push_back(BLS[1]);
3327 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
3328 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3329 BTS->GetNormalVector(NormalVector);
3330 AddTesselationTriangle();
3331 // calculate volume summand as a general tetraeder
3332 volume += CalculateVolumeofGeneralTetraeder(TPS[0]->node->getPosition(), TPS[1]->node->getPosition(), TPS[2]->node->getPosition(), OldPoint);
3333 // advance number
3334 count++;
3335
3336 // prepare nodes for next triangle
3337 StartNode = EndNode;
3338 LOG(2, "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << ".");
3339 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
3340 if (connectedPath->size() == 2) { // we are done
3341 connectedPath->remove(*StartNode); // remove the start node
3342 connectedPath->remove(*EndNode); // remove the end node
3343 break;
3344 } else if (connectedPath->size() < 2) { // something's gone wrong!
3345 ELOG(0, "CRITICAL: There are only two endpoints left!");
3346 performCriticalExit();
3347 } else {
3348 MiddleNode = StartNode;
3349 MiddleNode++;
3350 if (MiddleNode == connectedPath->end())
3351 MiddleNode = connectedPath->begin();
3352 EndNode = MiddleNode;
3353 EndNode++;
3354 if (EndNode == connectedPath->end())
3355 EndNode = connectedPath->begin();
3356 }
3357 }
3358 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
3359 if (NewLines.size() > 1) {
3360 LineList::iterator Candidate;
3361 class BoundaryLineSet *OtherBase = NULL;
3362 double tmp, maxgain;
3363 do {
3364 maxgain = 0;
3365 for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
3366 tmp = PickFarthestofTwoBaselines(*Runner);
3367 if (maxgain < tmp) {
3368 maxgain = tmp;
3369 Candidate = Runner;
3370 }
3371 }
3372 if (maxgain != 0) {
3373 volume += maxgain;
3374 LOG(1, "Flipping baseline with highest volume" << **Candidate << ".");
3375 OtherBase = FlipBaseline(*Candidate);
3376 NewLines.erase(Candidate);
3377 NewLines.push_back(OtherBase);
3378 }
3379 } while (maxgain != 0.);
3380 }
3381
3382 ListOfClosedPaths->remove(connectedPath);
3383 delete (connectedPath);
3384 }
3385 LOG(1, "INFO: " << count << " triangles were created.");
3386 } else {
3387 while (!ListOfClosedPaths->empty()) {
3388 ListRunner = ListOfClosedPaths->begin();
3389 connectedPath = *ListRunner;
3390 ListOfClosedPaths->remove(connectedPath);
3391 delete (connectedPath);
3392 }
3393 LOG(3, "DEBUG: No need to create any triangles.");
3394 }
3395 delete (ListOfClosedPaths);
3396
3397 LOG(1, "INFO: Removed volume is " << volume << ".");
3398
3399 return volume;
3400}
3401;
3402
3403/**
3404 * Finds triangles belonging to the three provided points.
3405 *
3406 * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
3407 *
3408 * @return triangles which belong to the provided points, will be empty if there are none,
3409 * will usually be one, in case of degeneration, there will be two
3410 */
3411TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
3412{
3413 //Info FunctionInfo(__func__);
3414 TriangleList *result = new TriangleList;
3415 LineMap::const_iterator FindLine;
3416 TriangleMap::const_iterator FindTriangle;
3417 class BoundaryPointSet *TrianglePoints[3];
3418 size_t NoOfWildcards = 0;
3419
3420 for (int i = 0; i < 3; i++) {
3421 if (Points[i] == NULL) {
3422 NoOfWildcards++;
3423 TrianglePoints[i] = NULL;
3424 } else {
3425 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->getNr());
3426 if (FindPoint != PointsOnBoundary.end()) {
3427 TrianglePoints[i] = FindPoint->second;
3428 } else {
3429 TrianglePoints[i] = NULL;
3430 }
3431 }
3432 }
3433
3434 switch (NoOfWildcards) {
3435 case 0: // checks lines between the points in the Points for their adjacent triangles
3436 for (int i = 0; i < 3; i++) {
3437 if (TrianglePoints[i] != NULL) {
3438 for (int j = i + 1; j < 3; j++) {
3439 if (TrianglePoints[j] != NULL) {
3440 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->getNr()); // is a multimap!
3441 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->getNr()); FindLine++) {
3442 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
3443 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
3444 result->push_back(FindTriangle->second);
3445 }
3446 }
3447 }
3448 // Is it sufficient to consider one of the triangle lines for this.
