1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * tesselation.cpp
|
---|
10 | *
|
---|
11 | * Created on: Aug 3, 2009
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include <fstream>
|
---|
23 | #include <iomanip>
|
---|
24 | #include <sstream>
|
---|
25 |
|
---|
26 | #include "BoundaryPointSet.hpp"
|
---|
27 | #include "BoundaryLineSet.hpp"
|
---|
28 | #include "BoundaryTriangleSet.hpp"
|
---|
29 | #include "BoundaryPolygonSet.hpp"
|
---|
30 | #include "CandidateForTesselation.hpp"
|
---|
31 | #include "CodePatterns/Assert.hpp"
|
---|
32 | #include "CodePatterns/Info.hpp"
|
---|
33 | #include "CodePatterns/IteratorAdaptors.hpp"
|
---|
34 | #include "CodePatterns/Log.hpp"
|
---|
35 | #include "CodePatterns/Verbose.hpp"
|
---|
36 | #include "Helpers/helpers.hpp"
|
---|
37 | #include "IPointCloud.hpp"
|
---|
38 | #include "LinearAlgebra/Exceptions.hpp"
|
---|
39 | #include "LinearAlgebra/Line.hpp"
|
---|
40 | #include "LinearAlgebra/Plane.hpp"
|
---|
41 | #include "LinearAlgebra/Vector.hpp"
|
---|
42 | #include "LinearAlgebra/vector_ops.hpp"
|
---|
43 | #include "linkedcell.hpp"
|
---|
44 | #include "PointCloudAdaptor.hpp"
|
---|
45 | #include "tesselation.hpp"
|
---|
46 | #include "tesselationhelpers.hpp"
|
---|
47 | #include "TesselPoint.hpp"
|
---|
48 | #include "triangleintersectionlist.hpp"
|
---|
49 |
|
---|
50 | class molecule;
|
---|
51 |
|
---|
52 | const char *TecplotSuffix=".dat";
|
---|
53 | const char *Raster3DSuffix=".r3d";
|
---|
54 | const char *VRMLSUffix=".wrl";
|
---|
55 |
|
---|
56 | const double ParallelEpsilon=1e-3;
|
---|
57 | const double Tesselation::HULLEPSILON = 1e-9;
|
---|
58 |
|
---|
59 | /** Constructor of class Tesselation.
|
---|
60 | */
|
---|
61 | Tesselation::Tesselation() :
|
---|
62 | PointsOnBoundaryCount(0),
|
---|
63 | LinesOnBoundaryCount(0),
|
---|
64 | TrianglesOnBoundaryCount(0),
|
---|
65 | LastTriangle(NULL),
|
---|
66 | TriangleFilesWritten(0),
|
---|
67 | InternalPointer(PointsOnBoundary.begin())
|
---|
68 | {
|
---|
69 | Info FunctionInfo(__func__);
|
---|
70 | }
|
---|
71 | ;
|
---|
72 |
|
---|
73 | /** Destructor of class Tesselation.
|
---|
74 | * We have to free all points, lines and triangles.
|
---|
75 | */
|
---|
76 | Tesselation::~Tesselation()
|
---|
77 | {
|
---|
78 | Info FunctionInfo(__func__);
|
---|
79 | LOG(0, "Free'ing TesselStruct ... ");
|
---|
80 | for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
|
---|
81 | if (runner->second != NULL) {
|
---|
82 | delete (runner->second);
|
---|
83 | runner->second = NULL;
|
---|
84 | } else
|
---|
85 | ELOG(1, "The triangle " << runner->first << " has already been free'd.");
|
---|
86 | }
|
---|
87 | LOG(0, "This envelope was written to file " << TriangleFilesWritten << " times(s).");
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** Gueses first starting triangle of the convex envelope.
|
---|
91 | * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
|
---|
92 | * \param *out output stream for debugging
|
---|
93 | * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
|
---|
94 | */
|
---|
95 | void Tesselation::GuessStartingTriangle()
|
---|
96 | {
|
---|
97 | Info FunctionInfo(__func__);
|
---|
98 | // 4b. create a starting triangle
|
---|
99 | // 4b1. create all distances
|
---|
100 | DistanceMultiMap DistanceMMap;
|
---|
101 | double distance, tmp;
|
---|
102 | Vector PlaneVector, TrialVector;
|
---|
103 | PointMap::iterator A, B, C; // three nodes of the first triangle
|
---|
104 | A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
|
---|
105 |
|
---|
106 | // with A chosen, take each pair B,C and sort
|
---|
107 | if (A != PointsOnBoundary.end()) {
|
---|
108 | B = A;
|
---|
109 | B++;
|
---|
110 | for (; B != PointsOnBoundary.end(); B++) {
|
---|
111 | C = B;
|
---|
112 | C++;
|
---|
113 | for (; C != PointsOnBoundary.end(); C++) {
|
---|
114 | tmp = A->second->node->DistanceSquared(B->second->node->getPosition());
|
---|
115 | distance = tmp * tmp;
|
---|
116 | tmp = A->second->node->DistanceSquared(C->second->node->getPosition());
|
---|
117 | distance += tmp * tmp;
|
---|
118 | tmp = B->second->node->DistanceSquared(C->second->node->getPosition());
|
---|
119 | distance += tmp * tmp;
|
---|
120 | DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|
124 | // // listing distances
|
---|
125 | // if (DoLog(1)) {
|
---|
126 | // std::stringstream output;
|
---|
127 | // output << "Listing DistanceMMap:";
|
---|
128 | // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
|
---|
129 | // output << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
|
---|
130 | // }
|
---|
131 | // LOG(1, output.str());
|
---|
132 | // }
|
---|
133 | // 4b2. pick three baselines forming a triangle
|
---|
134 | // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
135 | DistanceMultiMap::iterator baseline = DistanceMMap.begin();
|
---|
136 | for (; baseline != DistanceMMap.end(); baseline++) {
|
---|
137 | // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
138 | // 2. next, we have to check whether all points reside on only one side of the triangle
|
---|
139 | // 3. construct plane vector
|
---|
140 | PlaneVector = Plane(A->second->node->getPosition(),
|
---|
141 | baseline->second.first->second->node->getPosition(),
|
---|
142 | baseline->second.second->second->node->getPosition()).getNormal();
|
---|
143 | LOG(2, "Plane vector of candidate triangle is " << PlaneVector);
|
---|
144 | // 4. loop over all points
|
---|
145 | double sign = 0.;
|
---|
146 | PointMap::iterator checker = PointsOnBoundary.begin();
|
---|
147 | for (; checker != PointsOnBoundary.end(); checker++) {
|
---|
148 | // (neglecting A,B,C)
|
---|
149 | if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
|
---|
150 | continue;
|
---|
151 | // 4a. project onto plane vector
|
---|
152 | TrialVector = (checker->second->node->getPosition() - A->second->node->getPosition());
|
---|
153 | distance = TrialVector.ScalarProduct(PlaneVector);
|
---|
154 | if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
|
---|
155 | continue;
|
---|
156 | LOG(2, "Projection of " << checker->second->node->getName() << " yields distance of " << distance << ".");
|
---|
157 | tmp = distance / fabs(distance);
|
---|
158 | // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
|
---|
159 | if ((sign != 0) && (tmp != sign)) {
|
---|
160 | // 4c. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
161 | LOG(2, "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leaves " << checker->second->node->getName() << " outside the convex hull.");
|
---|
162 | break;
|
---|
163 | } else { // note the sign for later
|
---|
164 | LOG(2, "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leave " << checker->second->node->getName() << " inside the convex hull.");
|
---|
165 | sign = tmp;
|
---|
166 | }
|
---|
167 | // 4d. Check whether the point is inside the triangle (check distance to each node
|
---|
168 | tmp = checker->second->node->DistanceSquared(A->second->node->getPosition());
|
---|
169 | int innerpoint = 0;
|
---|
170 | if ((tmp < A->second->node->DistanceSquared(baseline->second.first->second->node->getPosition())) && (tmp < A->second->node->DistanceSquared(baseline->second.second->second->node->getPosition())))
|
---|
171 | innerpoint++;
|
---|
172 | tmp = checker->second->node->DistanceSquared(baseline->second.first->second->node->getPosition());
|
---|
173 | if ((tmp < baseline->second.first->second->node->DistanceSquared(A->second->node->getPosition())) && (tmp < baseline->second.first->second->node->DistanceSquared(baseline->second.second->second->node->getPosition())))
|
---|
174 | innerpoint++;
|
---|
175 | tmp = checker->second->node->DistanceSquared(baseline->second.second->second->node->getPosition());
|
---|
176 | if ((tmp < baseline->second.second->second->node->DistanceSquared(baseline->second.first->second->node->getPosition())) && (tmp < baseline->second.second->second->node->DistanceSquared(A->second->node->getPosition())))
|
---|
177 | innerpoint++;
|
---|
178 | // 4e. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
179 | if (innerpoint == 3)
|
---|
180 | break;
|
---|
181 | }
|
---|
182 | // 5. come this far, all on same side? Then break 1. loop and construct triangle
|
---|
183 | if (checker == PointsOnBoundary.end()) {
|
---|
184 | LOG(2, "Looks like we have a candidate!");
|
---|
185 | break;
|
---|
186 | }
|
---|
187 | }
|
---|
188 | if (baseline != DistanceMMap.end()) {
|
---|
189 | BPS[0] = baseline->second.first->second;
|
---|
190 | BPS[1] = baseline->second.second->second;
|
---|
191 | BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
192 | BPS[0] = A->second;
|
---|
193 | BPS[1] = baseline->second.second->second;
|
---|
194 | BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
195 | BPS[0] = baseline->second.first->second;
|
---|
196 | BPS[1] = A->second;
|
---|
197 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
198 |
|
---|
199 | // 4b3. insert created triangle
|
---|
200 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
201 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
202 | TrianglesOnBoundaryCount++;
|
---|
203 | for (int i = 0; i < NDIM; i++) {
|
---|
204 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
|
---|
205 | LinesOnBoundaryCount++;
|
---|
206 | }
|
---|
207 |
|
---|
208 | LOG(1, "Starting triangle is " << *BTS << ".");
|
---|
209 | } else {
|
---|
210 | ELOG(0, "No starting triangle found.");
|
---|
211 | }
|
---|
212 | }
|
---|
213 | ;
|
---|
214 |
|
---|
215 | /** Tesselates the convex envelope of a cluster from a single starting triangle.
|
---|
216 | * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
|
---|
217 | * 2 triangles. Hence, we go through all current lines:
|
---|
218 | * -# if the lines contains to only one triangle
|
---|
219 | * -# We search all points in the boundary
|
---|
220 | * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
|
---|
221 | * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
|
---|
222 | * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
|
---|
223 | * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
|
---|
224 | * \param *out output stream for debugging
|
---|
225 | * \param *configuration for IsAngstroem
|
---|
226 | * \param *cloud cluster of points
|
---|
227 | */
|
---|
228 | void Tesselation::TesselateOnBoundary(IPointCloud & cloud)
|
---|
229 | {
|
---|
230 | Info FunctionInfo(__func__);
|
---|
231 | bool flag;
|
---|
232 | PointMap::iterator winner;
|
---|
233 | class BoundaryPointSet *peak = NULL;
|
---|
234 | double SmallestAngle, TempAngle;
|
---|
235 | Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
|
---|
236 | LineMap::iterator LineChecker[2];
|
---|
237 |
|
---|
238 | Center = cloud.GetCenter();
|
---|
239 | // create a first tesselation with the given BoundaryPoints
|
---|
240 | do {
|
---|
241 | flag = false;
|
---|
242 | for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
|
---|
243 | if (baseline->second->triangles.size() == 1) {
|
---|
244 | // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
|
---|
245 | SmallestAngle = M_PI;
|
---|
246 |
|
---|
247 | // get peak point with respect to this base line's only triangle
|
---|
248 | BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
|
---|
249 | LOG(0, "Current baseline is between " << *(baseline->second) << ".");
|
---|
250 | for (int i = 0; i < 3; i++)
|
---|
251 | if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
|
---|
252 | peak = BTS->endpoints[i];
|
---|
253 | LOG(1, " and has peak " << *peak << ".");
|
---|
254 |
|
---|
255 | // prepare some auxiliary vectors
|
---|
256 | Vector BaseLineCenter, BaseLine;
|
---|
257 | BaseLineCenter = 0.5 * ((baseline->second->endpoints[0]->node->getPosition()) +
|
---|
258 | (baseline->second->endpoints[1]->node->getPosition()));
|
---|
259 | BaseLine = (baseline->second->endpoints[0]->node->getPosition()) - (baseline->second->endpoints[1]->node->getPosition());
|
---|
260 |
|
---|
261 | // offset to center of triangle
|
---|
262 | CenterVector.Zero();
|
---|
263 | for (int i = 0; i < 3; i++)
|
---|
264 | CenterVector += BTS->getEndpoint(i);
|
---|
265 | CenterVector.Scale(1. / 3.);
|
---|
266 | LOG(2, "CenterVector of base triangle is " << CenterVector);
|
---|
267 |
|
---|
268 | // normal vector of triangle
|
---|
269 | NormalVector = (*Center) - CenterVector;
|
---|
270 | BTS->GetNormalVector(NormalVector);
|
---|
271 | NormalVector = BTS->NormalVector;
|
---|
272 | LOG(2, "NormalVector of base triangle is " << NormalVector);
|
---|
273 |
|
---|
274 | // vector in propagation direction (out of triangle)
|
---|
275 | // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
|
---|
276 | PropagationVector = Plane(BaseLine, NormalVector,0).getNormal();
|
---|
277 | TempVector = CenterVector - (baseline->second->endpoints[0]->node->getPosition()); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
|
---|
278 | //LOG(0, "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << ".");
|
---|
279 | if (PropagationVector.ScalarProduct(TempVector) > 0) // make sure normal propagation vector points outward from baseline
|
---|
280 | PropagationVector.Scale(-1.);
|
---|
281 | LOG(2, "PropagationVector of base triangle is " << PropagationVector);
|
---|
282 | winner = PointsOnBoundary.end();
|
---|
283 |
|
---|
284 | // loop over all points and calculate angle between normal vector of new and present triangle
|
---|
285 | for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
|
---|
286 | if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
|
---|
287 | LOG(1, "Target point is " << *(target->second) << ":");
|
---|
288 |
|
---|
289 | // first check direction, so that triangles don't intersect
|
---|
290 | VirtualNormalVector = (target->second->node->getPosition()) - BaseLineCenter;
|
---|
291 | VirtualNormalVector.ProjectOntoPlane(NormalVector);
|
---|
292 | TempAngle = VirtualNormalVector.Angle(PropagationVector);
|
---|
293 | LOG(2, "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << ".");
|
---|
294 | if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees)
|
---|
295 | LOG(2, "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!");
|
---|
296 | continue;
|
---|
297 | } else
|
---|
298 | LOG(2, "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!");
|
---|
299 |
|
---|
300 | // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
|
---|
301 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
|
---|
302 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
|
---|
303 | if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
|
---|
304 | LOG(2, *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles.");
|
---|
305 | continue;
|
---|
306 | }
|
---|
307 | if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
|
---|
308 | LOG(2, *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles.");
|
---|
309 | continue;
|
---|
310 | }
|
---|
311 |
|
---|
312 | // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
|
---|
313 | if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
|
---|
314 | LOG(4, "Current target is peak!");
|
---|
315 | continue;
|
---|
316 | }
|
---|
317 |
|
---|
318 | // check for linear dependence
|
---|
319 | TempVector = (baseline->second->endpoints[0]->node->getPosition()) - (target->second->node->getPosition());
|
---|
320 | helper = (baseline->second->endpoints[1]->node->getPosition()) - (target->second->node->getPosition());
|
---|
321 | helper.ProjectOntoPlane(TempVector);
|
---|
322 | if (fabs(helper.NormSquared()) < MYEPSILON) {
|
---|
323 | LOG(2, "Chosen set of vectors is linear dependent.");
|
---|
324 | continue;
|
---|
325 | }
|
---|
326 |
|
---|
327 | // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
|
---|
328 | flag = true;
|
---|
329 | VirtualNormalVector = Plane((baseline->second->endpoints[0]->node->getPosition()),
|
---|
330 | (baseline->second->endpoints[1]->node->getPosition()),
|
---|
331 | (target->second->node->getPosition())).getNormal();
|
---|
332 | TempVector = (1./3.) * ((baseline->second->endpoints[0]->node->getPosition()) +
|
---|
333 | (baseline->second->endpoints[1]->node->getPosition()) +
|
---|
334 | (target->second->node->getPosition()));
|
---|
335 | TempVector -= (*Center);
|
---|
336 | // make it always point outward
|
---|
337 | if (VirtualNormalVector.ScalarProduct(TempVector) < 0)
|
---|
338 | VirtualNormalVector.Scale(-1.);
|
---|
339 | // calculate angle
|
---|
340 | TempAngle = NormalVector.Angle(VirtualNormalVector);
|
---|
341 | LOG(2, "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << ".");
|
---|
342 | if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
|
---|
343 | SmallestAngle = TempAngle;
|
---|
344 | winner = target;
|
---|
345 | LOG(2, "New winner " << *winner->second->node << " due to smaller angle between normal vectors.");
|
---|
346 | } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
|
---|
347 | // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
|
---|
348 | helper = (target->second->node->getPosition()) - BaseLineCenter;
|
---|
349 | helper.ProjectOntoPlane(BaseLine);
|
---|
350 | // ...the one with the smaller angle is the better candidate
|
---|
351 | TempVector = (target->second->node->getPosition()) - BaseLineCenter;
|
---|
352 | TempVector.ProjectOntoPlane(VirtualNormalVector);
|
---|
353 | TempAngle = TempVector.Angle(helper);
|
---|
354 | TempVector = (winner->second->node->getPosition()) - BaseLineCenter;
|
---|
355 | TempVector.ProjectOntoPlane(VirtualNormalVector);
|
---|
356 | if (TempAngle < TempVector.Angle(helper)) {
|
---|
357 | TempAngle = NormalVector.Angle(VirtualNormalVector);
|
---|
358 | SmallestAngle = TempAngle;
|
---|
359 | winner = target;
|
---|
360 | LOG(2, "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction.");
|
---|
361 | } else
|
---|
362 | LOG(2, "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction.");
|
---|
363 | } else
|
---|
364 | LOG(2, "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors.");
|
---|
365 | }
|
---|
366 | } // end of loop over all boundary points
|
---|
367 |
|
---|
368 | // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
|
---|
369 | if (winner != PointsOnBoundary.end()) {
|
---|
370 | LOG(0, "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << ".");
|
---|
371 | // create the lins of not yet present
|
---|
372 | BLS[0] = baseline->second;
|
---|
373 | // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
|
---|
374 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
|
---|
375 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
|
---|
376 | if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
|
---|
377 | BPS[0] = baseline->second->endpoints[0];
|
---|
378 | BPS[1] = winner->second;
|
---|
379 | BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
380 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
|
---|
381 | LinesOnBoundaryCount++;
|
---|
382 | } else
|
---|
383 | BLS[1] = LineChecker[0]->second;
|
---|
384 | if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
|
---|
385 | BPS[0] = baseline->second->endpoints[1];
|
---|
386 | BPS[1] = winner->second;
|
---|
387 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
388 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
|
---|
389 | LinesOnBoundaryCount++;
|
---|
390 | } else
|
---|
391 | BLS[2] = LineChecker[1]->second;
|
---|
392 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
393 | BTS->GetCenter(helper);
|
---|
394 | helper -= (*Center);
|
---|
395 | helper *= -1;
|
---|
396 | BTS->GetNormalVector(helper);
|
---|
397 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
398 | TrianglesOnBoundaryCount++;
|
---|
399 | } else {
|
---|
400 | ELOG(2, "I could not determine a winner for this baseline " << *(baseline->second) << ".");
|
---|
401 | }
|
---|
402 |
|
---|
403 | // 5d. If the set of lines is not yet empty, go to 5. and continue
|
---|
404 | } else
|
---|
405 | LOG(0, "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << ".");
|
---|
406 | } while (flag);
|
---|
407 |
|
---|
408 | // exit
|
---|
409 | delete (Center);
|
---|
410 | }
|
---|
411 | ;
|
---|
412 |
|
---|
413 | /** Inserts all points outside of the tesselated surface into it by adding new triangles.