3449 return result;
3450 }
3451 }
3452 }
3453 }
3454 break;
3455 case 1: // copy all triangles of the respective line
3456 {
3457 int i = 0;
3458 for (; i < 3; i++)
3459 if (TrianglePoints[i] == NULL)
3460 break;
3461 for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->getNr()); // is a multimap!
3462 (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->getNr()); FindLine++) {
3463 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
3464 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
3465 result->push_back(FindTriangle->second);
3466 }
3467 }
3468 }
3469 break;
3470 }
3471 case 2: // copy all triangles of the respective point
3472 {
3473 int i = 0;
3474 for (; i < 3; i++)
3475 if (TrianglePoints[i] != NULL)
3476 break;
3477 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
3478 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
3479 result->push_back(triangle->second);
3480 result->sort();
3481 result->unique();
3482 break;
3483 }
3484 case 3: // copy all triangles
3485 {
3486 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
3487 result->push_back(triangle->second);
3488 break;
3489 }
3490 default:
3491 ELOG(0, "Number of wildcards is greater than 3, cannot happen!");
3492 performCriticalExit();
3493 break;
3494 }
3495
3496 return result;
3497}
3498
3499struct BoundaryLineSetCompare
3500{
3501 bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b)
3502 {
3503 int lowerNra = -1;
3504 int lowerNrb = -1;
3505
3506 if (a->endpoints[0] < a->endpoints[1])
3507 lowerNra = 0;
3508 else
3509 lowerNra = 1;
3510
3511 if (b->endpoints[0] < b->endpoints[1])
3512 lowerNrb = 0;
3513 else
3514 lowerNrb = 1;
3515
3516 if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
3517 return true;
3518 else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
3519 return false;
3520 else { // both lower-numbered endpoints are the same ...
3521 if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2])
3522 return true;
3523 else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2])
3524 return false;
3525 }
3526 return false;
3527 }
3528 ;
3529};
3530
3531#define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
3532
3533/**
3534 * Finds all degenerated lines within the tesselation structure.
3535 *
3536 * @return map of keys of degenerated line pairs, each line occurs twice
3537 * in the list, once as key and once as value
3538 */
3539IndexToIndex * Tesselation::FindAllDegeneratedLines()
3540{
3541 //Info FunctionInfo(__func__);
3542 UniqueLines AllLines;
3543 IndexToIndex * DegeneratedLines = new IndexToIndex;
3544
3545 // sanity check
3546 if (LinesOnBoundary.empty()) {
3547 ELOG(2, "FindAllDegeneratedTriangles() was called without any tesselation structure.");
3548 return DegeneratedLines;
3549 }
3550 LineMap::iterator LineRunner1;
3551 pair<UniqueLines::iterator, bool> tester;
3552 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
3553 tester = AllLines.insert(LineRunner1->second);
3554 if (!tester.second) { // found degenerated line
3555 DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));
3556 DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));
3557 }
3558 }
3559
3560 AllLines.clear();
3561
3562 LOG(2, "DEBUG: FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines.");
3563 IndexToIndex::iterator it;
3564 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
3565 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
3566 const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
3567 if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
3568 LOG(3, "DEBUG: " << *Line1->second << " => " << *Line2->second);
3569 else
3570 ELOG(1, "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!");
3571 }
3572
3573 return DegeneratedLines;
3574}
3575
3576/**
3577 * Finds all degenerated triangles within the tesselation structure.
3578 *
3579 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
3580 * in the list, once as key and once as value
3581 */
3582IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
3583{
3584 //Info FunctionInfo(__func__);
3585 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
3586 IndexToIndex * DegeneratedTriangles = new IndexToIndex;
3587 TriangleMap::iterator TriangleRunner1, TriangleRunner2;
3588 LineMap::iterator Liner;
3589 class BoundaryLineSet *line1 = NULL, *line2 = NULL;
3590
3591 for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
3592 // run over both lines' triangles
3593 Liner = LinesOnBoundary.find(LineRunner->first);
3594 if (Liner != LinesOnBoundary.end())
3595 line1 = Liner->second;
3596 Liner = LinesOnBoundary.find(LineRunner->second);
3597 if (Liner != LinesOnBoundary.end())
3598 line2 = Liner->second;
3599 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
3600 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
3601 if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
3602 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr));
3603 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr));
3604 }
3605 }
3606 }
3607 }
3608 delete (DegeneratedLines);
3609
3610 LOG(3, "DEBUG: FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:");
3611 for (IndexToIndex::iterator it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
3612 LOG(3, "DEBUG: " << (*it).first << " => " << (*it).second);
3613
3614 return DegeneratedTriangles;
3615}
3616
3617/**
3618 * Purges degenerated triangles from the tesselation structure if they are not
3619 * necessary to keep a single point within the structure.