|
---|
414 | * \param *out output stream for debugging
|
---|
415 | * \param *cloud cluster of points
|
---|
416 | * \param *LC LinkedCell structure to find nearest point quickly
|
---|
417 | * \return true - all straddling points insert, false - something went wrong
|
---|
418 | */
|
---|
419 | bool Tesselation::InsertStraddlingPoints(IPointCloud & cloud, const LinkedCell *LC)
|
---|
420 | {
|
---|
421 | Info FunctionInfo(__func__);
|
---|
422 | Vector Intersection, Normal;
|
---|
423 | TesselPoint *Walker = NULL;
|
---|
424 | Vector *Center = cloud.GetCenter();
|
---|
425 | TriangleList *triangles = NULL;
|
---|
426 | bool AddFlag = false;
|
---|
427 | LinkedCell *BoundaryPoints = NULL;
|
---|
428 | bool SuccessFlag = true;
|
---|
429 |
|
---|
430 | cloud.GoToFirst();
|
---|
431 | PointCloudAdaptor< Tesselation, MapValueIterator<Tesselation::iterator> > newcloud(this, cloud.GetName());
|
---|
432 | BoundaryPoints = new LinkedCell(newcloud, 5.);
|
---|
433 | while (!cloud.IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
|
---|
434 | if (AddFlag) {
|
---|
435 | delete (BoundaryPoints);
|
---|
436 | BoundaryPoints = new LinkedCell(newcloud, 5.);
|
---|
437 | AddFlag = false;
|
---|
438 | }
|
---|
439 | Walker = cloud.GetPoint();
|
---|
440 | LOG(0, "Current point is " << *Walker << ".");
|
---|
441 | // get the next triangle
|
---|
442 | triangles = FindClosestTrianglesToVector(Walker->getPosition(), BoundaryPoints);
|
---|
443 | if (triangles != NULL)
|
---|
444 | BTS = triangles->front();
|
---|
445 | else
|
---|
446 | BTS = NULL;
|
---|
447 | delete triangles;
|
---|
448 | if ((BTS == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
|
---|
449 | LOG(0, "No triangles found, probably a tesselation point itself.");
|
---|
450 | cloud.GoToNext();
|
---|
451 | continue;
|
---|
452 | } else {
|
---|
453 | }
|
---|
454 | LOG(0, "Closest triangle is " << *BTS << ".");
|
---|
455 | // get the intersection point
|
---|
456 | if (BTS->GetIntersectionInsideTriangle(*Center, Walker->getPosition(), Intersection)) {
|
---|
457 | LOG(0, "We have an intersection at " << Intersection << ".");
|
---|
458 | // we have the intersection, check whether in- or outside of boundary
|
---|
459 | if ((Center->DistanceSquared(Walker->getPosition()) - Center->DistanceSquared(Intersection)) < -MYEPSILON) {
|
---|
460 | // inside, next!
|
---|
461 | LOG(0, *Walker << " is inside wrt triangle " << *BTS << ".");
|
---|
462 | } else {
|
---|
463 | // outside!
|
---|
464 | LOG(0, *Walker << " is outside wrt triangle " << *BTS << ".");
|
---|
465 | class BoundaryLineSet *OldLines[3], *NewLines[3];
|
---|
466 | class BoundaryPointSet *OldPoints[3], *NewPoint;
|
---|
467 | // store the three old lines and old points
|
---|
468 | for (int i = 0; i < 3; i++) {
|
---|
469 | OldLines[i] = BTS->lines[i];
|
---|
470 | OldPoints[i] = BTS->endpoints[i];
|
---|
471 | }
|
---|
472 | Normal = BTS->NormalVector;
|
---|
473 | // add Walker to boundary points
|
---|
474 | LOG(0, "Adding " << *Walker << " to BoundaryPoints.");
|
---|
475 | AddFlag = true;
|
---|
476 | if (AddBoundaryPoint(Walker, 0))
|
---|
477 | NewPoint = BPS[0];
|
---|
478 | else
|
---|
479 | continue;
|
---|
480 | // remove triangle
|
---|
481 | LOG(0, "Erasing triangle " << *BTS << ".");
|
---|
482 | TrianglesOnBoundary.erase(BTS->Nr);
|
---|
483 | delete (BTS);
|
---|
484 | // create three new boundary lines
|
---|
485 | for (int i = 0; i < 3; i++) {
|
---|
486 | BPS[0] = NewPoint;
|
---|
487 | BPS[1] = OldPoints[i];
|
---|
488 | NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
489 | LOG(1, "Creating new line " << *NewLines[i] << ".");
|
---|
490 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
|
---|
491 | LinesOnBoundaryCount++;
|
---|
492 | }
|
---|
493 | // create three new triangle with new point
|
---|
494 | for (int i = 0; i < 3; i++) { // find all baselines
|
---|
495 | BLS[0] = OldLines[i];
|
---|
496 | int n = 1;
|
---|
497 | for (int j = 0; j < 3; j++) {
|
---|
498 | if (NewLines[j]->IsConnectedTo(BLS[0])) {
|
---|
499 | if (n > 2) {
|
---|
500 | ELOG(2, BLS[0] << " connects to all of the new lines?!");
|
---|
501 | return false;
|
---|
502 | } else
|
---|
503 | BLS[n++] = NewLines[j];
|
---|
504 | }
|
---|
505 | }
|
---|
506 | // create the triangle
|
---|
507 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
508 | Normal.Scale(-1.);
|
---|
509 | BTS->GetNormalVector(Normal);
|
---|
510 | Normal.Scale(-1.);
|
---|
511 | LOG(0, "Created new triangle " << *BTS << ".");
|
---|
512 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
513 | TrianglesOnBoundaryCount++;
|
---|
514 | }
|
---|
515 | }
|
---|
516 | } else { // something is wrong with FindClosestTriangleToPoint!
|
---|
517 | ELOG(1, "The closest triangle did not produce an intersection!");
|
---|
518 | SuccessFlag = false;
|
---|
519 | break;
|
---|
520 | }
|
---|
521 | cloud.GoToNext();
|
---|
522 | }
|
---|
523 |
|
---|
524 | // exit
|
---|
525 | delete (Center);
|
---|
526 | delete (BoundaryPoints);
|
---|
527 | return SuccessFlag;
|
---|
528 | }
|
---|
529 | ;
|
---|
530 |
|
---|
531 | /** Adds a point to the tesselation::PointsOnBoundary list.
|
---|
532 | * \param *Walker point to add
|
---|
533 | * \param n TesselStruct::BPS index to put pointer into
|
---|
534 | * \return true - new point was added, false - point already present
|
---|
535 | */
|
---|
536 | bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
|
---|
537 | {
|
---|
538 | Info FunctionInfo(__func__);
|
---|
539 | PointTestPair InsertUnique;
|
---|
540 | BPS[n] = new class BoundaryPointSet(Walker);
|
---|
541 | InsertUnique = PointsOnBoundary.insert(PointPair(Walker->getNr(), BPS[n]));
|
---|
542 | if (InsertUnique.second) { // if new point was not present before, increase counter
|
---|
543 | PointsOnBoundaryCount++;
|
---|
544 | return true;
|
---|
545 | } else {
|
---|
546 | delete (BPS[n]);
|
---|
547 | BPS[n] = InsertUnique.first->second;
|
---|
548 | return false;
|
---|
549 | }
|
---|
550 | }
|
---|
551 | ;
|
---|
552 |
|
---|
553 | /** Adds point to Tesselation::PointsOnBoundary if not yet present.
|
---|
554 | * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
|
---|
555 | * @param Candidate point to add
|
---|
556 | * @param n index for this point in Tesselation::TPS array
|
---|
557 | */
|
---|
558 | void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
|
---|
559 | {
|
---|
560 | Info FunctionInfo(__func__);
|
---|
561 | PointTestPair InsertUnique;
|
---|
562 | TPS[n] = new class BoundaryPointSet(Candidate);
|
---|
563 | InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->getNr(), TPS[n]));
|
---|
564 | if (InsertUnique.second) { // if new point was not present before, increase counter
|
---|
565 | PointsOnBoundaryCount++;
|
---|
566 | } else {
|
---|
567 | delete TPS[n];
|
---|
568 | LOG(0, "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary.");
|
---|
569 | TPS[n] = (InsertUnique.first)->second;
|
---|
570 | }
|
---|
571 | }
|
---|
572 | ;
|
---|
573 |
|
---|
574 | /** Sets point to a present Tesselation::PointsOnBoundary.
|
---|
575 | * Tesselation::TPS is set to the existing one or NULL if not found.
|
---|
576 | * @param Candidate point to set to
|
---|
577 | * @param n index for this point in Tesselation::TPS array
|
---|
578 | */
|
---|
579 | void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
|
---|
580 | {
|
---|
581 | Info FunctionInfo(__func__);
|
---|
582 | PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->getNr());
|
---|
583 | if (FindPoint != PointsOnBoundary.end())
|
---|
584 | TPS[n] = FindPoint->second;
|
---|
585 | else
|
---|
586 | TPS[n] = NULL;
|
---|
587 | }
|
---|
588 | ;
|
---|
589 |
|
---|
590 | /** Function tries to add line from current Points in BPS to BoundaryLineSet.
|
---|
591 | * If successful it raises the line count and inserts the new line into the BLS,
|
---|
592 | * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
|
---|
593 | * @param *OptCenter desired OptCenter if there are more than one candidate line
|
---|
594 | * @param *candidate third point of the triangle to be, for checking between multiple open line candidates
|
---|
595 | * @param *a first endpoint
|
---|
596 | * @param *b second endpoint
|
---|
597 | * @param n index of Tesselation::BLS giving the line with both endpoints
|
---|
598 | */
|
---|
599 | void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
|
---|
600 | {
|
---|
601 | bool insertNewLine = true;
|
---|
602 | LineMap::iterator FindLine = a->lines.find(b->node->getNr());
|
---|
603 | BoundaryLineSet *WinningLine = NULL;
|
---|
604 | if (FindLine != a->lines.end()) {
|
---|
605 | LOG(1, "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << ".");
|
---|
606 |
|
---|
607 | pair<LineMap::iterator, LineMap::iterator> FindPair;
|
---|
608 | FindPair = a->lines.equal_range(b->node->getNr());
|
---|
609 |
|
---|
610 | for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) {
|
---|
611 | LOG(1, "INFO: Checking line " << *(FindLine->second) << " ...");
|
---|
612 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
613 | if (FindLine->second->triangles.size() == 1) {
|
---|
614 | CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
|
---|
615 | if (!Finder->second->pointlist.empty())
|
---|
616 | LOG(1, "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << ".");
|
---|
617 | else
|
---|
618 | LOG(1, "INFO: line " << *(FindLine->second) << " is open with no candidate.");
|
---|
619 | // get open line
|
---|
620 | for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) {
|
---|
621 | if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || OptCenter->DistanceSquared(Finder->second->OptCenter) < MYEPSILON )) { // stop searching if candidate matches
|
---|
622 | LOG(1, "ACCEPT: Candidate " << *(*CandidateChecker) << " has the right center " << Finder->second->OptCenter << ".");
|
---|
623 | insertNewLine = false;
|
---|
624 | WinningLine = FindLine->second;
|
---|
625 | break;
|
---|
626 | } else {
|
---|
627 | LOG(1, "REJECT: Candidate " << *(*CandidateChecker) << "'s center " << Finder->second->OptCenter << " does not match desired on " << *OptCenter << ".");
|
---|
628 | }
|
---|
629 | }
|
---|
630 | }
|
---|
631 | }
|
---|
632 | }
|
---|
633 |
|
---|
634 | if (insertNewLine) {
|
---|
635 | AddNewTesselationTriangleLine(a, b, n);
|
---|
636 | } else {
|
---|
637 | AddExistingTesselationTriangleLine(WinningLine, n);
|
---|
638 | }
|
---|
639 | }
|
---|
640 | ;
|
---|
641 |
|
---|
642 | /**
|
---|
643 | * Adds lines from each of the current points in the BPS to BoundaryLineSet.
|
---|
644 | * Raises the line count and inserts the new line into the BLS.
|
---|
645 | *
|
---|
646 | * @param *a first endpoint
|
---|
647 | * @param *b second endpoint
|
---|
648 | * @param n index of Tesselation::BLS giving the line with both endpoints
|
---|
649 | */
|
---|
650 | void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
|
---|
651 | {
|
---|
652 | Info FunctionInfo(__func__);
|
---|
653 | LOG(0, "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << ".");
|
---|
654 | BPS[0] = a;
|
---|
655 | BPS[1] = b;
|
---|
656 | BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
|
---|
657 | // add line to global map
|
---|
658 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
|
---|
659 | // increase counter
|
---|
660 | LinesOnBoundaryCount++;
|
---|
661 | // also add to open lines
|
---|
662 | CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
|
---|
663 | OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
|
---|
664 | }
|
---|
665 | ;
|
---|
666 |
|
---|
667 | /** Uses an existing line for a new triangle.
|
---|
668 | * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines.
|
---|
669 | * \param *FindLine the line to add
|
---|
670 | * \param n index of the line to set in Tesselation::BLS
|
---|
671 | */
|
---|
672 | void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n)
|
---|
673 | {
|
---|
674 | Info FunctionInfo(__func__);
|
---|
675 | LOG(0, "Using existing line " << *Line);
|
---|
676 |
|
---|
677 | // set endpoints and line
|
---|
678 | BPS[0] = Line->endpoints[0];
|
---|
679 | BPS[1] = Line->endpoints[1];
|
---|
680 | BLS[n] = Line;
|
---|
681 | // remove existing line from OpenLines
|
---|
682 | CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
|
---|
683 | if (CandidateLine != OpenLines.end()) {
|
---|
684 | LOG(1, " Removing line from OpenLines.");
|
---|
685 | delete (CandidateLine->second);
|
---|
686 | OpenLines.erase(CandidateLine);
|
---|
687 | } else {
|
---|
688 | ELOG(1, "Line exists and is attached to less than two triangles, but not in OpenLines!");
|
---|
689 | }
|
---|
690 | }
|
---|
691 | ;
|
---|
692 |
|
---|
693 | /** Function adds triangle to global list.
|
---|
694 | * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
|
---|
695 | */
|
---|
696 | void Tesselation::AddTesselationTriangle()
|
---|
697 | {
|
---|
698 | Info FunctionInfo(__func__);
|
---|
699 | LOG(1, "Adding triangle to global TrianglesOnBoundary map.");
|
---|
700 |
|
---|
701 | // add triangle to global map
|
---|
702 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
703 | TrianglesOnBoundaryCount++;
|
---|
704 |
|
---|
705 | // set as last new triangle
|
---|
706 | LastTriangle = BTS;
|
---|
707 |
|
---|
708 | // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
|
---|
709 | }
|
---|
710 | ;
|
---|
711 |
|
---|
712 | /** Function adds triangle to global list.
|
---|
713 | * Furthermore, the triangle number is set to \a Nr.
|
---|
714 | * \param getNr() triangle number
|
---|
715 | */
|
---|
716 | void Tesselation::AddTesselationTriangle(const int nr)
|
---|
717 | {
|
---|
718 | Info FunctionInfo(__func__);
|
---|
719 | LOG(0, "Adding triangle to global TrianglesOnBoundary map.");
|
---|
720 |
|
---|
721 | // add triangle to global map
|
---|
722 | TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
|
---|
723 |
|
---|
724 | // set as last new triangle
|
---|
725 | LastTriangle = BTS;
|
---|
726 |
|
---|
727 | // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
|
---|
728 | }
|
---|
729 | ;
|
---|
730 |
|
---|
731 | /** Removes a triangle from the tesselation.
|
---|
732 | * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
|
---|
733 | * Removes itself from memory.
|
---|
734 | * \param *triangle to remove
|
---|
735 | */
|
---|
736 | void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
|
---|
737 | {
|
---|
738 | Info FunctionInfo(__func__);
|
---|
739 | if (triangle == NULL)
|
---|
740 | return;
|
---|
741 | for (int i = 0; i < 3; i++) {
|
---|
742 | if (triangle->lines[i] != NULL) {
|
---|
743 | LOG(0, "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << ".");
|
---|
744 | triangle->lines[i]->triangles.erase(triangle->Nr);
|
---|
745 | std::stringstream output;
|
---|
746 | output << "INFO: " << *triangle->lines[i] << " is ";
|
---|
747 | if (triangle->lines[i]->triangles.empty()) {
|
---|
748 | output << "no more attached to any triangle, erasing.";
|
---|
749 | RemoveTesselationLine(triangle->lines[i]);
|
---|
750 | } else {
|
---|
751 | output << "still attached to another triangle: ";
|
---|
752 | OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
|
---|
753 | for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
|
---|
754 | output << "\t[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
|
---|
755 | }
|
---|
756 | LOG(1, output.str());
|
---|
757 | triangle->lines[i] = NULL; // free'd or not: disconnect
|
---|
758 | } else
|
---|
759 | ELOG(1, "This line " << i << " has already been free'd.");
|
---|
760 | }
|
---|
761 |
|
---|
762 | if (TrianglesOnBoundary.erase(triangle->Nr))
|
---|
763 | LOG(0, "Removing triangle Nr. " << triangle->Nr << ".");
|
---|
764 | delete (triangle);
|
---|
765 | }
|
---|
766 | ;
|
---|
767 |
|
---|
768 | /** Removes a line from the tesselation.
|
---|
769 | * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
|
---|
770 | * \param *line line to remove
|
---|
771 | */
|
---|
772 | void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
|
---|
773 | {
|
---|
774 | Info FunctionInfo(__func__);
|
---|
775 | int Numbers[2];
|
---|
776 |
|
---|
777 | if (line == NULL)
|
---|
778 | return;
|
---|
779 | // get other endpoint number for finding copies of same line
|
---|
780 | if (line->endpoints[1] != NULL)
|
---|
781 | Numbers[0] = line->endpoints[1]->Nr;
|
---|
782 | else
|
---|
783 | Numbers[0] = -1;
|
---|
784 | if (line->endpoints[0] != NULL)
|
---|
785 | Numbers[1] = line->endpoints[0]->Nr;
|
---|
786 | else
|
---|
787 | Numbers[1] = -1;
|
---|
788 |
|
---|
789 | for (int i = 0; i < 2; i++) {
|
---|
790 | if (line->endpoints[i] != NULL) {
|
---|
791 | if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
|
---|
792 | pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
|
---|
793 | for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
|
---|
794 | if ((*Runner).second == line) {
|
---|
795 | LOG(0, "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << ".");
|
---|
796 | line->endpoints[i]->lines.erase(Runner);
|
---|
797 | break;
|
---|
798 | }
|
---|
799 | } else { // there's just a single line left
|
---|
800 | if (line->endpoints[i]->lines.erase(line->Nr))
|
---|
801 | LOG(0, "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << ".");
|
---|
802 | }
|
---|
803 | if (line->endpoints[i]->lines.empty()) {
|
---|
804 | LOG(0, *line->endpoints[i] << " has no more lines it's attached to, erasing.");
|
---|
805 | RemoveTesselationPoint(line->endpoints[i]);
|
---|
806 | } else if (DoLog(0)) {
|
---|
807 | std::stringstream output;
|
---|
808 | output << *line->endpoints[i] << " has still lines it's attached to: ";
|
---|
809 | for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
|
---|
810 | output << "[" << *(LineRunner->second) << "] \t";
|
---|
811 | LOG(0, output.str());
|
---|
812 | }
|
---|
813 | line->endpoints[i] = NULL; // free'd or not: disconnect
|
---|
814 | } else
|
---|
815 | ELOG(1, "Endpoint " << i << " has already been free'd.");
|
---|
816 | }
|
---|
817 | if (!line->triangles.empty())
|
---|
818 | ELOG(2, "Memory Leak! I " << *line << " am still connected to some triangles.");
|
---|
819 |
|
---|
820 | if (LinesOnBoundary.erase(line->Nr))
|
---|
821 | LOG(0, "Removing line Nr. " << line->Nr << ".");
|
---|
822 | delete (line);
|
---|
823 | }
|
---|
824 | ;
|
---|
825 |
|
---|
826 | /** Removes a point from the tesselation.
|
---|
827 | * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
|
---|
828 | * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
|
---|
829 | * \param *point point to remove
|
---|
830 | */
|
---|
831 | void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
|
---|
832 | {
|
---|
833 | Info FunctionInfo(__func__);
|
---|
834 | if (point == NULL)
|
---|
835 | return;
|
---|
836 | if (PointsOnBoundary.erase(point->Nr))
|
---|
837 | LOG(0, "Removing point Nr. " << point->Nr << ".");
|
---|
838 | delete (point);
|
---|
839 | }
|
---|
840 | ;
|
---|
841 |
|
---|
842 | /** Checks validity of a given sphere of a candidate line.
|
---|
843 | * \sa CandidateForTesselation::CheckValidity(), which is more evolved.
|
---|
844 | * We check CandidateForTesselation::OtherOptCenter
|
---|
845 | * \param &CandidateLine contains other degenerated candidates which we have to subtract as well
|
---|
846 | * \param RADIUS radius of sphere
|
---|
847 | * \param *LC LinkedCell structure with other atoms
|
---|
848 | * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated
|
---|
849 | */
|
---|
850 | bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC) const
|
---|
851 | {
|
---|
852 | Info FunctionInfo(__func__);
|
---|
853 |
|
---|
854 | LOG(1, "INFO: Checking whether sphere contains no others points ...");
|
---|
855 | bool flag = true;
|
---|
856 |
|
---|
857 | LOG(1, "Check by: draw sphere {" << CandidateLine.OtherOptCenter[0] << " " << CandidateLine.OtherOptCenter[1] << " " << CandidateLine.OtherOptCenter[2] << "} radius " << RADIUS << " resolution 30");
|
---|
858 | // get all points inside the sphere
|
---|
859 | TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter);
|
---|
860 |
|
---|
861 | LOG(1, "The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":");
|
---|
862 | for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
|
---|
863 | LOG(1, " " << *(*Runner) << " with distance " << (*Runner)->distance(CandidateLine.OtherOptCenter) << ".");
|
---|
864 |
|
---|
865 | // remove triangles's endpoints
|
---|
866 | for (int i = 0; i < 2; i++)
|
---|
867 | ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node);
|
---|
868 |
|
---|
869 | // remove other candidates
|
---|
870 | for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner)
|
---|
871 | ListofPoints->remove(*Runner);
|
---|
872 |
|
---|
873 | // check for other points
|
---|
874 | if (!ListofPoints->empty()) {
|
---|
875 | LOG(1, "CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere.");
|
---|
876 | flag = false;
|
---|
877 | LOG(1, "External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":");
|
---|
878 | for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
|
---|
879 | LOG(1, " " << *(*Runner) << " with distance " << (*Runner)->distance(CandidateLine.OtherOptCenter) << ".");
|
---|
880 | }
|
---|
881 | delete (ListofPoints);
|
---|
882 |
|
---|
883 | return flag;
|
---|
884 | }
|
---|
885 | ;
|
---|
886 |
|
---|
887 | /** Checks whether the triangle consisting of the three points is already present.
|
---|
888 | * Searches for the points in Tesselation::PointsOnBoundary and checks their
|
---|
889 | * lines. If any of the three edges already has two triangles attached, false is
|
---|
890 | * returned.
|
---|
891 | * \param *out output stream for debugging
|
---|
892 | * \param *Candidates endpoints of the triangle candidate
|
---|
893 | * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
|
---|
894 | * triangles exist which is the maximum for three points
|
---|
895 | */
|
---|
896 | int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
|
---|
897 | {
|
---|
898 | Info FunctionInfo(__func__);
|
---|
899 | int adjacentTriangleCount = 0;
|
---|
900 | class BoundaryPointSet *Points[3];
|
---|
901 |
|
---|
902 | // builds a triangle point set (Points) of the end points
|
---|
903 | for (int i = 0; i < 3; i++) {
|
---|
904 | PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->getNr());
|
---|
905 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
906 | Points[i] = FindPoint->second;
|
---|
907 | } else {
|
---|
908 | Points[i] = NULL;
|
---|
909 | }
|
---|
910 | }
|
---|
911 |
|
---|
912 | // checks lines between the points in the Points for their adjacent triangles
|
---|
913 | for (int i = 0; i < 3; i++) {
|
---|
914 | if (Points[i] != NULL) {
|
---|
915 | for (int j = i; j < 3; j++) {
|
---|
916 | if (Points[j] != NULL) {
|
---|
917 | LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->getNr());
|
---|
918 | for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->getNr()); FindLine++) {
|
---|
919 | TriangleMap *triangles = &FindLine->second->triangles;
|
---|
920 | LOG(1, "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << ".");
|
---|
921 | for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
|
---|
922 | if (FindTriangle->second->IsPresentTupel(Points)) {
|
---|
923 | adjacentTriangleCount++;
|
---|
924 | }
|
---|
925 | }
|
---|
926 | LOG(1, "end.");
|
---|
927 | }
|
---|
928 | // Only one of the triangle lines must be considered for the triangle count.
|
---|
929 | //LOG(0, "Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
|
---|
930 | //return adjacentTriangleCount;
|
---|
931 | }
|
---|
932 | }
|
---|
933 | }
|
---|
934 | }
|
---|
935 |
|
---|
936 | LOG(0, "Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
|
---|
937 | return adjacentTriangleCount;
|
---|
938 | }
|
---|
939 | ;
|
---|
940 |
|
---|
941 | /** Checks whether the triangle consisting of the three points is already present.
|
---|
942 | * Searches for the points in Tesselation::PointsOnBoundary and checks their
|
---|
943 | * lines. If any of the three edges already has two triangles attached, false is
|
---|
944 | * returned.
|
---|
945 | * \param *out output stream for debugging
|
---|
946 | * \param *Candidates endpoints of the triangle candidate
|
---|
947 | * \return NULL - none found or pointer to triangle
|
---|
948 | */
|
---|
949 | class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
|
---|
950 | {
|
---|
951 | Info FunctionInfo(__func__);
|
---|
952 | class BoundaryTriangleSet *triangle = NULL;
|
---|
953 | class BoundaryPointSet *Points[3];
|
---|
954 |
|
---|
955 | // builds a triangle point set (Points) of the end points
|
---|
956 | for (int i = 0; i < 3; i++) {
|
---|
957 | PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->getNr());
|
---|
958 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
959 | Points[i] = FindPoint->second;
|
---|
960 | } else {
|
---|
961 | Points[i] = NULL;
|
---|
962 | }
|
---|
963 | }
|
---|
964 |
|
---|
965 | // checks lines between the points in the Points for their adjacent triangles
|
---|
966 | for (int i = 0; i < 3; i++) {
|
---|
967 | if (Points[i] != NULL) {
|
---|
968 | for (int j = i; j < 3; j++) {
|
---|
969 | if (Points[j] != NULL) {
|
---|
970 | LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->getNr());
|
---|
971 | for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->getNr()); FindLine++) {
|
---|
972 | TriangleMap *triangles = &FindLine->second->triangles;
|
---|
973 | for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
|
---|
974 | if (FindTriangle->second->IsPresentTupel(Points)) {
|
---|
975 | if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
|
---|
976 | triangle = FindTriangle->second;
|
---|
977 | }
|
---|
978 | }
|
---|
979 | }
|
---|
980 | // Only one of the triangle lines must be considered for the triangle count.
|
---|
981 | //LOG(0, "Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
|
---|
982 | //return adjacentTriangleCount;
|
---|
983 | }
|
---|
984 | }
|
---|
985 | }
|
---|
986 | }
|
---|
987 |
|
---|
988 | return triangle;
|
---|
989 | }
|
---|
990 | ;
|
---|
991 |
|
---|
992 | /** Finds the starting triangle for FindNonConvexBorder().
|
---|
993 | * Looks at the outermost point per axis, then FindSecondPointForTesselation()
|
---|
994 | * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
|
---|
995 | * point are called.
|
---|
996 | * \param *out output stream for debugging
|
---|
997 | * \param RADIUS radius of virtual rolling sphere
|
---|
998 | * \param *LC LinkedCell structure with neighbouring TesselPoint's
|
---|
999 | * \return true - a starting triangle has been created, false - no valid triple of points found
|
---|
1000 | */
|
---|
1001 | bool Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC)
|
---|
1002 | {
|
---|
1003 | Info FunctionInfo(__func__);
|
---|
1004 | int i = 0;
|
---|
1005 | TesselPoint* MaxPoint[NDIM];
|
---|
1006 | TesselPoint* Temporary;
|
---|
1007 | double maxCoordinate[NDIM];
|
---|
1008 | BoundaryLineSet *BaseLine = NULL;
|
---|
1009 | Vector helper;
|
---|
1010 | Vector Chord;
|
---|
1011 | Vector SearchDirection;
|
---|
1012 | Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
|
---|
1013 | Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
|
---|
1014 | Vector SphereCenter;
|
---|
1015 | Vector NormalVector;
|
---|
1016 |
|
---|
1017 | NormalVector.Zero();
|
---|
1018 |
|
---|
1019 | for (i = 0; i < 3; i++) {
|
---|
1020 | MaxPoint[i] = NULL;
|
---|
1021 | maxCoordinate[i] = -1;
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | // 1. searching topmost point with respect to each axis
|
---|
1025 | for (int i = 0; i < NDIM; i++) { // each axis
|
---|
1026 | LC->n[i] = LC->N[i] - 1; // current axis is topmost cell
|
---|
1027 | const int map[NDIM] = {i, (i + 1) % NDIM, (i + 2) % NDIM};
|
---|
1028 | for (LC->n[map[1]] = 0; LC->n[map[1]] < LC->N[map[1]]; LC->n[map[1]]++)
|
---|
1029 | for (LC->n[map[2]] = 0; LC->n[map[2]] < LC->N[map[2]]; LC->n[map[2]]++) {
|
---|
1030 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
1031 | //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
|
---|
1032 | if (List != NULL) {
|
---|
1033 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
1034 | if ((*Runner)->at(map[0]) > maxCoordinate[map[0]]) {
|
---|
1035 | LOG(1, "New maximal for axis " << map[0] << " node is " << *(*Runner) << " at " << (*Runner)->getPosition() << ".");
|
---|
1036 | maxCoordinate[map[0]] = (*Runner)->at(map[0]);
|
---|
1037 | MaxPoint[map[0]] = (*Runner);
|
---|
1038 | }
|
---|
1039 | }
|
---|
1040 | } else {
|
---|
1041 | ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
|
---|
1042 | }
|
---|
1043 | }
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | if (DoLog(1)) {
|
---|
1047 | std::stringstream output;
|
---|
1048 | output << "Found maximum coordinates: ";
|
---|
1049 | for (int i = 0; i < NDIM; i++)
|
---|
1050 | output << i << ": " << *MaxPoint[i] << "\t";
|
---|
1051 | LOG(1, output.str());
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 | BTS = NULL;
|
---|
1055 | for (int k = 0; k < NDIM; k++) {
|
---|
1056 | NormalVector.Zero();
|
---|
1057 | NormalVector[k] = 1.;
|
---|
1058 | BaseLine = new BoundaryLineSet();
|
---|
1059 | BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
|
---|
1060 | LOG(0, "Coordinates of start node at " << *BaseLine->endpoints[0]->node << ".");
|
---|
1061 |
|
---|
1062 | double ShortestAngle;
|
---|
1063 | ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
|
---|
1064 |
|
---|
1065 | Temporary = NULL;
|
---|
1066 | FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
|
---|
1067 | if (Temporary == NULL) {
|
---|
1068 | // have we found a second point?
|
---|
1069 | delete BaseLine;
|
---|
1070 | continue;
|
---|
1071 | }
|
---|
1072 | BaseLine->endpoints[1] = new BoundaryPointSet(Temporary);
|
---|
1073 |
|
---|
1074 | // construct center of circle
|
---|
1075 | CircleCenter = 0.5 * ((BaseLine->endpoints[0]->node->getPosition()) + (BaseLine->endpoints[1]->node->getPosition()));
|
---|
1076 |
|
---|
1077 | // construct normal vector of circle
|
---|
1078 | CirclePlaneNormal = (BaseLine->endpoints[0]->node->getPosition()) - (BaseLine->endpoints[1]->node->getPosition());
|
---|
1079 |
|
---|
1080 | double radius = CirclePlaneNormal.NormSquared();
|
---|
1081 | double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.);
|
---|
1082 |
|
---|
1083 | NormalVector.ProjectOntoPlane(CirclePlaneNormal);
|
---|
1084 | NormalVector.Normalize();
|
---|
1085 | ShortestAngle = 2. * M_PI; // This will indicate the quadrant.
|
---|
1086 |
|
---|
1087 | SphereCenter = (CircleRadius * NormalVector) + CircleCenter;
|
---|
1088 | // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
|
---|
1089 |
|
---|
1090 | // look in one direction of baseline for initial candidate
|
---|
1091 | SearchDirection = Plane(CirclePlaneNormal, NormalVector,0).getNormal(); // whether we look "left" first or "right" first is not important ...
|
---|
1092 |
|
---|
1093 | // adding point 1 and point 2 and add the line between them
|
---|
1094 | LOG(0, "Coordinates of start node at " << *BaseLine->endpoints[0]->node << ".");
|
---|
1095 | LOG(0, "Found second point is at " << *BaseLine->endpoints[1]->node << ".");
|
---|
1096 |
|
---|
1097 | //LOG(1, "INFO: OldSphereCenter is at " << helper << ".");
|
---|
1098 | CandidateForTesselation OptCandidates(BaseLine);
|
---|
1099 | FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
|
---|
1100 | LOG(0, "List of third Points is:");
|
---|
1101 | for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) {
|
---|
1102 | LOG(0, " " << *(*it));
|
---|
1103 | }
|
---|
1104 | if (!OptCandidates.pointlist.empty()) {
|
---|
1105 | BTS = NULL;
|
---|
1106 | AddCandidatePolygon(OptCandidates, RADIUS, LC);
|
---|
1107 | } else {
|
---|
1108 | delete BaseLine;
|
---|
1109 | continue;
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | if (BTS != NULL) { // we have created one starting triangle
|
---|
1113 | delete BaseLine;
|
---|
1114 | break;
|
---|
1115 | } else {
|
---|
1116 | // remove all candidates from the list and then the list itself
|
---|
1117 | OptCandidates.pointlist.clear();
|
---|
1118 | }
|
---|
1119 | delete BaseLine;
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | return (BTS != NULL);
|
---|
1123 | }
|
---|
1124 | ;
|
---|
1125 |
|
---|
1126 | /** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
|
---|
1127 | * This is supposed to prevent early closing of the tesselation.
|
---|
1128 | * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
|
---|
1129 | * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
|
---|
1130 | * \param RADIUS radius of sphere
|
---|
1131 | * \param *LC LinkedCell structure
|
---|
1132 | * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
|
---|
1133 | */
|
---|
1134 | //bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell * const LC) const
|
---|
1135 | //{
|
---|
1136 | // Info FunctionInfo(__func__);
|
---|
1137 | // bool result = false;
|
---|
1138 | // Vector CircleCenter;
|
---|
1139 | // Vector CirclePlaneNormal;
|
---|
1140 | // Vector OldSphereCenter;
|
---|
1141 | // Vector SearchDirection;
|
---|
1142 | // Vector helper;
|
---|
1143 | // TesselPoint *OtherOptCandidate = NULL;
|
---|
1144 | // double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
|
---|
1145 | // double radius, CircleRadius;
|
---|
1146 | // BoundaryLineSet *Line = NULL;
|
---|
1147 | // BoundaryTriangleSet *T = NULL;
|
---|
1148 | //
|
---|
1149 | // // check both other lines
|
---|
1150 | // PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->getNr());
|
---|
1151 | // if (FindPoint != PointsOnBoundary.end()) {
|
---|
1152 | // for (int i=0;i<2;i++) {
|
---|
1153 | // LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->getNr());
|
---|
1154 | // if (FindLine != (FindPoint->second)->lines.end()) {
|
---|
1155 | // Line = FindLine->second;
|
---|
1156 | // LOG(0, "Found line " << *Line << ".");
|
---|
1157 | // if (Line->triangles.size() == 1) {
|
---|
1158 | // T = Line->triangles.begin()->second;
|
---|
1159 | // // construct center of circle
|
---|
1160 | // CircleCenter.CopyVector(Line->endpoints[0]->node->node);
|
---|
1161 | // CircleCenter.AddVector(Line->endpoints[1]->node->node);
|
---|
1162 | // CircleCenter.Scale(0.5);
|
---|
1163 | //
|
---|
1164 | // // construct normal vector of circle
|
---|
1165 | // CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
|
---|
1166 | // CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
|
---|
1167 | //
|
---|
1168 | // // calculate squared radius of circle
|
---|
1169 | // radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
|
---|
1170 | // if (radius/4. < RADIUS*RADIUS) {
|
---|
1171 | // CircleRadius = RADIUS*RADIUS - radius/4.;
|
---|
1172 | // CirclePlaneNormal.Normalize();
|
---|
1173 | // //LOG(1, "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
1174 | //
|
---|
1175 | // // construct old center
|
---|
1176 | // GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
|
---|
1177 | // helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
|
---|
1178 | // radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
|
---|
1179 | // helper.Scale(sqrt(RADIUS*RADIUS - radius));
|
---|
1180 | // OldSphereCenter.AddVector(&helper);
|
---|
1181 | // OldSphereCenter.SubtractVector(&CircleCenter);
|
---|
1182 | // //LOG(1, "INFO: OldSphereCenter is at " << OldSphereCenter << ".");
|
---|
1183 | //
|
---|
1184 | // // construct SearchDirection
|
---|
1185 | // SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
|
---|
1186 | // helper.CopyVector(Line->endpoints[0]->node->node);
|
---|
1187 | // helper.SubtractVector(ThirdNode->node);
|
---|
1188 | // if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
|
---|
1189 | // SearchDirection.Scale(-1.);
|
---|
1190 | // SearchDirection.ProjectOntoPlane(&OldSphereCenter);
|
---|
1191 | // SearchDirection.Normalize();
|
---|
1192 | // LOG(1, "INFO: SearchDirection is " << SearchDirection << ".");
|
---|
1193 | // if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
|
---|
1194 | // // rotated the wrong way!
|
---|
1195 | // ELOG(1, "SearchDirection and RelativeOldSphereCenter are still not orthogonal!");
|
---|
1196 | // }
|
---|
1197 | //
|
---|
1198 | // // add third point
|
---|
1199 | // FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
|
---|
1200 | // for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
|
---|
1201 | // if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
|
---|
1202 | // continue;
|
---|
1203 | // LOG(1, "INFO: Third point candidate is " << (*it)
|
---|
1204 | // << " with circumsphere's center at " << (*it)->OptCenter << ".");
|
---|
1205 | // LOG(1, "INFO: Baseline is " << *BaseRay);
|
---|
1206 | //
|
---|
1207 | // // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
|
---|
1208 | // TesselPoint *PointCandidates[3];
|
---|
1209 | // PointCandidates[0] = (*it);
|
---|
1210 | // PointCandidates[1] = BaseRay->endpoints[0]->node;
|
---|
1211 | // PointCandidates[2] = BaseRay->endpoints[1]->node;
|
---|
1212 | // bool check=false;
|
---|
1213 | // int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
|
---|
1214 | // // If there is no triangle, add it regularly.
|
---|
1215 | // if (existentTrianglesCount == 0) {
|
---|
1216 | // SetTesselationPoint((*it), 0);
|
---|
1217 | // SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
|
---|
1218 | // SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
|
---|
1219 | //
|
---|
1220 | // if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
|
---|
1221 | // OtherOptCandidate = (*it);
|
---|
1222 | // check = true;
|
---|
1223 | // }
|
---|
1224 | // } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
|
---|
1225 | // SetTesselationPoint((*it), 0);
|
---|
1226 | // SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
|
---|
1227 | // SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
|
---|
1228 | //
|
---|
1229 | // // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
|
---|
1230 | // // i.e. at least one of the three lines must be present with TriangleCount <= 1
|
---|
1231 | // if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
|
---|
1232 | // OtherOptCandidate = (*it);
|
---|
1233 | // check = true;
|
---|
1234 | // }
|
---|
1235 | // }
|
---|
1236 | //
|
---|
1237 | // if (check) {
|
---|
1238 | // if (ShortestAngle > OtherShortestAngle) {
|
---|
1239 | // LOG(0, "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << ".");
|
---|
1240 | // result = true;
|
---|
1241 | // break;
|
---|
1242 | // }
|
---|
1243 | // }
|
---|
1244 | // }
|
---|
1245 | // delete(OptCandidates);
|
---|
1246 | // if (result)
|
---|
1247 | // break;
|
---|
1248 | // } else {
|
---|
1249 | // LOG(0, "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!");
|
---|
1250 | // }
|
---|
1251 | // } else {
|
---|
1252 | // ELOG(2, "Baseline is connected to two triangles already?");
|
---|
1253 | // }
|
---|
1254 | // } else {
|
---|
1255 | // LOG(1, "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << ".");
|
---|
1256 | // }
|
---|
1257 | // }
|
---|
1258 | // } else {
|
---|
1259 | // ELOG(1, "Could not find the TesselPoint " << *ThirdNode << ".");
|
---|
1260 | // }
|
---|
1261 | //
|
---|
1262 | // return result;
|
---|
1263 | //};
|
---|
1264 |
|
---|
1265 | /** This function finds a triangle to a line, adjacent to an existing one.
|
---|
1266 | * @param out output stream for debugging
|
---|
1267 | * @param CandidateLine current cadndiate baseline to search from
|
---|
1268 | * @param T current triangle which \a Line is edge of
|
---|
1269 | * @param RADIUS radius of the rolling ball
|
---|
1270 | * @param N number of found triangles
|
---|
1271 | * @param *LC LinkedCell structure with neighbouring points
|
---|
1272 | */
|
---|
1273 | bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC)
|
---|
1274 | {
|
---|
1275 | Info FunctionInfo(__func__);
|
---|
1276 | Vector CircleCenter;
|
---|
1277 | Vector CirclePlaneNormal;
|
---|
1278 | Vector RelativeSphereCenter;
|
---|
1279 | Vector SearchDirection;
|
---|
1280 | Vector helper;
|
---|
1281 | BoundaryPointSet *ThirdPoint = NULL;
|
---|
1282 | LineMap::iterator testline;
|
---|
1283 | double radius, CircleRadius;
|
---|
1284 |
|
---|
1285 | for (int i = 0; i < 3; i++)
|
---|
1286 | if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) {
|
---|
1287 | ThirdPoint = T.endpoints[i];
|
---|
1288 | break;
|
---|
1289 | }
|
---|
1290 | LOG(0, "Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << ".");
|
---|
1291 |
|
---|
1292 | CandidateLine.T = &T;
|
---|
1293 |
|
---|
1294 | // construct center of circle
|
---|
1295 | CircleCenter = 0.5 * ((CandidateLine.BaseLine->endpoints[0]->node->getPosition()) +
|
---|
1296 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition()));
|
---|
1297 |
|
---|
1298 | // construct normal vector of circle
|
---|
1299 | CirclePlaneNormal = (CandidateLine.BaseLine->endpoints[0]->node->getPosition()) -
|
---|
1300 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition());
|
---|
1301 |
|
---|
1302 | // calculate squared radius of circle
|
---|
1303 | radius = CirclePlaneNormal.ScalarProduct(CirclePlaneNormal);
|
---|
1304 | if (radius / 4. < RADIUS * RADIUS) {
|
---|
1305 | // construct relative sphere center with now known CircleCenter
|
---|
1306 | RelativeSphereCenter = T.SphereCenter - CircleCenter;
|
---|
1307 |
|
---|
1308 | CircleRadius = RADIUS * RADIUS - radius / 4.;
|
---|
1309 | CirclePlaneNormal.Normalize();
|
---|
1310 | LOG(1, "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
1311 |
|
---|
1312 | LOG(1, "INFO: OldSphereCenter is at " << T.SphereCenter << ".");
|
---|
1313 |
|
---|
1314 | // construct SearchDirection and an "outward pointer"
|
---|
1315 | SearchDirection = Plane(RelativeSphereCenter, CirclePlaneNormal,0).getNormal();
|
---|
1316 | helper = CircleCenter - (ThirdPoint->node->getPosition());
|
---|
1317 | if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
|
---|
1318 | SearchDirection.Scale(-1.);
|
---|
1319 | LOG(1, "INFO: SearchDirection is " << SearchDirection << ".");
|
---|
1320 | if (fabs(RelativeSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) {
|
---|
1321 | // rotated the wrong way!
|
---|
1322 | ELOG(1, "SearchDirection and RelativeOldSphereCenter are still not orthogonal!");
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | // add third point
|
---|
1326 | FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC);
|
---|
1327 |
|
---|
1328 | } else {
|
---|
1329 | LOG(0, "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!");
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | if (CandidateLine.pointlist.empty()) {
|
---|
1333 | ELOG(2, "Could not find a suitable candidate.");
|
---|
1334 | return false;
|
---|
1335 | }
|
---|
1336 | LOG(0, "Third Points are: ");
|
---|
1337 | for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it) {
|
---|
1338 | LOG(0, " " << *(*it));
|
---|
1339 | }
|
---|
1340 |
|
---|
1341 | return true;
|
---|
1342 | }
|
---|
1343 | ;
|
---|
1344 |
|
---|
1345 | /** Walks through Tesselation::OpenLines() and finds candidates for newly created ones.
|
---|
1346 | * \param *&LCList atoms in LinkedCell list
|
---|
1347 | * \param RADIUS radius of the virtual sphere
|
---|
1348 | * \return true - for all open lines without candidates so far, a candidate has been found,
|
---|
1349 | * false - at least one open line without candidate still
|
---|
1350 | */
|
---|
1351 | bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell *&LCList)
|
---|
1352 | {
|
---|
1353 | bool TesselationFailFlag = true;
|
---|
1354 | CandidateForTesselation *baseline = NULL;
|
---|
1355 | BoundaryTriangleSet *T = NULL;
|
---|
1356 |
|
---|
1357 | for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
|
---|
1358 | baseline = Runner->second;
|
---|
1359 | if (baseline->pointlist.empty()) {
|
---|
1360 | ASSERT((baseline->BaseLine->triangles.size() == 1),"Open line without exactly one attached triangle");
|
---|
1361 | T = (((baseline->BaseLine->triangles.begin()))->second);
|
---|
1362 | LOG(1, "Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T);
|
---|
1363 | TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one.