3620 */
3621void Tesselation::RemoveDegeneratedTriangles()
3622{
3623 //Info FunctionInfo(__func__);
3624 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
3625 TriangleMap::iterator finder;
3626 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
3627 int count = 0;
3628
3629 // iterate over all degenerated triangles
3630 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); !DegeneratedTriangles->empty(); TriangleKeyRunner = DegeneratedTriangles->begin()) {
3631 LOG(3, "DEBUG: Checking presence of triangles " << TriangleKeyRunner->first << " and " << TriangleKeyRunner->second << ".");
3632 // both ways are stored in the map, only use one
3633 if (TriangleKeyRunner->first > TriangleKeyRunner->second)
3634 continue;
3635
3636 // determine from the keys in the map the two _present_ triangles
3637 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
3638 if (finder != TrianglesOnBoundary.end())
3639 triangle = finder->second;
3640 else
3641 continue;
3642 finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
3643 if (finder != TrianglesOnBoundary.end())
3644 partnerTriangle = finder->second;
3645 else
3646 continue;
3647
3648 // determine which lines are shared by the two triangles
3649 bool trianglesShareLine = false;
3650 for (int i = 0; i < 3; ++i)
3651 for (int j = 0; j < 3; ++j)
3652 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
3653
3654 if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) {
3655 // check whether we have to fix lines
3656 BoundaryTriangleSet *Othertriangle = NULL;
3657// BoundaryTriangleSet *OtherpartnerTriangle = NULL;
3658 TriangleMap::iterator TriangleRunner;
3659 for (int i = 0; i < 3; ++i)
3660 for (int j = 0; j < 3; ++j)
3661 if (triangle->lines[i] != partnerTriangle->lines[j]) {
3662 // get the other two triangles
3663 for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
3664 if (TriangleRunner->second != triangle) {
3665 Othertriangle = TriangleRunner->second;
3666 }
3667 for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
3668// if (TriangleRunner->second != partnerTriangle) {
3669// OtherpartnerTriangle = TriangleRunner->second;
3670// }
3671 /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
3672 // the line of triangle receives the degenerated ones
3673 triangle->lines[i]->triangles.erase(Othertriangle->Nr);
3674 triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle));
3675 for (int k = 0; k < 3; k++)
3676 if (triangle->lines[i] == Othertriangle->lines[k]) {
3677 Othertriangle->lines[k] = partnerTriangle->lines[j];
3678 break;
3679 }
3680 // the line of partnerTriangle receives the non-degenerated ones
3681 partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr);
3682 partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle));
3683 partnerTriangle->lines[j] = triangle->lines[i];
3684 }
3685
3686 // erase the pair
3687 count += (int) DegeneratedTriangles->erase(triangle->Nr);
3688 LOG(4, "DEBUG: RemoveDegeneratedTriangles() removes triangle " << *triangle << ".");
3689 RemoveTesselationTriangle(triangle);
3690 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
3691 LOG(4, "DEBUG: RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << ".");
3692 RemoveTesselationTriangle(partnerTriangle);
3693 } else {
3694 LOG(4, "DEBUG: RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure.");
3695 }
3696 }
3697 delete (DegeneratedTriangles);
3698 if (count > 0)
3699 LastTriangle = NULL;
3700
3701 LOG(2, "INFO: RemoveDegeneratedTriangles() removed " << count << " triangles:");
3702}
3703
3704/** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
3705 * We look for the closest point on the boundary, we look through its connected boundary lines and
3706 * seek the one with the minimum angle between its center point and the new point and this base line.