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 | return TesselationFailFlag;
|
---|
1367 | }
|
---|
1368 | ;
|
---|
1369 |
|
---|
1370 | /** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
|
---|
1371 | * \param CandidateLine triangle to add
|
---|
1372 | * \param RADIUS Radius of sphere
|
---|
1373 | * \param *LC LinkedCell structure
|
---|
1374 | * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in
|
---|
1375 | * AddTesselationLine() in AddCandidateTriangle()
|
---|
1376 | */
|
---|
1377 | void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell *LC)
|
---|
1378 | {
|
---|
1379 | Info FunctionInfo(__func__);
|
---|
1380 | Vector Center;
|
---|
1381 | TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
|
---|
1382 | TesselPointList::iterator Runner;
|
---|
1383 | TesselPointList::iterator Sprinter;
|
---|
1384 |
|
---|
1385 | // fill the set of neighbours
|
---|
1386 | TesselPointSet SetOfNeighbours;
|
---|
1387 |
|
---|
1388 | SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
|
---|
1389 | for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
|
---|
1390 | SetOfNeighbours.insert(*Runner);
|
---|
1391 | TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->getPosition());
|
---|
1392 |
|
---|
1393 | LOG(0, "List of Candidates for Turning Point " << *TurningPoint << ":");
|
---|
1394 | for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
|
---|
1395 | LOG(0, " " << **TesselRunner);
|
---|
1396 |
|
---|
1397 | // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
|
---|
1398 | Runner = connectedClosestPoints->begin();
|
---|
1399 | Sprinter = Runner;
|
---|
1400 | Sprinter++;
|
---|
1401 | while (Sprinter != connectedClosestPoints->end()) {
|
---|
1402 | LOG(0, "Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << ".");
|
---|
1403 |
|
---|
1404 | AddTesselationPoint(TurningPoint, 0);
|
---|
1405 | AddTesselationPoint(*Runner, 1);
|
---|
1406 | AddTesselationPoint(*Sprinter, 2);
|
---|
1407 |
|
---|
1408 | AddCandidateTriangle(CandidateLine, Opt);
|
---|
1409 |
|
---|
1410 | Runner = Sprinter;
|
---|
1411 | Sprinter++;
|
---|
1412 | if (Sprinter != connectedClosestPoints->end()) {
|
---|
1413 | // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
|
---|
1414 | FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter); // Assume BTS contains last triangle
|
---|
1415 | LOG(0, " There are still more triangles to add.");
|
---|
1416 | }
|
---|
1417 | // pick candidates for other open lines as well
|
---|
1418 | FindCandidatesforOpenLines(RADIUS, LC);
|
---|
1419 |
|
---|
1420 | // check whether we add a degenerate or a normal triangle
|
---|
1421 | if (CheckDegeneracy(CandidateLine, RADIUS, LC)) {
|
---|
1422 | // add normal and degenerate triangles
|
---|
1423 | LOG(1, "Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides.");
|
---|
1424 | AddCandidateTriangle(CandidateLine, OtherOpt);
|
---|
1425 |
|
---|
1426 | if (Sprinter != connectedClosestPoints->end()) {
|
---|
1427 | // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
|
---|
1428 | FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter);
|
---|
1429 | }
|
---|
1430 | // pick candidates for other open lines as well
|
---|
1431 | FindCandidatesforOpenLines(RADIUS, LC);
|
---|
1432 | }
|
---|
1433 | }
|
---|
1434 | delete (connectedClosestPoints);
|
---|
1435 | };
|
---|
1436 |
|
---|
1437 | /** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate.
|
---|
1438 | * \param *Sprinter next candidate to which internal open lines are set
|
---|
1439 | * \param *OptCenter OptCenter for this candidate
|
---|
1440 | */
|
---|
1441 | void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter)
|
---|
1442 | {
|
---|
1443 | Info FunctionInfo(__func__);
|
---|
1444 |
|
---|
1445 | pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->getNr());
|
---|
1446 | for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
|
---|
1447 | LOG(1, "INFO: Checking line " << *(FindLine->second) << " ...");
|
---|
1448 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
1449 | if (FindLine->second->triangles.size() == 1) {
|
---|
1450 | CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
|
---|
1451 | if (!Finder->second->pointlist.empty())
|
---|
1452 | LOG(1, "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << ".");
|
---|
1453 | else {
|
---|
1454 | LOG(1, "INFO: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter));
|
---|
1455 | Finder->second->T = BTS; // is last triangle
|
---|
1456 | Finder->second->pointlist.push_back(Sprinter);
|
---|
1457 | Finder->second->ShortestAngle = 0.;
|
---|
1458 | Finder->second->OptCenter = *OptCenter;
|
---|
1459 | }
|
---|
1460 | }
|
---|
1461 | }
|
---|
1462 | };
|
---|
1463 |
|
---|
1464 | /** If a given \a *triangle is degenerated, this adds both sides.
|
---|
1465 | * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction.
|
---|
1466 | * Note that endpoints are stored in Tesselation::TPS
|
---|
1467 | * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine
|
---|
1468 | * \param RADIUS radius of sphere
|
---|
1469 | * \param *LC pointer to LinkedCell structure
|
---|
1470 | */
|
---|
1471 | void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC)
|
---|
1472 | {
|
---|
1473 | Info FunctionInfo(__func__);
|
---|
1474 | Vector Center;
|
---|
1475 | CandidateMap::const_iterator CandidateCheck = OpenLines.end();
|
---|
1476 | BoundaryTriangleSet *triangle = NULL;
|
---|
1477 |
|
---|
1478 | /// 1. Create or pick the lines for the first triangle
|
---|
1479 | LOG(0, "INFO: Creating/Picking lines for first triangle ...");
|
---|
1480 | for (int i = 0; i < 3; i++) {
|
---|
1481 | BLS[i] = NULL;
|
---|
1482 | LOG(0, "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1483 | AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
|
---|
1484 | }
|
---|
1485 |
|
---|
1486 | /// 2. create the first triangle and NormalVector and so on
|
---|
1487 | LOG(0, "INFO: Adding first triangle with center at " << CandidateLine.OptCenter << " ...");
|
---|
1488 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1489 | AddTesselationTriangle();
|
---|
1490 |
|
---|
1491 | // create normal vector
|
---|
1492 | BTS->GetCenter(Center);
|
---|
1493 | Center -= CandidateLine.OptCenter;
|
---|
1494 | BTS->SphereCenter = CandidateLine.OptCenter;
|
---|
1495 | BTS->GetNormalVector(Center);
|
---|
1496 | // give some verbose output about the whole procedure
|
---|
1497 | if (CandidateLine.T != NULL)
|
---|
1498 | LOG(0, "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
|
---|
1499 | else
|
---|
1500 | LOG(0, "--> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
|
---|
1501 | triangle = BTS;
|
---|
1502 |
|
---|
1503 | /// 3. Gather candidates for each new line
|
---|
1504 | LOG(0, "INFO: Adding candidates to new lines ...");
|
---|
1505 | for (int i = 0; i < 3; i++) {
|
---|
1506 | LOG(0, "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1507 | CandidateCheck = OpenLines.find(BLS[i]);
|
---|
1508 | if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
|
---|
1509 | if (CandidateCheck->second->T == NULL)
|
---|
1510 | CandidateCheck->second->T = triangle;
|
---|
1511 | FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC);
|
---|
1512 | }
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | /// 4. Create or pick the lines for the second triangle
|
---|
1516 | LOG(0, "INFO: Creating/Picking lines for second triangle ...");
|
---|
1517 | for (int i = 0; i < 3; i++) {
|
---|
1518 | LOG(0, "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1519 | AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
|
---|
1520 | }
|
---|
1521 |
|
---|
1522 | /// 5. create the second triangle and NormalVector and so on
|
---|
1523 | LOG(0, "INFO: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ...");
|
---|
1524 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1525 | AddTesselationTriangle();
|
---|
1526 |
|
---|
1527 | BTS->SphereCenter = CandidateLine.OtherOptCenter;
|
---|
1528 | // create normal vector in other direction
|
---|
1529 | BTS->GetNormalVector(triangle->NormalVector);
|
---|
1530 | BTS->NormalVector.Scale(-1.);
|
---|
1531 | // give some verbose output about the whole procedure
|
---|
1532 | if (CandidateLine.T != NULL)
|
---|
1533 | LOG(0, "--> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
|
---|
1534 | else
|
---|
1535 | LOG(0, "--> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
|
---|
1536 |
|
---|
1537 | /// 6. Adding triangle to new lines
|
---|
1538 | LOG(0, "INFO: Adding second triangles to new lines ...");
|
---|
1539 | for (int i = 0; i < 3; i++) {
|
---|
1540 | LOG(0, "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1541 | CandidateCheck = OpenLines.find(BLS[i]);
|
---|
1542 | if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
|
---|
1543 | if (CandidateCheck->second->T == NULL)
|
---|
1544 | CandidateCheck->second->T = BTS;
|
---|
1545 | }
|
---|
1546 | }
|
---|
1547 | }
|
---|
1548 | ;
|
---|
1549 |
|
---|
1550 | /** Adds a triangle to the Tesselation structure from three given TesselPoint's.
|
---|
1551 | * Note that endpoints are in Tesselation::TPS.
|
---|
1552 | * \param CandidateLine CandidateForTesselation structure contains other information
|
---|
1553 | * \param type which opt center to add (i.e. which side) and thus which NormalVector to take
|
---|
1554 | */
|
---|
1555 | void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type)
|
---|
1556 | {
|
---|
1557 | Info FunctionInfo(__func__);
|
---|
1558 | Vector Center;
|
---|
1559 | Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter;
|
---|
1560 |
|
---|
1561 | // add the lines
|
---|
1562 | AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0);
|
---|
1563 | AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1);
|
---|
1564 | AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2);
|
---|
1565 |
|
---|
1566 | // add the triangles
|
---|
1567 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1568 | AddTesselationTriangle();
|
---|
1569 |
|
---|
1570 | // create normal vector
|
---|
1571 | BTS->GetCenter(Center);
|
---|
1572 | Center.SubtractVector(*OptCenter);
|
---|
1573 | BTS->SphereCenter = *OptCenter;
|
---|
1574 | BTS->GetNormalVector(Center);
|
---|
1575 |
|
---|
1576 | // give some verbose output about the whole procedure
|
---|
1577 | if (CandidateLine.T != NULL)
|
---|
1578 | LOG(0, "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
|
---|
1579 | else
|
---|
1580 | LOG(0, "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
|
---|
1581 | }
|
---|
1582 | ;
|
---|
1583 |
|
---|
1584 | /** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
|
---|
1585 | * We look whether the closest point on \a *Base with respect to the other baseline is outside
|
---|
1586 | * of the segment formed by both endpoints (concave) or not (convex).
|
---|
1587 | * \param *out output stream for debugging
|
---|
1588 | * \param *Base line to be flipped
|
---|
1589 | * \return NULL - convex, otherwise endpoint that makes it concave
|
---|
1590 | */
|
---|
1591 | class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
|
---|
1592 | {
|
---|
1593 | Info FunctionInfo(__func__);
|
---|
1594 | class BoundaryPointSet *Spot = NULL;
|
---|
1595 | class BoundaryLineSet *OtherBase;
|
---|
1596 | Vector *ClosestPoint;
|
---|
1597 |
|
---|
1598 | int m = 0;
|
---|
1599 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1600 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1601 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1602 | BPS[m++] = runner->second->endpoints[j];
|
---|
1603 | OtherBase = new class BoundaryLineSet(BPS, -1);
|
---|
1604 |
|
---|
1605 | LOG(1, "INFO: Current base line is " << *Base << ".");
|
---|
1606 | LOG(1, "INFO: Other base line is " << *OtherBase << ".");
|
---|
1607 |
|
---|
1608 | // get the closest point on each line to the other line
|
---|
1609 | ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
|
---|
1610 |
|
---|
1611 | // delete the temporary other base line
|
---|
1612 | delete (OtherBase);
|
---|
1613 |
|
---|
1614 | // get the distance vector from Base line to OtherBase line
|
---|
1615 | Vector DistanceToIntersection[2], BaseLine;
|
---|
1616 | double distance[2];
|
---|
1617 | BaseLine = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
|
---|
1618 | for (int i = 0; i < 2; i++) {
|
---|
1619 | DistanceToIntersection[i] = (*ClosestPoint) - (Base->endpoints[i]->node->getPosition());
|
---|
1620 | distance[i] = BaseLine.ScalarProduct(DistanceToIntersection[i]);
|
---|
1621 | }
|
---|
1622 | delete (ClosestPoint);
|
---|
1623 | if ((distance[0] * distance[1]) > 0) { // have same sign?
|
---|
1624 | LOG(1, "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave.");
|
---|
1625 | if (distance[0] < distance[1]) {
|
---|
1626 | Spot = Base->endpoints[0];
|
---|
1627 | } else {
|
---|
1628 | Spot = Base->endpoints[1];
|
---|
1629 | }
|
---|
1630 | return Spot;
|
---|
1631 | } else { // different sign, i.e. we are in between
|
---|
1632 | LOG(0, "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex.");
|
---|
1633 | return NULL;
|
---|
1634 | }
|
---|
1635 |
|
---|
1636 | }
|
---|
1637 | ;
|
---|
1638 |
|
---|
1639 | void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
|
---|
1640 | {
|
---|
1641 | Info FunctionInfo(__func__);
|
---|
1642 | // print all lines
|
---|
1643 | LOG(0, "Printing all boundary points for debugging:");
|
---|
1644 | for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++)
|
---|
1645 | LOG(0, *(PointRunner->second));
|
---|
1646 | }
|
---|
1647 | ;
|
---|
1648 |
|
---|
1649 | void Tesselation::PrintAllBoundaryLines(ofstream *out) const
|
---|
1650 | {
|
---|
1651 | Info FunctionInfo(__func__);
|
---|
1652 | // print all lines
|
---|
1653 | LOG(0, "Printing all boundary lines for debugging:");
|
---|
1654 | for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
|
---|
1655 | LOG(0, *(LineRunner->second));
|
---|
1656 | }
|
---|
1657 | ;
|
---|
1658 |
|
---|
1659 | void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
|
---|
1660 | {
|
---|
1661 | Info FunctionInfo(__func__);
|
---|
1662 | // print all triangles
|
---|
1663 | LOG(0, "Printing all boundary triangles for debugging:");
|
---|
1664 | for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
|
---|
1665 | LOG(0, *(TriangleRunner->second));
|
---|
1666 | }
|
---|
1667 | ;
|
---|
1668 |
|
---|
1669 | /** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
|
---|
1670 | * \param *out output stream for debugging
|
---|
1671 | * \param *Base line to be flipped
|
---|
1672 | * \return volume change due to flipping (0 - then no flipped occured)
|
---|
1673 | */
|
---|
1674 | double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
|
---|
1675 | {
|
---|
1676 | Info FunctionInfo(__func__);
|
---|
1677 | class BoundaryLineSet *OtherBase;
|
---|
1678 | Vector *ClosestPoint[2];
|
---|
1679 | double volume;
|
---|
1680 |
|
---|
1681 | int m = 0;
|
---|
1682 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1683 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1684 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1685 | BPS[m++] = runner->second->endpoints[j];
|
---|
1686 | OtherBase = new class BoundaryLineSet(BPS, -1);
|
---|
1687 |
|
---|
1688 | LOG(0, "INFO: Current base line is " << *Base << ".");
|
---|
1689 | LOG(0, "INFO: Other base line is " << *OtherBase << ".");
|
---|
1690 |
|
---|
1691 | // get the closest point on each line to the other line
|
---|
1692 | ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
|
---|
1693 | ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
|
---|
1694 |
|
---|
1695 | // get the distance vector from Base line to OtherBase line
|
---|
1696 | Vector Distance = (*ClosestPoint[1]) - (*ClosestPoint[0]);
|
---|
1697 |
|
---|
1698 | // calculate volume
|
---|
1699 | volume = CalculateVolumeofGeneralTetraeder(Base->endpoints[1]->node->getPosition(), OtherBase->endpoints[0]->node->getPosition(), OtherBase->endpoints[1]->node->getPosition(), Base->endpoints[0]->node->getPosition());
|
---|
1700 |
|
---|
1701 | // delete the temporary other base line and the closest points
|
---|
1702 | delete (ClosestPoint[0]);
|
---|
1703 | delete (ClosestPoint[1]);
|
---|
1704 | delete (OtherBase);
|
---|
1705 |
|
---|
1706 | if (Distance.NormSquared() < MYEPSILON) { // check for intersection
|
---|
1707 | LOG(0, "REJECT: Both lines have an intersection: Nothing to do.");
|
---|
1708 | return false;
|
---|
1709 | } else { // check for sign against BaseLineNormal
|
---|
1710 | Vector BaseLineNormal;
|
---|
1711 | BaseLineNormal.Zero();
|
---|
1712 | if (Base->triangles.size() < 2) {
|
---|
1713 | ELOG(1, "Less than two triangles are attached to this baseline!");
|
---|
1714 | return 0.;
|
---|
1715 | }
|
---|
1716 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
|
---|
1717 | LOG(1, "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << ".");
|
---|
1718 | BaseLineNormal += (runner->second->NormalVector);
|
---|
1719 | }
|
---|
1720 | BaseLineNormal.Scale(1. / 2.);
|
---|
1721 |
|
---|
1722 | if (Distance.ScalarProduct(BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
|
---|
1723 | LOG(0, "ACCEPT: Other base line would be higher: Flipping baseline.");
|
---|
1724 | // calculate volume summand as a general tetraeder
|
---|
1725 | return volume;
|
---|
1726 | } else { // Base higher than OtherBase -> do nothing
|
---|
1727 | LOG(0, "REJECT: Base line is higher: Nothing to do.");
|
---|
1728 | return 0.;
|
---|
1729 | }
|
---|
1730 | }
|
---|
1731 | }
|
---|
1732 | ;
|
---|
1733 |
|
---|
1734 | /** For a given baseline and its two connected triangles, flips the baseline.
|
---|
1735 | * I.e. we create the new baseline between the other two endpoints of these four
|
---|
1736 | * endpoints and reconstruct the two triangles accordingly.
|
---|
1737 | * \param *out output stream for debugging
|
---|
1738 | * \param *Base line to be flipped
|
---|
1739 | * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
|
---|
1740 | */
|
---|
1741 | class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
|
---|
1742 | {
|
---|
1743 | Info FunctionInfo(__func__);
|
---|
1744 | class BoundaryLineSet *OldLines[4], *NewLine;
|
---|
1745 | class BoundaryPointSet *OldPoints[2];
|
---|
1746 | Vector BaseLineNormal;
|
---|
1747 | int OldTriangleNrs[2], OldBaseLineNr;
|
---|
1748 | int i, m;
|
---|
1749 |
|
---|
1750 | // calculate NormalVector for later use
|
---|
1751 | BaseLineNormal.Zero();
|
---|
1752 | if (Base->triangles.size() < 2) {
|
---|
1753 | ELOG(1, "Less than two triangles are attached to this baseline!");
|
---|
1754 | return NULL;
|
---|
1755 | }
|
---|
1756 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
|
---|
1757 | LOG(1, "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << ".");
|
---|
1758 | BaseLineNormal += (runner->second->NormalVector);
|
---|
1759 | }
|
---|
1760 | BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
|
---|
1761 |
|
---|
1762 | // get the two triangles
|
---|
1763 | // gather four endpoints and four lines
|
---|
1764 | for (int j = 0; j < 4; j++)
|
---|
1765 | OldLines[j] = NULL;
|
---|
1766 | for (int j = 0; j < 2; j++)
|
---|
1767 | OldPoints[j] = NULL;
|
---|
1768 | i = 0;
|
---|
1769 | m = 0;
|
---|
1770 |
|
---|
1771 | // print OldLines and OldPoints for debugging
|
---|
1772 | if (DoLog(0)) {
|
---|
1773 | std::stringstream output;
|
---|
1774 | output << "The four old lines are: ";
|
---|
1775 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1776 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1777 | if (runner->second->lines[j] != Base) // pick not the central baseline
|
---|
1778 | output << *runner->second->lines[j] << "\t";
|
---|
1779 | LOG(0, output.str());
|
---|
1780 | }
|
---|
1781 | if (DoLog(0)) {
|
---|
1782 | std::stringstream output;
|
---|
1783 | output << "The two old points are: ";
|
---|
1784 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1785 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1786 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1787 | output << *runner->second->endpoints[j] << "\t";
|
---|
1788 | LOG(0, output.str());
|
---|
1789 | }
|
---|
1790 |
|
---|
1791 | // index OldLines and OldPoints
|
---|
1792 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1793 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1794 | if (runner->second->lines[j] != Base) // pick not the central baseline
|
---|
1795 | OldLines[i++] = runner->second->lines[j];
|
---|
1796 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1797 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1798 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1799 | OldPoints[m++] = runner->second->endpoints[j];
|
---|
1800 |
|
---|
1801 | // check whether everything is in place to create new lines and triangles
|
---|
1802 | if (i < 4) {
|
---|
1803 | ELOG(1, "We have not gathered enough baselines!");
|
---|
1804 | return NULL;
|
---|
1805 | }
|
---|
1806 | for (int j = 0; j < 4; j++)
|
---|
1807 | if (OldLines[j] == NULL) {
|
---|
1808 | ELOG(1, "We have not gathered enough baselines!");
|
---|
1809 | return NULL;
|
---|
1810 | }
|
---|
1811 | for (int j = 0; j < 2; j++)
|
---|
1812 | if (OldPoints[j] == NULL) {
|
---|
1813 | ELOG(1, "We have not gathered enough endpoints!");
|
---|
1814 | return NULL;
|
---|
1815 | }
|
---|
1816 |
|
---|
1817 | // remove triangles and baseline removes itself
|
---|
1818 | LOG(0, "INFO: Deleting baseline " << *Base << " from global list.");
|
---|
1819 | OldBaseLineNr = Base->Nr;
|
---|
1820 | m = 0;
|
---|
1821 | // first obtain all triangle to delete ... (otherwise we pull the carpet (Base) from under the for-loop's feet)
|
---|
1822 | list <BoundaryTriangleSet *> TrianglesOfBase;
|
---|
1823 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); ++runner)
|
---|
1824 | TrianglesOfBase.push_back(runner->second);
|
---|
1825 | // .. then delete each triangle (which deletes the line as well)
|
---|
1826 | for (list <BoundaryTriangleSet *>::iterator runner = TrianglesOfBase.begin(); !TrianglesOfBase.empty(); runner = TrianglesOfBase.begin()) {
|
---|
1827 | LOG(0, "INFO: Deleting triangle " << *(*runner) << ".");
|
---|
1828 | OldTriangleNrs[m++] = (*runner)->Nr;
|
---|
1829 | RemoveTesselationTriangle((*runner));
|
---|
1830 | TrianglesOfBase.erase(runner);
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 | // construct new baseline (with same number as old one)
|
---|
1834 | BPS[0] = OldPoints[0];
|
---|
1835 | BPS[1] = OldPoints[1];
|
---|
1836 | NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
|
---|
1837 | LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
|
---|
1838 | LOG(0, "INFO: Created new baseline " << *NewLine << ".");
|
---|
1839 |
|
---|
1840 | // construct new triangles with flipped baseline
|
---|
1841 | i = -1;
|
---|
1842 | if (OldLines[0]->IsConnectedTo(OldLines[2]))
|
---|
1843 | i = 2;
|
---|
1844 | if (OldLines[0]->IsConnectedTo(OldLines[3]))
|
---|
1845 | i = 3;
|
---|
1846 | if (i != -1) {
|
---|
1847 | BLS[0] = OldLines[0];
|
---|
1848 | BLS[1] = OldLines[i];
|
---|
1849 | BLS[2] = NewLine;
|
---|
1850 | BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
|
---|
1851 | BTS->GetNormalVector(BaseLineNormal);
|
---|
1852 | AddTesselationTriangle(OldTriangleNrs[0]);
|
---|
1853 | LOG(0, "INFO: Created new triangle " << *BTS << ".");
|
---|
1854 |
|
---|
1855 | BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]);
|
---|
1856 | BLS[1] = OldLines[1];
|
---|
1857 | BLS[2] = NewLine;
|
---|
1858 | BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
|
---|
1859 | BTS->GetNormalVector(BaseLineNormal);
|
---|
1860 | AddTesselationTriangle(OldTriangleNrs[1]);
|
---|
1861 | LOG(0, "INFO: Created new triangle " << *BTS << ".");
|
---|
1862 | } else {
|
---|
1863 | ELOG(0, "The four old lines do not connect, something's utterly wrong here!");
|
---|
1864 | return NULL;
|
---|
1865 | }
|
---|
1866 |
|
---|
1867 | return NewLine;
|
---|
1868 | }
|
---|
1869 | ;
|
---|
1870 |
|
---|
1871 | /** Finds the second point of starting triangle.
|
---|
1872 | * \param *a first node
|
---|
1873 | * \param Oben vector indicating the outside
|
---|
1874 | * \param OptCandidate reference to recommended candidate on return
|
---|
1875 | * \param Storage[3] array storing angles and other candidate information
|
---|
1876 | * \param RADIUS radius of virtual sphere
|
---|
1877 | * \param *LC LinkedCell structure with neighbouring points
|
---|
1878 | */
|
---|
1879 | void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC)
|
---|
1880 | {
|
---|
1881 | Info FunctionInfo(__func__);
|
---|
1882 | Vector AngleCheck;
|
---|
1883 | class TesselPoint* Candidate = NULL;
|
---|
1884 | double norm = -1.;
|
---|
1885 | double angle = 0.;
|
---|
1886 | int N[NDIM];
|
---|
1887 | int Nlower[NDIM];
|
---|
1888 | int Nupper[NDIM];
|
---|
1889 |
|
---|
1890 | if (LC->SetIndexToNode(a)) { // get cell for the starting point
|
---|
1891 | for (int i = 0; i < NDIM; i++) // store indices of this cell
|
---|
1892 | N[i] = LC->n[i];
|
---|
1893 | } else {
|
---|
1894 | ELOG(1, "Point " << *a << " is not found in cell " << LC->index << ".");
|
---|
1895 | return;
|
---|
1896 | }
|
---|
1897 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
1898 | for (int i = 0; i < NDIM; i++) {
|
---|
1899 | Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
|
---|
1900 | Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
|
---|
1901 | }
|
---|
1902 | LOG(0, "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], ");
|
---|
1903 |
|
---|
1904 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
1905 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
1906 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
1907 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
1908 | //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
|
---|
1909 | if (List != NULL) {
|
---|
1910 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
1911 | Candidate = (*Runner);
|
---|
1912 | // check if we only have one unique point yet ...
|
---|
1913 | if (a != Candidate) {
|
---|
1914 | // Calculate center of the circle with radius RADIUS through points a and Candidate
|
---|
1915 | Vector OrthogonalizedOben, aCandidate, Center;
|
---|
1916 | double distance, scaleFactor;
|
---|
1917 |
|
---|
1918 | OrthogonalizedOben = Oben;
|
---|
1919 | aCandidate = (a->getPosition()) - (Candidate->getPosition());
|
---|
1920 | OrthogonalizedOben.ProjectOntoPlane(aCandidate);
|
---|
1921 | OrthogonalizedOben.Normalize();
|
---|
1922 | distance = 0.5 * aCandidate.Norm();
|
---|
1923 | scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
|
---|
1924 | OrthogonalizedOben.Scale(scaleFactor);
|
---|
1925 |
|
---|
1926 | Center = 0.5 * ((Candidate->getPosition()) + (a->getPosition()));
|
---|
1927 | Center += OrthogonalizedOben;
|
---|
1928 |
|
---|
1929 | AngleCheck = Center - (a->getPosition());
|
---|
1930 | norm = aCandidate.Norm();
|
---|
1931 | // second point shall have smallest angle with respect to Oben vector
|
---|
1932 | if (norm < RADIUS * 2.) {
|
---|
1933 | angle = AngleCheck.Angle(Oben);
|
---|
1934 | if (angle < Storage[0]) {
|
---|
1935 | //LOG(1, "INFO: Old values of Storage is " << Storage[0] << ", " << Storage[1]);
|
---|
1936 | LOG(1, "INFO: Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".");
|
---|
1937 | OptCandidate = Candidate;
|
---|
1938 | Storage[0] = angle;
|
---|
1939 | //LOG(1, "INFO: Changing something in Storage is " << Storage[0] << ", " << Storage[1]);
|
---|
1940 | } else {
|
---|
1941 | //LOG(1, "INFO: Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate);
|
---|
1942 | }
|
---|
1943 | } else {
|
---|
1944 | //LOG(1, "INFO: Current candidate is " << *Candidate << ": Refused due to Radius " << norm);
|
---|
1945 | }
|
---|
1946 | } else {
|
---|
1947 | //LOG(1, "INFO: Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << ".");
|
---|
1948 | }
|
---|
1949 | }
|
---|
1950 | } else {
|
---|
1951 | LOG(0, "Linked cell list is empty.");
|
---|
1952 | }
|
---|
1953 | }
|
---|
1954 | }
|
---|
1955 | ;
|
---|
1956 |
|
---|
1957 | /** This recursive function finds a third point, to form a triangle with two given ones.
|
---|
1958 | * Note that this function is for the starting triangle.
|
---|
1959 | * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
|
---|
1960 | * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
|
---|
1961 | * the center of the sphere is still fixed up to a single parameter. The band of possible values
|
---|
1962 | * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
|
---|
1963 | * us the "null" on this circle, the new center of the candidate point will be some way along this
|
---|
1964 | * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
|
---|
1965 | * by the normal vector of the base triangle that always points outwards by construction.
|
---|
1966 | * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
|
---|
1967 | * We construct the normal vector that defines the plane this circle lies in, it is just in the
|
---|
1968 | * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
|
---|
1969 | * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
|
---|
1970 | * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
|
---|
1971 | * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
|
---|
1972 | * both.
|
---|
1973 | * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
|
---|
1974 | * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
|
---|
1975 | * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
|
---|
1976 | * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
|
---|
1977 | * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
|
---|
1978 | * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
|
---|
1979 | * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
|
---|
1980 | * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
|
---|
1981 | * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
|
---|
1982 | * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
|
---|
1983 | * @param ThirdPoint third point to avoid in search
|
---|
1984 | * @param RADIUS radius of sphere
|
---|
1985 | * @param *LC LinkedCell structure with neighbouring points
|
---|
1986 | */
|
---|
1987 | void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell *LC) const
|
---|
1988 | {
|
---|
1989 | Info FunctionInfo(__func__);
|
---|
1990 | Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
|
---|
1991 | Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
|
---|
1992 | Vector SphereCenter;
|
---|
1993 | Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
|
---|
1994 | Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
|
---|
1995 | Vector NewNormalVector; // normal vector of the Candidate's triangle
|
---|
1996 | Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
|
---|
1997 | Vector RelativeOldSphereCenter;
|
---|
1998 | Vector NewPlaneCenter;
|
---|
1999 | double CircleRadius; // radius of this circle
|
---|
2000 | double radius;
|
---|
2001 | double otherradius;
|
---|
2002 | double alpha, Otheralpha; // angles (i.e. parameter for the circle).
|
---|
2003 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2004 | TesselPoint *Candidate = NULL;
|
---|
2005 |
|
---|
2006 | LOG(1, "INFO: NormalVector of BaseTriangle is " << NormalVector << ".");
|
---|
2007 |
|
---|
2008 | // copy old center
|
---|
2009 | CandidateLine.OldCenter = OldSphereCenter;
|
---|
2010 | CandidateLine.ThirdPoint = ThirdPoint;
|
---|
2011 | CandidateLine.pointlist.clear();
|
---|
2012 |
|
---|
2013 | // construct center of circle
|
---|
2014 | CircleCenter = 0.5 * ((CandidateLine.BaseLine->endpoints[0]->node->getPosition()) +
|
---|
2015 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition()));
|
---|
2016 |
|
---|
2017 | // construct normal vector of circle
|
---|
2018 | CirclePlaneNormal = (CandidateLine.BaseLine->endpoints[0]->node->getPosition()) -
|
---|
2019 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition());
|
---|
2020 |
|
---|
2021 | RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
|
---|
2022 |
|
---|
2023 | // calculate squared radius TesselPoint *ThirdPoint,f circle
|
---|
2024 | radius = CirclePlaneNormal.NormSquared() / 4.;
|
---|
2025 | if (radius < RADIUS * RADIUS) {
|
---|
2026 | CircleRadius = RADIUS * RADIUS - radius;
|
---|
2027 | CirclePlaneNormal.Normalize();
|
---|
2028 | LOG(1, "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
2029 |
|
---|
2030 | // test whether old center is on the band's plane
|
---|
2031 | if (fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
|
---|
2032 | ELOG(1, "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) << "!");
|
---|
2033 | RelativeOldSphereCenter.ProjectOntoPlane(CirclePlaneNormal);
|
---|
2034 | }
|
---|
2035 | radius = RelativeOldSphereCenter.NormSquared();
|
---|
2036 | if (fabs(radius - CircleRadius) < HULLEPSILON) {
|
---|
2037 | LOG(1, "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << ".");
|
---|
2038 |
|
---|
2039 | // check SearchDirection
|
---|
2040 | LOG(1, "INFO: SearchDirection is " << SearchDirection << ".");
|
---|
2041 | if (fabs(RelativeOldSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
|
---|
2042 | ELOG(1, "SearchDirection and RelativeOldSphereCenter are not orthogonal!");
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 | // get cell for the starting point
|
---|
2046 | if (LC->SetIndexToVector(CircleCenter)) {
|
---|
2047 | for (int i = 0; i < NDIM; i++) // store indices of this cell
|
---|
2048 | N[i] = LC->n[i];
|
---|
2049 | //LOG(1, "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
|
---|
2050 | } else {
|
---|
2051 | ELOG(1, "Vector " << CircleCenter << " is outside of LinkedCell's bounding box.");
|
---|
2052 | return;
|
---|
2053 | }
|
---|
2054 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
2055 | // if (DoLog(0)) {
|
---|
2056 | // std::stringstream output;
|
---|
2057 | // output << "LC Intervals:";
|
---|
2058 | // for (int i = 0; i < NDIM; i++)
|
---|
2059 | // output << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
2060 | // LOG(0, output.str());
|
---|
2061 | // }
|
---|
2062 | for (int i = 0; i < NDIM; i++) {
|
---|
2063 | Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
|
---|
2064 | Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
|
---|
2065 | }
|
---|
2066 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2067 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2068 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2069 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
2070 | //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
|
---|
2071 | if (List != NULL) {
|
---|
2072 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2073 | Candidate = (*Runner);
|
---|
2074 |
|
---|
2075 | // check for three unique points
|
---|
2076 | LOG(2, "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << ".");
|
---|
2077 | if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) {
|
---|
2078 |
|
---|
2079 | // find center on the plane
|
---|
2080 | GetCenterofCircumcircle(NewPlaneCenter, CandidateLine.BaseLine->endpoints[0]->node->getPosition(), CandidateLine.BaseLine->endpoints[1]->node->getPosition(), Candidate->getPosition());
|
---|
2081 | LOG(1, "INFO: NewPlaneCenter is " << NewPlaneCenter << ".");
|
---|
2082 |
|
---|
2083 | try {
|
---|
2084 | NewNormalVector = Plane((CandidateLine.BaseLine->endpoints[0]->node->getPosition()),
|
---|
2085 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition()),
|
---|
2086 | (Candidate->getPosition())).getNormal();
|
---|
2087 | LOG(1, "INFO: NewNormalVector is " << NewNormalVector << ".");
|
---|
2088 | radius = CandidateLine.BaseLine->endpoints[0]->node->DistanceSquared(NewPlaneCenter);
|
---|
2089 | LOG(1, "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
2090 | LOG(1, "INFO: SearchDirection is " << SearchDirection << ".");
|
---|
2091 | LOG(1, "INFO: Radius of CircumCenterCircle is " << radius << ".");
|
---|
2092 | if (radius < RADIUS * RADIUS) {
|
---|
2093 | otherradius = CandidateLine.BaseLine->endpoints[1]->node->DistanceSquared(NewPlaneCenter);
|
---|
2094 | if (fabs(radius - otherradius) < HULLEPSILON) {
|
---|
2095 | // construct both new centers
|
---|
2096 | NewSphereCenter = NewPlaneCenter;
|
---|
2097 | OtherNewSphereCenter= NewPlaneCenter;
|
---|
2098 | helper = NewNormalVector;
|
---|
2099 | helper.Scale(sqrt(RADIUS * RADIUS - radius));
|
---|
2100 | LOG(2, "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << ".");
|
---|
2101 | NewSphereCenter += helper;
|
---|
2102 | LOG(2, "INFO: NewSphereCenter is at " << NewSphereCenter << ".");
|
---|
2103 | // OtherNewSphereCenter is created by the same vector just in the other direction
|
---|
2104 | helper.Scale(-1.);
|
---|
2105 | OtherNewSphereCenter += helper;
|
---|
2106 | LOG(2, "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << ".");
|
---|
2107 | alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection, HULLEPSILON);
|
---|
2108 | Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection, HULLEPSILON);
|
---|
2109 | if ((ThirdPoint != NULL) && (Candidate == ThirdPoint->node)) { // in that case only the other circlecenter is valid
|
---|
2110 | if (OldSphereCenter.DistanceSquared(NewSphereCenter) < OldSphereCenter.DistanceSquared(OtherNewSphereCenter))
|
---|
2111 | alpha = Otheralpha;
|
---|
2112 | } else
|
---|
2113 | alpha = min(alpha, Otheralpha);
|
---|
2114 | // if there is a better candidate, drop the current list and add the new candidate
|
---|
2115 | // otherwise ignore the new candidate and keep the list
|
---|
2116 | if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
|
---|
2117 | if (fabs(alpha - Otheralpha) > MYEPSILON) {
|
---|
2118 | CandidateLine.OptCenter = NewSphereCenter;
|
---|
2119 | CandidateLine.OtherOptCenter = OtherNewSphereCenter;
|
---|
2120 | } else {
|
---|
2121 | CandidateLine.OptCenter = OtherNewSphereCenter;
|
---|
2122 | CandidateLine.OtherOptCenter = NewSphereCenter;
|
---|
2123 | }
|
---|
2124 | // if there is an equal candidate, add it to the list without clearing the list
|
---|
2125 | if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
|
---|
2126 | CandidateLine.pointlist.push_back(Candidate);
|
---|
2127 | LOG(0, "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << ".");
|
---|
2128 | } else {
|
---|
2129 | // remove all candidates from the list and then the list itself
|
---|
2130 | CandidateLine.pointlist.clear();
|
---|
2131 | CandidateLine.pointlist.push_back(Candidate);
|
---|
2132 | LOG(0, "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << ".");
|
---|
2133 | }
|
---|
2134 | CandidateLine.ShortestAngle = alpha;
|
---|
2135 | LOG(0, "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now.");
|
---|
2136 | } else {
|
---|
2137 | if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
|
---|
2138 | LOG(1, "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " .");
|
---|
2139 | } else {
|
---|
2140 | LOG(1, "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected.");
|
---|
2141 | }
|
---|
2142 | }
|
---|
2143 | } else {
|
---|
2144 | ELOG(0, "REJECT: Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius));
|
---|
2145 | }
|
---|
2146 | } else {
|
---|
2147 | LOG(1, "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << ".");
|
---|
2148 | }
|
---|
2149 | }
|
---|
2150 | catch (LinearDependenceException &excp){
|
---|
2151 | LOG(1, boost::diagnostic_information(excp));
|
---|
2152 | LOG(1, "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent.");
|
---|
2153 | }
|
---|
2154 | } else {
|
---|
2155 | if (ThirdPoint != NULL) {
|
---|
2156 | LOG(1, "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << ".");
|
---|
2157 | } else {
|
---|
2158 | LOG(1, "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << ".");
|
---|
2159 | }
|
---|
2160 | }
|
---|
2161 | }
|
---|
2162 | }
|
---|
2163 | }
|
---|
2164 | } else {
|
---|
2165 | ELOG(1, "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << ".");
|
---|
2166 | }
|
---|
2167 | } else {
|
---|
2168 | if (ThirdPoint != NULL)
|
---|
2169 | LOG(1, "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!");
|
---|
2170 | else
|
---|
2171 | LOG(1, "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!");
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 | LOG(1, "INFO: Sorting candidate list ...");
|
---|
2175 | if (CandidateLine.pointlist.size() > 1) {
|
---|
2176 | CandidateLine.pointlist.unique();
|
---|
2177 | CandidateLine.pointlist.sort(); //SortCandidates);
|
---|
2178 | }
|
---|
2179 |
|
---|
2180 | if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) {
|
---|
2181 | ELOG(0, "There were other points contained in the rolling sphere as well!");
|
---|
2182 | performCriticalExit();
|
---|
2183 | }
|
---|
2184 | }
|
---|
2185 | ;
|
---|
2186 |
|
---|
2187 | /** Finds the endpoint two lines are sharing.