3707 * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
3708 * \param *out output stream for debugging
3709 * \param *point point to add
3710 * \param *LC Linked Cell structure to find nearest point
3711 */
3712void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell_deprecated *LC)
3713{
3714 //Info FunctionInfo(__func__);
3715 // find nearest boundary point
3716 class TesselPoint *BackupPoint = NULL;
3717 class TesselPoint *NearestPoint = FindClosestTesselPoint(point->getPosition(), BackupPoint, LC);
3718 class BoundaryPointSet *NearestBoundaryPoint = NULL;
3719 PointMap::iterator PointRunner;
3720
3721 if (NearestPoint == point)
3722 NearestPoint = BackupPoint;
3723 PointRunner = PointsOnBoundary.find(NearestPoint->getNr());
3724 if (PointRunner != PointsOnBoundary.end()) {
3725 NearestBoundaryPoint = PointRunner->second;
3726 } else {
3727 ELOG(1, "I cannot find the boundary point.");
3728 return;
3729 }
3730 LOG(3, "DEBUG: Nearest point on boundary is " << NearestPoint->getName() << ".");
3731
3732 // go through its lines and find the best one to split
3733 Vector CenterToPoint;
3734 Vector BaseLine;
3735 double angle, BestAngle = 0.;
3736 class BoundaryLineSet *BestLine = NULL;
3737 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
3738 BaseLine = (Runner->second->endpoints[0]->node->getPosition()) -
3739 (Runner->second->endpoints[1]->node->getPosition());
3740 CenterToPoint = 0.5 * ((Runner->second->endpoints[0]->node->getPosition()) +
3741 (Runner->second->endpoints[1]->node->getPosition()));
3742 CenterToPoint -= (point->getPosition());
3743 angle = CenterToPoint.Angle(BaseLine);
3744 if (fabs(angle - M_PI/2.) < fabs(BestAngle - M_PI/2.)) {
3745 BestAngle = angle;
3746 BestLine = Runner->second;
3747 }
3748 }
3749
3750 // remove one triangle from the chosen line
3751 class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
3752 BestLine->triangles.erase(TempTriangle->Nr);
3753 int nr = -1;
3754 for (int i = 0; i < 3; i++) {
3755 if (TempTriangle->lines[i] == BestLine) {
3756 nr = i;
3757 break;
3758 }
3759 }
3760
3761 // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
3762 LOG(2, "Adding new triangle points.");
3763 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
3764 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
3765 AddTesselationPoint(point, 2);
3766 LOG(2, "Adding new triangle lines.");
3767 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
3768 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
3769 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
3770 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3771 BTS->GetNormalVector(TempTriangle->NormalVector);
3772 BTS->NormalVector.Scale(-1.);
3773 LOG(1, "INFO: NormalVector of new triangle is " << BTS->NormalVector << ".");
3774 AddTesselationTriangle();
3775
3776 // create other side of this triangle and close both new sides of the first created triangle
3777 LOG(2, "Adding new triangle points.");
3778 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
3779 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
3780 AddTesselationPoint(point, 2);
3781 LOG(2, "Adding new triangle lines.");
3782 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
3783 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
3784 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
3785 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3786 BTS->GetNormalVector(TempTriangle->NormalVector);
3787 LOG(1, "INFO: NormalVector of other new triangle is " << BTS->NormalVector << ".");
3788 AddTesselationTriangle();
3789
3790 // add removed triangle to the last open line of the second triangle
3791 for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion)
3792 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
3793 if (BestLine == BTS->lines[i]) {
3794 ELOG(0, "BestLine is same as found line, something's wrong here!");
3795 performCriticalExit();
3796 }
3797 BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));
3798 TempTriangle->lines[nr] = BTS->lines[i];
3799 break;
3800 }
3801 }
3802}
3803;
3804
3805/** Writes the envelope to file.
3806 * \param *out otuput stream for debugging
3807 * \param *filename basename of output file
3808 * \param *cloud IPointCloud structure with all nodes
3809 */
3810void Tesselation::Output(const char *filename, IPointCloud & cloud)
3811{
3812 //Info FunctionInfo(__func__);
3813 ofstream *tempstream = NULL;
3814 string NameofTempFile;
3815 string NumberName;
3816
3817 if (LastTriangle != NULL) {
3818 stringstream sstr;
3819 sstr << "-"<< TrianglesOnBoundary.size() << "-" << LastTriangle->getEndpointName(0) << "_" << LastTriangle->getEndpointName(1) << "_" << LastTriangle->getEndpointName(2);
3820 NumberName = sstr.str();
3821 if (DoTecplotOutput) {
3822 string NameofTempFile(filename);
3823 NameofTempFile.append(NumberName);
3824 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
3825 NameofTempFile.erase(npos, 1);
3826 NameofTempFile.append(TecplotSuffix);
3827 LOG(1, "INFO: Writing temporary non convex hull to file " << NameofTempFile << ".");
3828 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
3829 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
3830 tempstream->close();
3831 tempstream->flush();
3832 delete (tempstream);
3833 }
3834
3835 if (DoRaster3DOutput) {
3836 string NameofTempFile(filename);
3837 NameofTempFile.append(NumberName);
3838 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
3839 NameofTempFile.erase(npos, 1);
3840 NameofTempFile.append(Raster3DSuffix);
3841 LOG(1, "INFO: Writing temporary non convex hull to file " << NameofTempFile << ".");
3842 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
3843 WriteRaster3dFile(tempstream, this, cloud);
3844 IncludeSphereinRaster3D(tempstream, this, cloud);
3845 tempstream->close();
3846 tempstream->flush();
3847 delete (tempstream);
3848 }
3849 }
3850 if (DoTecplotOutput || DoRaster3DOutput)
3851 TriangleFilesWritten++;
3852}
3853;
3854
3855struct BoundaryPolygonSetCompare
3856{
3857 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const
3858 {
3859 if (s1->endpoints.size() < s2->endpoints.size())
3860 return true;
3861 else if (s1->endpoints.size() > s2->endpoints.size())
3862 return false;
3863 else { // equality of number of endpoints
3864 PointSet::const_iterator Walker1 = s1->endpoints.begin();
3865 PointSet::const_iterator Walker2 = s2->endpoints.begin();
3866 while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
3867 if ((*Walker1)->Nr < (*Walker2)->Nr)
3868 return true;
3869 else if ((*Walker1)->Nr > (*Walker2)->Nr)
3870 return false;
3871 Walker1++;
3872 Walker2++;
3873 }
3874 return false;
3875 }
3876 }
3877};
3878
3879#define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
3880
3881/** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
3882 * \return number of polygons found
3883 */
3884int Tesselation::CorrectAllDegeneratedPolygons()
3885{
3886 //Info FunctionInfo(__func__);
3887 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
3888 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
3889 set<BoundaryPointSet *> EndpointCandidateList;
3890 pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester;
3891 pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester;
3892 for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
3893 LOG(3, "DEBUG: Current point is " << *Runner->second << ".");
3894 map<int, Vector *> TriangleVectors;
3895 // gather all NormalVectors
3896 LOG(4, "DEBUG: Gathering triangles ...");
3897 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
3898 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
3899 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
3900 TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));
3901 if (TriangleInsertionTester.second)
3902 LOG(5, "DEBUG: Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list.");
3903 } else {
3904 LOG(5, "DEBUG: NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one.");
3905 }
3906 }
3907 // check whether there are two that are parallel
3908 LOG(3, "DEBUG: Finding two parallel triangles ...");
3909 for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
3910 for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
3911 if (VectorWalker != VectorRunner) { // skip equals
3912 const double SCP = VectorWalker->second->ScalarProduct(*VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
3913 LOG(4, "DEBUG: Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP);
3914 if (fabs(SCP + 1.) < ParallelEpsilon) {
3915 InsertionTester = EndpointCandidateList.insert((Runner->second));
3916 if (InsertionTester.second)
3917 LOG(4, "DEBUG: Adding " << *Runner->second << " to endpoint candidate list.");
3918 // and break out of both loops
3919 VectorWalker = TriangleVectors.end();
3920 VectorRunner = TriangleVectors.end();
3921 break;
3922 }
3923 }
3924 }
3925 delete DegeneratedTriangles;
3926
3927 /// 3. Find connected endpoint candidates and put them into a polygon
3928 UniquePolygonSet ListofDegeneratedPolygons;
3929 BoundaryPointSet *Walker = NULL;
3930 BoundaryPointSet *OtherWalker = NULL;
3931 BoundaryPolygonSet *Current = NULL;
3932 stack<BoundaryPointSet*> ToCheckConnecteds;