|
---|
2188 | * \param *line1 first line
|
---|
2189 | * \param *line2 second line
|
---|
2190 | * \return point which is shared or NULL if none
|
---|
2191 | */
|
---|
2192 | class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
|
---|
2193 | {
|
---|
2194 | Info FunctionInfo(__func__);
|
---|
2195 | const BoundaryLineSet * lines[2] = { line1, line2 };
|
---|
2196 | class BoundaryPointSet *node = NULL;
|
---|
2197 | PointMap OrderMap;
|
---|
2198 | PointTestPair OrderTest;
|
---|
2199 | for (int i = 0; i < 2; i++)
|
---|
2200 | // for both lines
|
---|
2201 | for (int j = 0; j < 2; j++) { // for both endpoints
|
---|
2202 | OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
|
---|
2203 | if (!OrderTest.second) { // if insertion fails, we have common endpoint
|
---|
2204 | node = OrderTest.first->second;
|
---|
2205 | LOG(1, "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << ".");
|
---|
2206 | j = 2;
|
---|
2207 | i = 2;
|
---|
2208 | break;
|
---|
2209 | }
|
---|
2210 | }
|
---|
2211 | return node;
|
---|
2212 | }
|
---|
2213 | ;
|
---|
2214 |
|
---|
2215 | /** Finds the boundary points that are closest to a given Vector \a *x.
|
---|
2216 | * \param *out output stream for debugging
|
---|
2217 | * \param *x Vector to look from
|
---|
2218 | * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
|
---|
2219 | */
|
---|
2220 | DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector &x, const LinkedCell* LC) const
|
---|
2221 | {
|
---|
2222 | Info FunctionInfo(__func__);
|
---|
2223 | PointMap::const_iterator FindPoint;
|
---|
2224 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2225 |
|
---|
2226 | if (LinesOnBoundary.empty()) {
|
---|
2227 | ELOG(1, "There is no tesselation structure to compare the point with, please create one first.");
|
---|
2228 | return NULL;
|
---|
2229 | }
|
---|
2230 |
|
---|
2231 | // gather all points close to the desired one
|
---|
2232 | LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
|
---|
2233 | for (int i = 0; i < NDIM; i++) // store indices of this cell
|
---|
2234 | N[i] = LC->n[i];
|
---|
2235 | LOG(1, "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
|
---|
2236 | DistanceToPointMap * points = new DistanceToPointMap;
|
---|
2237 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
2238 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2239 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2240 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2241 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
2242 | //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
|
---|
2243 | if (List != NULL) {
|
---|
2244 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2245 | FindPoint = PointsOnBoundary.find((*Runner)->getNr());
|
---|
2246 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
2247 | points->insert(DistanceToPointPair(FindPoint->second->node->DistanceSquared(x), FindPoint->second));
|
---|
2248 | LOG(1, "INFO: Putting " << *FindPoint->second << " into the list.");
|
---|
2249 | }
|
---|
2250 | }
|
---|
2251 | } else {
|
---|
2252 | ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
|
---|
2253 | }
|
---|
2254 | }
|
---|
2255 |
|
---|
2256 | // check whether we found some points
|
---|
2257 | if (points->empty()) {
|
---|
2258 | ELOG(1, "There is no nearest point: too far away from the surface.");
|
---|
2259 | delete (points);
|
---|
2260 | return NULL;
|
---|
2261 | }
|
---|
2262 | return points;
|
---|
2263 | }
|
---|
2264 | ;
|
---|
2265 |
|
---|
2266 | /** Finds the boundary line that is closest to a given Vector \a *x.
|
---|
2267 | * \param *out output stream for debugging
|
---|
2268 | * \param *x Vector to look from
|
---|
2269 | * \return closest BoundaryLineSet or NULL in degenerate case.
|
---|
2270 | */
|
---|
2271 | BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector &x, const LinkedCell* LC) const
|
---|
2272 | {
|
---|
2273 | Info FunctionInfo(__func__);
|
---|
2274 | // get closest points
|
---|
2275 | DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
|
---|
2276 | if (points == NULL) {
|
---|
2277 | ELOG(1, "There is no nearest point: too far away from the surface.");
|
---|
2278 | return NULL;
|
---|
2279 | }
|
---|
2280 |
|
---|
2281 | // for each point, check its lines, remember closest
|
---|
2282 | LOG(1, "Finding closest BoundaryLine to " << x << " ... ");
|
---|
2283 | BoundaryLineSet *ClosestLine = NULL;
|
---|
2284 | double MinDistance = -1.;
|
---|
2285 | Vector helper;
|
---|
2286 | Vector Center;
|
---|
2287 | Vector BaseLine;
|
---|
2288 | for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
|
---|
2289 | for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
|
---|
2290 | // calculate closest point on line to desired point
|
---|
2291 | helper = 0.5 * (((LineRunner->second)->endpoints[0]->node->getPosition()) +
|
---|
2292 | ((LineRunner->second)->endpoints[1]->node->getPosition()));
|
---|
2293 | Center = (x) - helper;
|
---|
2294 | BaseLine = ((LineRunner->second)->endpoints[0]->node->getPosition()) -
|
---|
2295 | ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2296 | Center.ProjectOntoPlane(BaseLine);
|
---|
2297 | const double distance = Center.NormSquared();
|
---|
2298 | if ((ClosestLine == NULL) || (distance < MinDistance)) {
|
---|
2299 | // additionally calculate intersection on line (whether it's on the line section or not)
|
---|
2300 | helper = (x) - ((LineRunner->second)->endpoints[0]->node->getPosition()) - Center;
|
---|
2301 | const double lengthA = helper.ScalarProduct(BaseLine);
|
---|
2302 | helper = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition()) - Center;
|
---|
2303 | const double lengthB = helper.ScalarProduct(BaseLine);
|
---|
2304 | if (lengthB * lengthA < 0) { // if have different sign
|
---|
2305 | ClosestLine = LineRunner->second;
|
---|
2306 | MinDistance = distance;
|
---|
2307 | LOG(1, "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << ".");
|
---|
2308 | } else {
|
---|
2309 | LOG(1, "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << ".");
|
---|
2310 | }
|
---|
2311 | } else {
|
---|
2312 | LOG(1, "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << ".");
|
---|
2313 | }
|
---|
2314 | }
|
---|
2315 | }
|
---|
2316 | delete (points);
|
---|
2317 | // check whether closest line is "too close" :), then it's inside
|
---|
2318 | if (ClosestLine == NULL) {
|
---|
2319 | LOG(0, "Is the only point, no one else is closeby.");
|
---|
2320 | return NULL;
|
---|
2321 | }
|
---|
2322 | return ClosestLine;
|
---|
2323 | }
|
---|
2324 | ;
|
---|
2325 |
|
---|
2326 | /** Finds the triangle that is closest to a given Vector \a *x.
|
---|
2327 | * \param *out output stream for debugging
|
---|
2328 | * \param *x Vector to look from
|
---|
2329 | * \return BoundaryTriangleSet of nearest triangle or NULL.
|
---|
2330 | */
|
---|
2331 | TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector &x, const LinkedCell* LC) const
|
---|
2332 | {
|
---|
2333 | Info FunctionInfo(__func__);
|
---|
2334 | // get closest points
|
---|
2335 | DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
|
---|
2336 | if (points == NULL) {
|
---|
2337 | ELOG(1, "There is no nearest point: too far away from the surface.");
|
---|
2338 | return NULL;
|
---|
2339 | }
|
---|
2340 |
|
---|
2341 | // for each point, check its lines, remember closest
|
---|
2342 | LOG(1, "Finding closest BoundaryTriangle to " << x << " ... ");
|
---|
2343 | LineSet ClosestLines;
|
---|
2344 | double MinDistance = 1e+16;
|
---|
2345 | Vector BaseLineIntersection;
|
---|
2346 | Vector Center;
|
---|
2347 | Vector BaseLine;
|
---|
2348 | Vector BaseLineCenter;
|
---|
2349 | for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
|
---|
2350 | for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
|
---|
2351 |
|
---|
2352 | BaseLine = ((LineRunner->second)->endpoints[0]->node->getPosition()) -
|
---|
2353 | ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2354 | const double lengthBase = BaseLine.NormSquared();
|
---|
2355 |
|
---|
2356 | BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[0]->node->getPosition());
|
---|
2357 | const double lengthEndA = BaseLineIntersection.NormSquared();
|
---|
2358 |
|
---|
2359 | BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2360 | const double lengthEndB = BaseLineIntersection.NormSquared();
|
---|
2361 |
|
---|
2362 | if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
|
---|
2363 | const double lengthEnd = std::min(lengthEndA, lengthEndB);
|
---|
2364 | if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
|
---|
2365 | ClosestLines.clear();
|
---|
2366 | ClosestLines.insert(LineRunner->second);
|
---|
2367 | MinDistance = lengthEnd;
|
---|
2368 | LOG(1, "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << ".");
|
---|
2369 | } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
|
---|
2370 | ClosestLines.insert(LineRunner->second);
|
---|
2371 | LOG(1, "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << ".");
|
---|
2372 | } else { // line is worse
|
---|
2373 | LOG(1, "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << ".");
|
---|
2374 | }
|
---|
2375 | } else { // intersection is closer, calculate
|
---|
2376 | // calculate closest point on line to desired point
|
---|
2377 | BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2378 | Center = BaseLineIntersection;
|
---|
2379 | Center.ProjectOntoPlane(BaseLine);
|
---|
2380 | BaseLineIntersection -= Center;
|
---|
2381 | const double distance = BaseLineIntersection.NormSquared();
|
---|
2382 | if (Center.NormSquared() > BaseLine.NormSquared()) {
|
---|
2383 | ELOG(0, "Algorithmic error: In second case we have intersection outside of baseline!");
|
---|
2384 | }
|
---|
2385 | if ((ClosestLines.empty()) || (distance < MinDistance)) {
|
---|
2386 | ClosestLines.insert(LineRunner->second);
|
---|
2387 | MinDistance = distance;
|
---|
2388 | LOG(1, "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << ".");
|
---|
2389 | } else {
|
---|
2390 | LOG(2, "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << ".");
|
---|
2391 | }
|
---|
2392 | }
|
---|
2393 | }
|
---|
2394 | }
|
---|
2395 | delete (points);
|
---|
2396 |
|
---|
2397 | // check whether closest line is "too close" :), then it's inside
|
---|
2398 | if (ClosestLines.empty()) {
|
---|
2399 | LOG(0, "Is the only point, no one else is closeby.");
|
---|
2400 | return NULL;
|
---|
2401 | }
|
---|
2402 | TriangleList * candidates = new TriangleList;
|
---|
2403 | for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
|
---|
2404 | for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
|
---|
2405 | candidates->push_back(Runner->second);
|
---|
2406 | }
|
---|
2407 | return candidates;
|
---|
2408 | }
|
---|
2409 | ;
|
---|
2410 |
|
---|
2411 | /** Finds closest triangle to a point.
|
---|
2412 | * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
|
---|
2413 | * \param *out output stream for debugging
|
---|
2414 | * \param *x Vector to look from
|
---|
2415 | * \param &distance contains found distance on return
|
---|
2416 | * \return list of BoundaryTriangleSet of nearest triangles or NULL.
|
---|
2417 | */
|
---|
2418 | class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector &x, const LinkedCell* LC) const
|
---|
2419 | {
|
---|
2420 | Info FunctionInfo(__func__);
|
---|
2421 | class BoundaryTriangleSet *result = NULL;
|
---|
2422 | TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
|
---|
2423 | TriangleList candidates;
|
---|
2424 | Vector Center;
|
---|
2425 | Vector helper;
|
---|
2426 |
|
---|
2427 | if ((triangles == NULL) || (triangles->empty()))
|
---|
2428 | return NULL;
|
---|
2429 |
|
---|
2430 | // go through all and pick the one with the best alignment to x
|
---|
2431 | double MinAlignment = 2. * M_PI;
|
---|
2432 | for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
|
---|
2433 | (*Runner)->GetCenter(Center);
|
---|
2434 | helper = (x) - Center;
|
---|
2435 | const double Alignment = helper.Angle((*Runner)->NormalVector);
|
---|
2436 | if (Alignment < MinAlignment) {
|
---|
2437 | result = *Runner;
|
---|
2438 | MinAlignment = Alignment;
|
---|
2439 | LOG(1, "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << ".");
|
---|
2440 | } else {
|
---|
2441 | LOG(1, "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << ".");
|
---|
2442 | }
|
---|
2443 | }
|
---|
2444 | delete (triangles);
|
---|
2445 |
|
---|
2446 | return result;
|
---|
2447 | }
|
---|
2448 | ;
|
---|
2449 |
|
---|
2450 | /** Checks whether the provided Vector is within the Tesselation structure.
|
---|
2451 | * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
|
---|
2452 | * @param point of which to check the position
|
---|
2453 | * @param *LC LinkedCell structure
|
---|
2454 | *
|
---|
2455 | * @return true if the point is inside the Tesselation structure, false otherwise
|
---|
2456 | */
|
---|
2457 | bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const
|
---|
2458 | {
|
---|
2459 | Info FunctionInfo(__func__);
|
---|
2460 | TriangleIntersectionList Intersections(Point, this, LC);
|
---|
2461 |
|
---|
2462 | return Intersections.IsInside();
|
---|
2463 | }
|
---|
2464 | ;
|
---|
2465 |
|
---|
2466 | /** Returns the distance to the surface given by the tesselation.
|
---|
2467 | * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
|
---|
2468 | * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
|
---|
2469 | * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
|
---|
2470 | * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
|
---|
2471 | * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
|
---|
2472 | * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
|
---|
2473 | * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
|
---|
2474 | * -# If inside, take it to calculate closest distance
|
---|
2475 | * -# If not, take intersection with BoundaryLine as distance
|
---|
2476 | *
|
---|
2477 | * @note distance is squared despite it still contains a sign to determine in-/outside!
|
---|
2478 | *
|
---|
2479 | * @param point of which to check the position
|
---|
2480 | * @param *LC LinkedCell structure
|
---|
2481 | *
|
---|
2482 | * @return >0 if outside, ==0 if on surface, <0 if inside
|
---|
2483 | */
|
---|
2484 | double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
|
---|
2485 | {
|
---|
2486 | Info FunctionInfo(__func__);
|
---|
2487 | Vector Center;
|
---|
2488 | Vector helper;
|
---|
2489 | Vector DistanceToCenter;
|
---|
2490 | Vector Intersection;
|
---|
2491 | double distance = 0.;
|
---|
2492 |
|
---|
2493 | if (triangle == NULL) {// is boundary point or only point in point cloud?
|
---|
2494 | LOG(1, "No triangle given!");
|
---|
2495 | return -1.;
|
---|
2496 | } else {
|
---|
2497 | LOG(1, "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << ".");
|
---|
2498 | }
|
---|
2499 |
|
---|
2500 | triangle->GetCenter(Center);
|
---|
2501 | LOG(2, "INFO: Central point of the triangle is " << Center << ".");
|
---|
2502 | DistanceToCenter = Center - Point;
|
---|
2503 | LOG(2, "INFO: Vector from point to test to center is " << DistanceToCenter << ".");
|
---|
2504 |
|
---|
2505 | // check whether we are on boundary
|
---|
2506 | if (fabs(DistanceToCenter.ScalarProduct(triangle->NormalVector)) < MYEPSILON) {
|
---|
2507 | // calculate whether inside of triangle
|
---|
2508 | DistanceToCenter = Point + triangle->NormalVector; // points outside
|
---|
2509 | Center = Point - triangle->NormalVector; // points towards MolCenter
|
---|
2510 | LOG(1, "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << ".");
|
---|
2511 | if (triangle->GetIntersectionInsideTriangle(Center, DistanceToCenter, Intersection)) {
|
---|
2512 | LOG(1, Point << " is inner point: sufficiently close to boundary, " << Intersection << ".");
|
---|
2513 | return 0.;
|
---|
2514 | } else {
|
---|
2515 | LOG(1, Point << " is NOT an inner point: on triangle plane but outside of triangle bounds.");
|
---|
2516 | return false;
|
---|
2517 | }
|
---|
2518 | } else {
|
---|
2519 | // calculate smallest distance
|
---|
2520 | distance = triangle->GetClosestPointInsideTriangle(Point, Intersection);
|
---|
2521 | LOG(1, "Closest point on triangle is " << Intersection << ".");
|
---|
2522 |
|
---|
2523 | // then check direction to boundary
|
---|
2524 | if (DistanceToCenter.ScalarProduct(triangle->NormalVector) > MYEPSILON) {
|
---|
2525 | LOG(1, Point << " is an inner point, " << distance << " below surface.");
|
---|
2526 | return -distance;
|
---|
2527 | } else {
|
---|
2528 | LOG(1, Point << " is NOT an inner point, " << distance << " above surface.");
|
---|
2529 | return +distance;
|
---|
2530 | }
|
---|
2531 | }
|
---|
2532 | }
|
---|
2533 | ;
|
---|
2534 |
|
---|
2535 | /** Calculates minimum distance from \a&Point to a tesselated surface.
|
---|
2536 | * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
|
---|
2537 | * \param &Point point to calculate distance from
|
---|
2538 | * \param *LC needed for finding closest points fast
|
---|
2539 | * \return distance squared to closest point on surface
|
---|
2540 | */
|
---|
2541 | double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell* const LC) const
|
---|
2542 | {
|
---|
2543 | Info FunctionInfo(__func__);
|
---|
2544 | TriangleIntersectionList Intersections(Point, this, LC);
|
---|
2545 |
|
---|
2546 | return Intersections.GetSmallestDistance();
|
---|
2547 | }
|
---|
2548 | ;
|
---|
2549 |
|
---|
2550 | /** Calculates minimum distance from \a&Point to a tesselated surface.
|
---|
2551 | * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
|
---|
2552 | * \param &Point point to calculate distance from
|
---|
2553 | * \param *LC needed for finding closest points fast
|
---|
2554 | * \return distance squared to closest point on surface
|
---|
2555 | */
|
---|
2556 | BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell* const LC) const
|
---|
2557 | {
|
---|
2558 | Info FunctionInfo(__func__);
|
---|
2559 | TriangleIntersectionList Intersections(Point, this, LC);
|
---|
2560 |
|
---|
2561 | return Intersections.GetClosestTriangle();
|
---|
2562 | }
|
---|
2563 | ;
|
---|
2564 |
|
---|
2565 | /** Gets all points connected to the provided point by triangulation lines.
|
---|
2566 | *
|
---|
2567 | * @param *Point of which get all connected points
|
---|
2568 | *
|
---|
2569 | * @return set of the all points linked to the provided one
|
---|
2570 | */
|
---|
2571 | TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
|
---|
2572 | {
|
---|
2573 | Info FunctionInfo(__func__);
|
---|
2574 | TesselPointSet *connectedPoints = new TesselPointSet;
|
---|
2575 | class BoundaryPointSet *ReferencePoint = NULL;
|
---|
2576 | TesselPoint* current;
|
---|
2577 | bool takePoint = false;
|
---|
2578 | // find the respective boundary point
|
---|
2579 | PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->getNr());
|
---|
2580 | if (PointRunner != PointsOnBoundary.end()) {
|
---|
2581 | ReferencePoint = PointRunner->second;
|
---|
2582 | } else {
|
---|
2583 | ELOG(2, "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << ".");
|
---|
2584 | ReferencePoint = NULL;
|
---|
2585 | }
|
---|
2586 |
|
---|
2587 | // little trick so that we look just through lines connect to the BoundaryPoint
|
---|
2588 | // OR fall-back to look through all lines if there is no such BoundaryPoint
|
---|
2589 | const LineMap *Lines;
|
---|
2590 | ;
|
---|
2591 | if (ReferencePoint != NULL)
|
---|
2592 | Lines = &(ReferencePoint->lines);
|
---|
2593 | else
|
---|
2594 | Lines = &LinesOnBoundary;
|
---|
2595 | LineMap::const_iterator findLines = Lines->begin();
|
---|
2596 | while (findLines != Lines->end()) {
|
---|
2597 | takePoint = false;
|
---|
2598 |
|
---|
2599 | if (findLines->second->endpoints[0]->Nr == Point->getNr()) {
|
---|
2600 | takePoint = true;
|
---|
2601 | current = findLines->second->endpoints[1]->node;
|
---|
2602 | } else if (findLines->second->endpoints[1]->Nr == Point->getNr()) {
|
---|
2603 | takePoint = true;
|
---|
2604 | current = findLines->second->endpoints[0]->node;
|
---|
2605 | }
|
---|
2606 |
|
---|
2607 | if (takePoint) {
|
---|
2608 | LOG(1, "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted.");
|
---|
2609 | connectedPoints->insert(current);
|
---|
2610 | }
|
---|
2611 |
|
---|
2612 | findLines++;
|
---|
2613 | }
|
---|
2614 |
|
---|
2615 | if (connectedPoints->empty()) { // if have not found any points
|
---|
2616 | ELOG(1, "We have not found any connected points to " << *Point << ".");
|
---|
2617 | return NULL;
|
---|
2618 | }
|
---|
2619 |
|
---|
2620 | return connectedPoints;
|
---|
2621 | }
|
---|
2622 | ;
|
---|
2623 |
|
---|
2624 | /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
|
---|
2625 | * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
|
---|
2626 | * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
|
---|
2627 | * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
|
---|
2628 | * triangle we are looking for.
|
---|
2629 | *
|
---|
2630 | * @param *out output stream for debugging
|
---|
2631 | * @param *SetOfNeighbours all points for which the angle should be calculated
|
---|
2632 | * @param *Point of which get all connected points
|
---|
2633 | * @param *Reference Reference vector for zero angle or NULL for no preference
|
---|
2634 | * @return list of the all points linked to the provided one
|
---|
2635 | */
|
---|
2636 | TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector &Reference) const
|
---|
2637 | {
|
---|
2638 | Info FunctionInfo(__func__);
|
---|
2639 | map<double, TesselPoint*> anglesOfPoints;
|
---|
2640 | TesselPointList *connectedCircle = new TesselPointList;
|
---|
2641 | Vector PlaneNormal;
|
---|
2642 | Vector AngleZero;
|
---|
2643 | Vector OrthogonalVector;
|
---|
2644 | Vector helper;
|
---|
2645 | const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL };
|
---|
2646 | TriangleList *triangles = NULL;
|
---|
2647 |
|
---|
2648 | if (SetOfNeighbours == NULL) {
|
---|
2649 | ELOG(2, "Could not find any connected points!");
|
---|
2650 | delete (connectedCircle);
|
---|
2651 | return NULL;
|
---|
2652 | }
|
---|
2653 |
|
---|
2654 | // calculate central point
|
---|
2655 | triangles = FindTriangles(TrianglePoints);
|
---|
2656 | if ((triangles != NULL) && (!triangles->empty())) {
|
---|
2657 | for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
|
---|
2658 | PlaneNormal += (*Runner)->NormalVector;
|
---|
2659 | } else {
|
---|
2660 | ELOG(0, "Could not find any triangles for point " << *Point << ".");
|
---|
2661 | performCriticalExit();
|
---|
2662 | }
|
---|
2663 | PlaneNormal.Scale(1.0 / triangles->size());
|
---|
2664 | LOG(1, "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << ".");
|
---|
2665 | PlaneNormal.Normalize();
|
---|
2666 |
|
---|
2667 | // construct one orthogonal vector
|
---|
2668 | AngleZero = (Reference) - (Point->getPosition());
|
---|
2669 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2670 | if ((AngleZero.NormSquared() < MYEPSILON)) {
|
---|
2671 | LOG(1, "Using alternatively " << (*SetOfNeighbours->begin())->getPosition() << " as angle 0 referencer.");
|
---|
2672 | AngleZero = ((*SetOfNeighbours->begin())->getPosition()) - (Point->getPosition());
|
---|
2673 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2674 | if (AngleZero.NormSquared() < MYEPSILON) {
|
---|
2675 | ELOG(0, "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!");
|
---|
2676 | performCriticalExit();
|
---|
2677 | }
|
---|
2678 | }
|
---|
2679 | LOG(1, "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << ".");
|
---|
2680 | if (AngleZero.NormSquared() > MYEPSILON)
|
---|
2681 | OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal();
|
---|
2682 | else
|
---|
2683 | OrthogonalVector.MakeNormalTo(PlaneNormal);
|
---|
2684 | LOG(1, "INFO: OrthogonalVector on plane is " << OrthogonalVector << ".");
|
---|
2685 |
|
---|
2686 | // go through all connected points and calculate angle
|
---|
2687 | for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
|
---|
2688 | helper = ((*listRunner)->getPosition()) - (Point->getPosition());
|
---|
2689 | helper.ProjectOntoPlane(PlaneNormal);
|
---|
2690 | double angle = GetAngle(helper, AngleZero, OrthogonalVector);
|
---|
2691 | LOG(0, "INFO: Calculated angle is " << angle << " for point " << **listRunner << ".");
|
---|
2692 | anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
|
---|
2693 | }
|
---|
2694 |
|
---|
2695 | for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
|
---|
2696 | connectedCircle->push_back(AngleRunner->second);
|
---|
2697 | }
|
---|
2698 |
|
---|
2699 | return connectedCircle;
|
---|
2700 | }
|
---|
2701 |
|
---|
2702 | /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
|
---|
2703 | * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
|
---|
2704 | * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
|
---|
2705 | * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
|
---|
2706 | * triangle we are looking for.
|
---|
2707 | *
|
---|
2708 | * @param *SetOfNeighbours all points for which the angle should be calculated
|
---|
2709 | * @param *Point of which get all connected points
|
---|
2710 | * @param *Reference Reference vector for zero angle or (0,0,0) for no preference
|
---|
2711 | * @return list of the all points linked to the provided one
|
---|
2712 | */
|
---|
2713 | TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector &Reference) const
|
---|
2714 | {
|
---|
2715 | Info FunctionInfo(__func__);
|
---|
2716 | map<double, TesselPoint*> anglesOfPoints;
|
---|
2717 | TesselPointList *connectedCircle = new TesselPointList;
|
---|
2718 | Vector center;
|
---|
2719 | Vector PlaneNormal;
|
---|
2720 | Vector AngleZero;
|
---|
2721 | Vector OrthogonalVector;
|
---|
2722 | Vector helper;
|
---|
2723 |
|
---|
2724 | if (SetOfNeighbours == NULL) {
|
---|
2725 | ELOG(2, "Could not find any connected points!");
|
---|
2726 | delete (connectedCircle);
|
---|
2727 | return NULL;
|
---|
2728 | }
|
---|
2729 |
|
---|
2730 | // check whether there's something to do
|
---|
2731 | if (SetOfNeighbours->size() < 3) {
|
---|
2732 | for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
|
---|
2733 | connectedCircle->push_back(*TesselRunner);
|
---|
2734 | return connectedCircle;
|
---|
2735 | }
|
---|
2736 |
|
---|
2737 | LOG(1, "INFO: Point is " << *Point << " and Reference is " << Reference << ".");
|
---|
2738 | // calculate central point
|
---|
2739 | TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
|
---|
2740 | TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
|
---|
2741 | TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
|
---|
2742 | TesselB++;
|
---|
2743 | TesselC++;
|
---|
2744 | TesselC++;
|
---|
2745 | int counter = 0;
|
---|
2746 | while (TesselC != SetOfNeighbours->end()) {
|
---|
2747 | helper = Plane(((*TesselA)->getPosition()),
|
---|
2748 | ((*TesselB)->getPosition()),
|
---|
2749 | ((*TesselC)->getPosition())).getNormal();
|
---|
2750 | LOG(0, "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper);
|
---|
2751 | counter++;
|
---|
2752 | TesselA++;
|
---|
2753 | TesselB++;
|
---|
2754 | TesselC++;
|
---|
2755 | PlaneNormal += helper;
|
---|
2756 | }
|
---|
2757 | //LOG(0, "Summed vectors " << center << "; number of points " << connectedPoints.size() << "; scale factor " << counter);
|
---|
2758 | PlaneNormal.Scale(1.0 / (double) counter);
|
---|
2759 | // LOG(1, "INFO: Calculated center of all circle points is " << center << ".");
|
---|
2760 | //
|
---|
2761 | // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
|
---|
2762 | // PlaneNormal.CopyVector(Point->node);
|
---|
2763 | // PlaneNormal.SubtractVector(¢er);
|
---|
2764 | // PlaneNormal.Normalize();
|
---|
2765 | LOG(1, "INFO: Calculated plane normal of circle is " << PlaneNormal << ".");
|
---|
2766 |
|
---|
2767 | // construct one orthogonal vector
|
---|
2768 | if (!Reference.IsZero()) {
|
---|
2769 | AngleZero = (Reference) - (Point->getPosition());
|
---|
2770 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2771 | }
|
---|
2772 | if ((Reference.IsZero()) || (AngleZero.NormSquared() < MYEPSILON )) {
|
---|
2773 | LOG(1, "Using alternatively " << (*SetOfNeighbours->begin())->getPosition() << " as angle 0 referencer.");
|
---|
2774 | AngleZero = ((*SetOfNeighbours->begin())->getPosition()) - (Point->getPosition());
|
---|
2775 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2776 | if (AngleZero.NormSquared() < MYEPSILON) {
|
---|
2777 | ELOG(0, "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!");
|
---|
2778 | performCriticalExit();
|
---|
2779 | }
|
---|
2780 | }
|
---|
2781 | LOG(1, "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << ".");
|
---|
2782 | if (AngleZero.NormSquared() > MYEPSILON)
|
---|
2783 | OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal();
|
---|
2784 | else
|
---|
2785 | OrthogonalVector.MakeNormalTo(PlaneNormal);
|
---|
2786 | LOG(1, "INFO: OrthogonalVector on plane is " << OrthogonalVector << ".");
|
---|
2787 |
|
---|
2788 | // go through all connected points and calculate angle
|
---|
2789 | pair<map<double, TesselPoint*>::iterator, bool> InserterTest;
|
---|
2790 | for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
|
---|
2791 | helper = ((*listRunner)->getPosition()) - (Point->getPosition());
|
---|
2792 | helper.ProjectOntoPlane(PlaneNormal);
|
---|
2793 | double angle = GetAngle(helper, AngleZero, OrthogonalVector);
|
---|
2794 | if (angle > M_PI) // the correction is of no use here (and not desired)
|
---|
2795 | angle = 2. * M_PI - angle;
|
---|
2796 | LOG(0, "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << ".");
|
---|
2797 | InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
|
---|
2798 | if (!InserterTest.second) {
|
---|
2799 | ELOG(0, "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner));
|
---|
2800 | performCriticalExit();
|
---|
2801 | }
|
---|
2802 | }
|
---|
2803 |
|
---|
2804 | for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
|
---|
2805 | connectedCircle->push_back(AngleRunner->second);
|
---|
2806 | }
|
---|
2807 |
|
---|
2808 | return connectedCircle;
|
---|
2809 | }
|
---|
2810 |
|
---|
2811 | /** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
|
---|
2812 | *
|
---|
2813 | * @param *out output stream for debugging
|
---|
2814 | * @param *Point of which get all connected points
|
---|
2815 | * @return list of the all points linked to the provided one
|
---|
2816 | */
|
---|
2817 | ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
|
---|
2818 | {
|
---|
2819 | Info FunctionInfo(__func__);
|
---|
2820 | map<double, TesselPoint*> anglesOfPoints;
|
---|
2821 | list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ;
|
---|
2822 | TesselPointList *connectedPath = NULL;
|
---|
2823 | Vector center;
|
---|
2824 | Vector PlaneNormal;
|
---|
2825 | Vector AngleZero;
|
---|
2826 | Vector OrthogonalVector;
|
---|
2827 | Vector helper;
|
---|
2828 | class BoundaryPointSet *ReferencePoint = NULL;
|
---|
2829 | class BoundaryPointSet *CurrentPoint = NULL;
|
---|
2830 | class BoundaryTriangleSet *triangle = NULL;
|
---|
2831 | class BoundaryLineSet *CurrentLine = NULL;
|
---|
2832 | class BoundaryLineSet *StartLine = NULL;
|
---|
2833 | // find the respective boundary point
|
---|
2834 | PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->getNr());
|
---|
2835 | if (PointRunner != PointsOnBoundary.end()) {
|
---|
2836 | ReferencePoint = PointRunner->second;
|
---|
2837 | } else {
|
---|
2838 | ELOG(1, "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << ".");
|
---|
2839 | return NULL;
|
---|
2840 | }
|
---|
2841 |
|
---|
2842 | map<class BoundaryLineSet *, bool> TouchedLine;
|
---|
2843 | map<class BoundaryTriangleSet *, bool> TouchedTriangle;
|
---|
2844 | map<class BoundaryLineSet *, bool>::iterator LineRunner;
|
---|
2845 | map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
|
---|
2846 | for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
|
---|
2847 | TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false));
|
---|
2848 | for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
|
---|
2849 | TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false));
|
---|
2850 | }
|
---|
2851 | if (!ReferencePoint->lines.empty()) {
|
---|
2852 | for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
|
---|
2853 | LineRunner = TouchedLine.find(runner->second);
|
---|
2854 | if (LineRunner == TouchedLine.end()) {
|
---|
2855 | ELOG(1, "I could not find " << *runner->second << " in the touched list.");
|
---|
2856 | } else if (!LineRunner->second) {
|
---|
2857 | LineRunner->second = true;
|
---|
2858 | connectedPath = new TesselPointList;
|
---|
2859 | triangle = NULL;
|
---|
2860 | CurrentLine = runner->second;
|
---|
2861 | StartLine = CurrentLine;
|
---|
2862 | CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
|
---|
2863 | LOG(1, "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << ".");
|
---|
2864 | do {
|
---|
2865 | // push current one
|
---|
2866 | LOG(1, "INFO: Putting " << *CurrentPoint << " at end of path.");
|
---|
2867 | connectedPath->push_back(CurrentPoint->node);
|
---|
2868 |
|
---|
2869 | // find next triangle
|
---|
2870 | for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
|
---|
2871 | LOG(1, "INFO: Inspecting triangle " << *Runner->second << ".");
|
---|
2872 | if ((Runner->second != triangle)) { // look for first triangle not equal to old one
|
---|
2873 | triangle = Runner->second;
|
---|
2874 | TriangleRunner = TouchedTriangle.find(triangle);
|
---|
2875 | if (TriangleRunner != TouchedTriangle.end()) {
|
---|
2876 | if (!TriangleRunner->second) {
|
---|
2877 | TriangleRunner->second = true;
|
---|
2878 | LOG(1, "INFO: Connecting triangle is " << *triangle << ".");
|
---|
2879 | break;
|
---|
2880 | } else {
|
---|
2881 | LOG(1, "INFO: Skipping " << *triangle << ", as we have already visited it.");
|
---|
2882 | triangle = NULL;
|
---|
2883 | }
|
---|
2884 | } else {
|
---|
2885 | ELOG(1, "I could not find " << *triangle << " in the touched list.");
|
---|
2886 | triangle = NULL;
|
---|
2887 | }
|
---|
2888 | }
|
---|
2889 | }
|
---|
2890 | if (triangle == NULL)
|
---|
2891 | break;
|
---|
2892 | // find next line
|
---|
2893 | for (int i = 0; i < 3; i++) {
|
---|
2894 | if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
|
---|
2895 | CurrentLine = triangle->lines[i];
|
---|
2896 | LOG(1, "INFO: Connecting line is " << *CurrentLine << ".");
|
---|
2897 | break;
|
---|
2898 | }
|
---|
2899 | }
|
---|
2900 | LineRunner = TouchedLine.find(CurrentLine);
|
---|
2901 | if (LineRunner == TouchedLine.end())
|
---|
2902 | ELOG(1, "I could not find " << *CurrentLine << " in the touched list.");
|
---|
2903 | else
|
---|
2904 | LineRunner->second = true;
|
---|
2905 | // find next point
|
---|
2906 | CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
|
---|
2907 |
|
---|
2908 | } while (CurrentLine != StartLine);
|
---|
2909 | // last point is missing, as it's on start line
|
---|
2910 | LOG(1, "INFO: Putting " << *CurrentPoint << " at end of path.");
|
---|
2911 | if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
|
---|
2912 | connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
|
---|
2913 |
|
---|
2914 | ListOfPaths->push_back(connectedPath);
|
---|
2915 | } else {
|
---|
2916 | LOG(1, "INFO: Skipping " << *runner->second << ", as we have already visited it.");
|
---|
2917 | }
|
---|
2918 | }
|
---|
2919 | } else {
|
---|
2920 | ELOG(1, "There are no lines attached to " << *ReferencePoint << ".");
|
---|
2921 | }
|
---|
2922 |
|
---|
2923 | return ListOfPaths;
|
---|
2924 | }
|
---|
2925 |
|
---|
2926 | /** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
|
---|
2927 | * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
|
---|
2928 | * @param *out output stream for debugging
|
---|
2929 | * @param *Point of which get all connected points
|
---|
2930 | * @return list of the closed paths
|
---|
2931 | */
|
---|
2932 | ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
|
---|
2933 | {
|
---|
2934 | Info FunctionInfo(__func__);
|
---|
2935 | list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
|
---|
2936 | list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;
|
---|
2937 | TesselPointList *connectedPath = NULL;
|
---|
2938 | TesselPointList *newPath = NULL;
|
---|
2939 | int count = 0;
|
---|
2940 | TesselPointList::iterator CircleRunner;
|
---|
2941 | TesselPointList::iterator CircleStart;
|
---|
2942 |
|
---|
2943 | for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
|
---|
2944 | connectedPath = *ListRunner;
|
---|
2945 |
|
---|
2946 | LOG(1, "INFO: Current path is " << connectedPath << ".");
|
---|
2947 |
|
---|
2948 | // go through list, look for reappearance of starting Point and count
|
---|
2949 | CircleStart = connectedPath->begin();
|
---|
2950 | // go through list, look for reappearance of starting Point and create list
|
---|
2951 | TesselPointList::iterator Marker = CircleStart;
|
---|
2952 | for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
|
---|
2953 | if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
|
---|
2954 | // we have a closed circle from Marker to new Marker
|
---|
2955 | if (DoLog(1)) {
|
---|
2956 | std::stringstream output;
|
---|
2957 | output << count + 1 << ". closed path consists of: ";
|
---|
2958 | for (TesselPointList::iterator CircleSprinter = Marker;
|
---|
2959 | CircleSprinter != CircleRunner;
|
---|
2960 | CircleSprinter++)
|
---|
2961 | output << (**CircleSprinter) << " <-> ";
|
---|
2962 | LOG(1, output.str());
|
---|
2963 | }
|
---|
2964 | newPath = new TesselPointList;
|
---|
2965 | TesselPointList::iterator CircleSprinter = Marker;
|
---|
2966 | for (; CircleSprinter != CircleRunner; CircleSprinter++)
|
---|
2967 | newPath->push_back(*CircleSprinter);
|
---|
2968 | count++;
|
---|
2969 | Marker = CircleRunner;
|
---|
2970 |
|
---|
2971 | // add to list
|
---|
2972 | ListofClosedPaths->push_back(newPath);
|
---|
2973 | }
|
---|
2974 | }
|
---|
2975 | }
|
---|
2976 | LOG(1, "INFO: " << count << " closed additional path(s) have been created.");
|
---|
2977 |
|
---|
2978 | // delete list of paths
|
---|
2979 | while (!ListofPaths->empty()) {
|
---|
2980 | connectedPath = *(ListofPaths->begin());
|
---|
2981 | ListofPaths->remove(connectedPath);
|
---|
2982 | delete (connectedPath);
|
---|
2983 | }
|
---|
2984 | delete (ListofPaths);
|
---|
2985 |
|
---|
2986 | // exit
|
---|
2987 | return ListofClosedPaths;
|
---|
2988 | }
|
---|
2989 | ;
|
---|
2990 |
|
---|
2991 | /** Gets all belonging triangles for a given BoundaryPointSet.
|
---|
2992 | * \param *out output stream for debugging
|
---|
2993 | * \param *Point BoundaryPoint
|
---|
2994 | * \return pointer to allocated list of triangles
|
---|
2995 | */
|
---|
2996 | TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
|
---|
2997 | {
|
---|
2998 | Info FunctionInfo(__func__);
|
---|
2999 | TriangleSet *connectedTriangles = new TriangleSet;
|
---|
3000 |
|
---|
3001 | if (Point == NULL) {
|
---|
3002 | ELOG(1, "Point given is NULL.");
|
---|
3003 | } else {
|
---|
3004 | // go through its lines and insert all triangles
|
---|
3005 | for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
|
---|
3006 | for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
|
---|
3007 | connectedTriangles->insert(TriangleRunner->second);
|
---|
3008 | }
|
---|
3009 | }
|
---|
3010 |
|
---|
3011 | return connectedTriangles;
|
---|
3012 | }
|
---|
3013 | ;
|
---|
3014 |
|
---|
3015 | /** Removes a boundary point from the envelope while keeping it closed.