3933 while (!EndpointCandidateList.empty()) {
3934 Walker = *(EndpointCandidateList.begin());
3935 if (Current == NULL) { // create a new polygon with current candidate
3936 LOG(3, "DEBUG: Starting new polygon set at point " << *Walker);
3937 Current = new BoundaryPolygonSet;
3938 Current->endpoints.insert(Walker);
3939 EndpointCandidateList.erase(Walker);
3940 ToCheckConnecteds.push(Walker);
3941 }
3942
3943 // go through to-check stack
3944 while (!ToCheckConnecteds.empty()) {
3945 Walker = ToCheckConnecteds.top(); // fetch ...
3946 ToCheckConnecteds.pop(); // ... and remove
3947 for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
3948 OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
3949 LOG(4, "DEBUG: Checking " << *OtherWalker);
3950 set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
3951 if (Finder != EndpointCandidateList.end()) { // found a connected partner
3952 LOG(5, "DEBUG: Adding to polygon.");
3953 Current->endpoints.insert(OtherWalker);
3954 EndpointCandidateList.erase(Finder); // remove from candidates
3955 ToCheckConnecteds.push(OtherWalker); // but check its partners too
3956 } else {
3957 LOG(5, "DEBUG: is not connected to " << *Walker);
3958 }
3959 }
3960 }
3961
3962 LOG(3, "DEBUG: Final polygon is " << *Current);
3963 ListofDegeneratedPolygons.insert(Current);
3964 Current = NULL;
3965 }
3966
3967 const int counter = ListofDegeneratedPolygons.size();
3968
3969 if (DoLog(0)) {
3970 std::stringstream output;
3971 output << "The following " << counter << " degenerated polygons have been found: ";
3972 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
3973 output << " " << **PolygonRunner;
3974 LOG(3, "DEBUG: " << output.str());
3975 }
3976
3977 /// 4. Go through all these degenerated polygons
3978 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
3979 stack<int> TriangleNrs;
3980 Vector NormalVector;
3981 /// 4a. Gather all triangles of this polygon
3982 TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
3983
3984 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
3985 if (T->size() == 2) {
3986 LOG(4, "DEBUG: Skipping degenerated polygon, is just a (already simply degenerated) triangle.");
3987 delete (T);
3988 continue;
3989 }
3990
3991 // check whether number is even
3992 // If this case occurs, we have to think about it!
3993 // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
3994 // connections to either polygon ...
3995 if (T->size() % 2 != 0) {
3996 ELOG(0, " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!");
3997 performCriticalExit();
3998 }
3999 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
4000 /// 4a. Get NormalVector for one side (this is "front")
4001 NormalVector = (*TriangleWalker)->NormalVector;
4002 LOG(4, "DEBUG: \"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector);
4003 TriangleWalker++;
4004 TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
4005 /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
4006 BoundaryTriangleSet *triangle = NULL;
4007 while (TriangleSprinter != T->end()) {
4008 TriangleWalker = TriangleSprinter;
4009 triangle = *TriangleWalker;
4010 TriangleSprinter++;
4011 LOG(4, "DEBUG: Current triangle to test for removal: " << *triangle);
4012 if (triangle->NormalVector.ScalarProduct(NormalVector) < 0) { // if from other side, then delete and remove from list
4013 LOG(5, "DEBUG: Removing ... ");
4014 TriangleNrs.push(triangle->Nr);
4015 T->erase(TriangleWalker);
4016 RemoveTesselationTriangle(triangle);
4017 } else
4018 LOG(5, "DEBUG: Keeping ... ");
4019 }
4020 /// 4c. Copy all "front" triangles but with inverse NormalVector
4021 TriangleWalker = T->begin();
4022 while (TriangleWalker != T->end()) { // go through all front triangles
4023 LOG(4, "DEBUG: Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector);
4024 for (int i = 0; i < 3; i++)
4025 AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
4026 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4027 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4028 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
4029 if (TriangleNrs.empty())
4030 ELOG(0, "No more free triangle numbers!");
4031 BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
4032 AddTesselationTriangle(); // ... and add
4033 TriangleNrs.pop();
4034 BTS->NormalVector = -1 * (*TriangleWalker)->NormalVector;
4035 TriangleWalker++;
4036 }
4037 if (!TriangleNrs.empty()) {
4038 ELOG(0, "There have been less triangles created than removed!");
4039 }
4040 delete (T); // remove the triangleset
4041 }
4042 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
4043 LOG(2, "DEBUG: Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:");
4044 IndexToIndex::iterator it;
4045 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
4046 LOG(2, "DEBUG: " << (*it).first << " => " << (*it).second);
4047 delete (SimplyDegeneratedTriangles);
4048 /// 5. exit
4049 UniquePolygonSet::iterator PolygonRunner;
4050 while (!ListofDegeneratedPolygons.empty()) {
4051 PolygonRunner = ListofDegeneratedPolygons.begin();
4052 delete (*PolygonRunner);
4053 ListofDegeneratedPolygons.erase(PolygonRunner);
4054 }
4055
4056 return counter;
4057}
4058;
Note: See TracBrowser for help on using the repository browser.