|
---|
3016 | * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
|
---|
3017 | * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
|
---|
3018 | * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
|
---|
3019 | * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
|
---|
3020 | * -# the surface is closed, when the path is empty
|
---|
3021 | * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
|
---|
3022 | * \param *out output stream for debugging
|
---|
3023 | * \param *point point to be removed
|
---|
3024 | * \return volume added to the volume inside the tesselated surface by the removal
|
---|
3025 | */
|
---|
3026 | double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point)
|
---|
3027 | {
|
---|
3028 | class BoundaryLineSet *line = NULL;
|
---|
3029 | class BoundaryTriangleSet *triangle = NULL;
|
---|
3030 | Vector OldPoint, NormalVector;
|
---|
3031 | double volume = 0;
|
---|
3032 | int count = 0;
|
---|
3033 |
|
---|
3034 | if (point == NULL) {
|
---|
3035 | ELOG(1, "Cannot remove the point " << point << ", it's NULL!");
|
---|
3036 | return 0.;
|
---|
3037 | } else
|
---|
3038 | LOG(0, "Removing point " << *point << " from tesselated boundary ...");
|
---|
3039 |
|
---|
3040 | // copy old location for the volume
|
---|
3041 | OldPoint = (point->node->getPosition());
|
---|
3042 |
|
---|
3043 | // get list of connected points
|
---|
3044 | if (point->lines.empty()) {
|
---|
3045 | ELOG(1, "Cannot remove the point " << *point << ", it's connected to no lines!");
|
---|
3046 | return 0.;
|
---|
3047 | }
|
---|
3048 |
|
---|
3049 | list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
|
---|
3050 | TesselPointList *connectedPath = NULL;
|
---|
3051 |
|
---|
3052 | // gather all triangles
|
---|
3053 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
|
---|
3054 | count += LineRunner->second->triangles.size();
|
---|
3055 | TriangleMap Candidates;
|
---|
3056 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
|
---|
3057 | line = LineRunner->second;
|
---|
3058 | for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
|
---|
3059 | triangle = TriangleRunner->second;
|
---|
3060 | Candidates.insert(TrianglePair(triangle->Nr, triangle));
|
---|
3061 | }
|
---|
3062 | }
|
---|
3063 |
|
---|
3064 | // remove all triangles
|
---|
3065 | count = 0;
|
---|
3066 | NormalVector.Zero();
|
---|
3067 | for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
|
---|
3068 | LOG(1, "INFO: Removing triangle " << *(Runner->second) << ".");
|
---|
3069 | NormalVector -= Runner->second->NormalVector; // has to point inward
|
---|
3070 | RemoveTesselationTriangle(Runner->second);
|
---|
3071 | count++;
|
---|
3072 | }
|
---|
3073 | LOG(1, count << " triangles were removed.");
|
---|
3074 |
|
---|
3075 | list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
|
---|
3076 | list<TesselPointList *>::iterator ListRunner = ListAdvance;
|
---|
3077 | TriangleMap::iterator NumberRunner = Candidates.begin();
|
---|
3078 | TesselPointList::iterator StartNode, MiddleNode, EndNode;
|
---|
3079 | double angle;
|
---|
3080 | double smallestangle;
|
---|
3081 | Vector Point, Reference, OrthogonalVector;
|
---|
3082 | if (count > 2) { // less than three triangles, then nothing will be created
|
---|
3083 | class TesselPoint *TriangleCandidates[3];
|
---|
3084 | count = 0;
|
---|
3085 | for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
|
---|
3086 | if (ListAdvance != ListOfClosedPaths->end())
|
---|
3087 | ListAdvance++;
|
---|
3088 |
|
---|
3089 | connectedPath = *ListRunner;
|
---|
3090 | // re-create all triangles by going through connected points list
|
---|
3091 | LineList NewLines;
|
---|
3092 | for (; !connectedPath->empty();) {
|
---|
3093 | // search middle node with widest angle to next neighbours
|
---|
3094 | EndNode = connectedPath->end();
|
---|
3095 | smallestangle = 0.;
|
---|
3096 | for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
|
---|
3097 | LOG(1, "INFO: MiddleNode is " << **MiddleNode << ".");
|
---|
3098 | // construct vectors to next and previous neighbour
|
---|
3099 | StartNode = MiddleNode;
|
---|
3100 | if (StartNode == connectedPath->begin())
|
---|
3101 | StartNode = connectedPath->end();
|
---|
3102 | StartNode--;
|
---|
3103 | //LOG(3, "INFO: StartNode is " << **StartNode << ".");
|
---|
3104 | Point = ((*StartNode)->getPosition()) - ((*MiddleNode)->getPosition());
|
---|
3105 | StartNode = MiddleNode;
|
---|
3106 | StartNode++;
|
---|
3107 | if (StartNode == connectedPath->end())
|
---|
3108 | StartNode = connectedPath->begin();
|
---|
3109 | //LOG(3, "INFO: EndNode is " << **StartNode << ".");
|
---|
3110 | Reference = ((*StartNode)->getPosition()) - ((*MiddleNode)->getPosition());
|
---|
3111 | OrthogonalVector = ((*MiddleNode)->getPosition()) - OldPoint;
|
---|
3112 | OrthogonalVector.MakeNormalTo(Reference);
|
---|
3113 | angle = GetAngle(Point, Reference, OrthogonalVector);
|
---|
3114 | //if (angle < M_PI) // no wrong-sided triangles, please?
|
---|
3115 | if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
|
---|
3116 | smallestangle = angle;
|
---|
3117 | EndNode = MiddleNode;
|
---|
3118 | }
|
---|
3119 | }
|
---|
3120 | MiddleNode = EndNode;
|
---|
3121 | if (MiddleNode == connectedPath->end()) {
|
---|
3122 | ELOG(0, "CRITICAL: Could not find a smallest angle!");
|
---|
3123 | performCriticalExit();
|
---|
3124 | }
|
---|
3125 | StartNode = MiddleNode;
|
---|
3126 | if (StartNode == connectedPath->begin())
|
---|
3127 | StartNode = connectedPath->end();
|
---|
3128 | StartNode--;
|
---|
3129 | EndNode++;
|
---|
3130 | if (EndNode == connectedPath->end())
|
---|
3131 | EndNode = connectedPath->begin();
|
---|
3132 | LOG(2, "INFO: StartNode is " << **StartNode << ".");
|
---|
3133 | LOG(2, "INFO: MiddleNode is " << **MiddleNode << ".");
|
---|
3134 | LOG(2, "INFO: EndNode is " << **EndNode << ".");
|
---|
3135 | LOG(1, "INFO: Attempting to create triangle " << (*StartNode)->getName() << ", " << (*MiddleNode)->getName() << " and " << (*EndNode)->getName() << ".");
|
---|
3136 | TriangleCandidates[0] = *StartNode;
|
---|
3137 | TriangleCandidates[1] = *MiddleNode;
|
---|
3138 | TriangleCandidates[2] = *EndNode;
|
---|
3139 | triangle = GetPresentTriangle(TriangleCandidates);
|
---|
3140 | if (triangle != NULL) {
|
---|
3141 | ELOG(0, "New triangle already present, skipping!");
|
---|
3142 | StartNode++;
|
---|
3143 | MiddleNode++;
|
---|
3144 | EndNode++;
|
---|
3145 | if (StartNode == connectedPath->end())
|
---|
3146 | StartNode = connectedPath->begin();
|
---|
3147 | if (MiddleNode == connectedPath->end())
|
---|
3148 | MiddleNode = connectedPath->begin();
|
---|
3149 | if (EndNode == connectedPath->end())
|
---|
3150 | EndNode = connectedPath->begin();
|
---|
3151 | continue;
|
---|
3152 | }
|
---|
3153 | LOG(3, "Adding new triangle points.");
|
---|
3154 | AddTesselationPoint(*StartNode, 0);
|
---|
3155 | AddTesselationPoint(*MiddleNode, 1);
|
---|
3156 | AddTesselationPoint(*EndNode, 2);
|
---|
3157 | LOG(3, "Adding new triangle lines.");
|
---|
3158 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3159 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3160 | NewLines.push_back(BLS[1]);
|
---|
3161 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3162 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3163 | BTS->GetNormalVector(NormalVector);
|
---|
3164 | AddTesselationTriangle();
|
---|
3165 | // calculate volume summand as a general tetraeder
|
---|
3166 | volume += CalculateVolumeofGeneralTetraeder(TPS[0]->node->getPosition(), TPS[1]->node->getPosition(), TPS[2]->node->getPosition(), OldPoint);
|
---|
3167 | // advance number
|
---|
3168 | count++;
|
---|
3169 |
|
---|
3170 | // prepare nodes for next triangle
|
---|
3171 | StartNode = EndNode;
|
---|
3172 | LOG(2, "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << ".");
|
---|
3173 | connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
|
---|
3174 | if (connectedPath->size() == 2) { // we are done
|
---|
3175 | connectedPath->remove(*StartNode); // remove the start node
|
---|
3176 | connectedPath->remove(*EndNode); // remove the end node
|
---|
3177 | break;
|
---|
3178 | } else if (connectedPath->size() < 2) { // something's gone wrong!
|
---|
3179 | ELOG(0, "CRITICAL: There are only two endpoints left!");
|
---|
3180 | performCriticalExit();
|
---|
3181 | } else {
|
---|
3182 | MiddleNode = StartNode;
|
---|
3183 | MiddleNode++;
|
---|
3184 | if (MiddleNode == connectedPath->end())
|
---|
3185 | MiddleNode = connectedPath->begin();
|
---|
3186 | EndNode = MiddleNode;
|
---|
3187 | EndNode++;
|
---|
3188 | if (EndNode == connectedPath->end())
|
---|
3189 | EndNode = connectedPath->begin();
|
---|
3190 | }
|
---|
3191 | }
|
---|
3192 | // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
|
---|
3193 | if (NewLines.size() > 1) {
|
---|
3194 | LineList::iterator Candidate;
|
---|
3195 | class BoundaryLineSet *OtherBase = NULL;
|
---|
3196 | double tmp, maxgain;
|
---|
3197 | do {
|
---|
3198 | maxgain = 0;
|
---|
3199 | for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
|
---|
3200 | tmp = PickFarthestofTwoBaselines(*Runner);
|
---|
3201 | if (maxgain < tmp) {
|
---|
3202 | maxgain = tmp;
|
---|
3203 | Candidate = Runner;
|
---|
3204 | }
|
---|
3205 | }
|
---|
3206 | if (maxgain != 0) {
|
---|
3207 | volume += maxgain;
|
---|
3208 | LOG(1, "Flipping baseline with highest volume" << **Candidate << ".");
|
---|
3209 | OtherBase = FlipBaseline(*Candidate);
|
---|
3210 | NewLines.erase(Candidate);
|
---|
3211 | NewLines.push_back(OtherBase);
|
---|
3212 | }
|
---|
3213 | } while (maxgain != 0.);
|
---|
3214 | }
|
---|
3215 |
|
---|
3216 | ListOfClosedPaths->remove(connectedPath);
|
---|
3217 | delete (connectedPath);
|
---|
3218 | }
|
---|
3219 | LOG(0, count << " triangles were created.");
|
---|
3220 | } else {
|
---|
3221 | while (!ListOfClosedPaths->empty()) {
|
---|
3222 | ListRunner = ListOfClosedPaths->begin();
|
---|
3223 | connectedPath = *ListRunner;
|
---|
3224 | ListOfClosedPaths->remove(connectedPath);
|
---|
3225 | delete (connectedPath);
|
---|
3226 | }
|
---|
3227 | LOG(0, "No need to create any triangles.");
|
---|
3228 | }
|
---|
3229 | delete (ListOfClosedPaths);
|
---|
3230 |
|
---|
3231 | LOG(0, "Removed volume is " << volume << ".");
|
---|
3232 |
|
---|
3233 | return volume;
|
---|
3234 | }
|
---|
3235 | ;
|
---|
3236 |
|
---|
3237 | /**
|
---|
3238 | * Finds triangles belonging to the three provided points.
|
---|
3239 | *
|
---|
3240 | * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
|
---|
3241 | *
|
---|
3242 | * @return triangles which belong to the provided points, will be empty if there are none,
|
---|
3243 | * will usually be one, in case of degeneration, there will be two
|
---|
3244 | */
|
---|
3245 | TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
|
---|
3246 | {
|
---|
3247 | Info FunctionInfo(__func__);
|
---|
3248 | TriangleList *result = new TriangleList;
|
---|
3249 | LineMap::const_iterator FindLine;
|
---|
3250 | TriangleMap::const_iterator FindTriangle;
|
---|
3251 | class BoundaryPointSet *TrianglePoints[3];
|
---|
3252 | size_t NoOfWildcards = 0;
|
---|
3253 |
|
---|
3254 | for (int i = 0; i < 3; i++) {
|
---|
3255 | if (Points[i] == NULL) {
|
---|
3256 | NoOfWildcards++;
|
---|
3257 | TrianglePoints[i] = NULL;
|
---|
3258 | } else {
|
---|
3259 | PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->getNr());
|
---|
3260 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
3261 | TrianglePoints[i] = FindPoint->second;
|
---|
3262 | } else {
|
---|
3263 | TrianglePoints[i] = NULL;
|
---|
3264 | }
|
---|
3265 | }
|
---|
3266 | }
|
---|
3267 |
|
---|
3268 | switch (NoOfWildcards) {
|
---|
3269 | case 0: // checks lines between the points in the Points for their adjacent triangles
|
---|
3270 | for (int i = 0; i < 3; i++) {
|
---|
3271 | if (TrianglePoints[i] != NULL) {
|
---|
3272 | for (int j = i + 1; j < 3; j++) {
|
---|
3273 | if (TrianglePoints[j] != NULL) {
|
---|
3274 | for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->getNr()); // is a multimap!
|
---|
3275 | (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->getNr()); FindLine++) {
|
---|
3276 | for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
|
---|
3277 | if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
|
---|
3278 | result->push_back(FindTriangle->second);
|
---|
3279 | }
|
---|
3280 | }
|
---|
3281 | }
|
---|
3282 | // Is it sufficient to consider one of the triangle lines for this.
|
---|
3283 | return result;
|
---|
3284 | }
|
---|
3285 | }
|
---|
3286 | }
|
---|
3287 | }
|
---|
3288 | break;
|
---|
3289 | case 1: // copy all triangles of the respective line
|
---|
3290 | {
|
---|
3291 | int i = 0;
|
---|
3292 | for (; i < 3; i++)
|
---|
3293 | if (TrianglePoints[i] == NULL)
|
---|
3294 | break;
|
---|
3295 | for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->getNr()); // is a multimap!
|
---|
3296 | (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->getNr()); FindLine++) {
|
---|
3297 | for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
|
---|
3298 | if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
|
---|
3299 | result->push_back(FindTriangle->second);
|
---|
3300 | }
|
---|
3301 | }
|
---|
3302 | }
|
---|
3303 | break;
|
---|
3304 | }
|
---|
3305 | case 2: // copy all triangles of the respective point
|
---|
3306 | {
|
---|
3307 | int i = 0;
|
---|
3308 | for (; i < 3; i++)
|
---|
3309 | if (TrianglePoints[i] != NULL)
|
---|
3310 | break;
|
---|
3311 | for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
|
---|
3312 | for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
|
---|
3313 | result->push_back(triangle->second);
|
---|
3314 | result->sort();
|
---|
3315 | result->unique();
|
---|
3316 | break;
|
---|
3317 | }
|
---|
3318 | case 3: // copy all triangles
|
---|
3319 | {
|
---|
3320 | for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
|
---|
3321 | result->push_back(triangle->second);
|
---|
3322 | break;
|
---|
3323 | }
|
---|
3324 | default:
|
---|
3325 | ELOG(0, "Number of wildcards is greater than 3, cannot happen!");
|
---|
3326 | performCriticalExit();
|
---|
3327 | break;
|
---|
3328 | }
|
---|
3329 |
|
---|
3330 | return result;
|
---|
3331 | }
|
---|
3332 |
|
---|
3333 | struct BoundaryLineSetCompare
|
---|
3334 | {
|
---|
3335 | bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b)
|
---|
3336 | {
|
---|
3337 | int lowerNra = -1;
|
---|
3338 | int lowerNrb = -1;
|
---|
3339 |
|
---|
3340 | if (a->endpoints[0] < a->endpoints[1])
|
---|
3341 | lowerNra = 0;
|
---|
3342 | else
|
---|
3343 | lowerNra = 1;
|
---|
3344 |
|
---|
3345 | if (b->endpoints[0] < b->endpoints[1])
|
---|
3346 | lowerNrb = 0;
|
---|
3347 | else
|
---|
3348 | lowerNrb = 1;
|
---|
3349 |
|
---|
3350 | if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
|
---|
3351 | return true;
|
---|
3352 | else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
|
---|
3353 | return false;
|
---|
3354 | else { // both lower-numbered endpoints are the same ...
|
---|
3355 | if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2])
|
---|
3356 | return true;
|
---|
3357 | else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2])
|
---|
3358 | return false;
|
---|
3359 | }
|
---|
3360 | return false;
|
---|
3361 | }
|
---|
3362 | ;
|
---|
3363 | };
|
---|
3364 |
|
---|
3365 | #define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
|
---|
3366 |
|
---|
3367 | /**
|
---|
3368 | * Finds all degenerated lines within the tesselation structure.
|
---|
3369 | *
|
---|
3370 | * @return map of keys of degenerated line pairs, each line occurs twice
|
---|
3371 | * in the list, once as key and once as value
|
---|
3372 | */
|
---|
3373 | IndexToIndex * Tesselation::FindAllDegeneratedLines()
|
---|
3374 | {
|
---|
3375 | Info FunctionInfo(__func__);
|
---|
3376 | UniqueLines AllLines;
|
---|
3377 | IndexToIndex * DegeneratedLines = new IndexToIndex;
|
---|
3378 |
|
---|
3379 | // sanity check
|
---|
3380 | if (LinesOnBoundary.empty()) {
|
---|
3381 | ELOG(2, "FindAllDegeneratedTriangles() was called without any tesselation structure.");
|
---|
3382 | return DegeneratedLines;
|
---|
3383 | }
|
---|
3384 | LineMap::iterator LineRunner1;
|
---|
3385 | pair<UniqueLines::iterator, bool> tester;
|
---|
3386 | for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
|
---|
3387 | tester = AllLines.insert(LineRunner1->second);
|
---|
3388 | if (!tester.second) { // found degenerated line
|
---|
3389 | DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));
|
---|
3390 | DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));
|
---|
3391 | }
|
---|
3392 | }
|
---|
3393 |
|
---|
3394 | AllLines.clear();
|
---|
3395 |
|
---|
3396 | LOG(0, "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines.");
|
---|
3397 | IndexToIndex::iterator it;
|
---|
3398 | for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
|
---|
3399 | const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
|
---|
3400 | const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
|
---|
3401 | if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
|
---|
3402 | LOG(0, *Line1->second << " => " << *Line2->second);
|
---|
3403 | else
|
---|
3404 | ELOG(1, "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!");
|
---|
3405 | }
|
---|
3406 |
|
---|
3407 | return DegeneratedLines;
|
---|
3408 | }
|
---|
3409 |
|
---|
3410 | /**
|
---|
3411 | * Finds all degenerated triangles within the tesselation structure.
|
---|
3412 | *
|
---|
3413 | * @return map of keys of degenerated triangle pairs, each triangle occurs twice
|
---|
3414 | * in the list, once as key and once as value
|
---|
3415 | */
|
---|
3416 | IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
|
---|
3417 | {
|
---|
3418 | Info FunctionInfo(__func__);
|
---|
3419 | IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
|
---|
3420 | IndexToIndex * DegeneratedTriangles = new IndexToIndex;
|
---|
3421 | TriangleMap::iterator TriangleRunner1, TriangleRunner2;
|
---|
3422 | LineMap::iterator Liner;
|
---|
3423 | class BoundaryLineSet *line1 = NULL, *line2 = NULL;
|
---|
3424 |
|
---|
3425 | for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
|
---|
3426 | // run over both lines' triangles
|
---|
3427 | Liner = LinesOnBoundary.find(LineRunner->first);
|
---|
3428 | if (Liner != LinesOnBoundary.end())
|
---|
3429 | line1 = Liner->second;
|
---|
3430 | Liner = LinesOnBoundary.find(LineRunner->second);
|
---|
3431 | if (Liner != LinesOnBoundary.end())
|
---|
3432 | line2 = Liner->second;
|
---|
3433 | for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
|
---|
3434 | for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
|
---|
3435 | if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
|
---|
3436 | DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr));
|
---|
3437 | DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr));
|
---|
3438 | }
|
---|
3439 | }
|
---|
3440 | }
|
---|
3441 | }
|
---|
3442 | delete (DegeneratedLines);
|
---|
3443 |
|
---|
3444 | LOG(0, "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:");
|
---|
3445 | for (IndexToIndex::iterator it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
|
---|
3446 | LOG(0, (*it).first << " => " << (*it).second);
|
---|
3447 |
|
---|
3448 | return DegeneratedTriangles;
|
---|
3449 | }
|
---|
3450 |
|
---|
3451 | /**
|
---|
3452 | * Purges degenerated triangles from the tesselation structure if they are not
|
---|
3453 | * necessary to keep a single point within the structure.
|
---|
3454 | */
|
---|
3455 | void Tesselation::RemoveDegeneratedTriangles()
|
---|
3456 | {
|
---|
3457 | Info FunctionInfo(__func__);
|
---|
3458 | IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
|
---|
3459 | TriangleMap::iterator finder;
|
---|
3460 | BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
|
---|
3461 | int count = 0;
|
---|
3462 |
|
---|
3463 | // iterate over all degenerated triangles
|
---|
3464 | for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); !DegeneratedTriangles->empty(); TriangleKeyRunner = DegeneratedTriangles->begin()) {
|
---|
3465 | LOG(0, "Checking presence of triangles " << TriangleKeyRunner->first << " and " << TriangleKeyRunner->second << ".");
|
---|
3466 | // both ways are stored in the map, only use one
|
---|
3467 | if (TriangleKeyRunner->first > TriangleKeyRunner->second)
|
---|
3468 | continue;
|
---|
3469 |
|
---|
3470 | // determine from the keys in the map the two _present_ triangles
|
---|
3471 | finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
|
---|
3472 | if (finder != TrianglesOnBoundary.end())
|
---|
3473 | triangle = finder->second;
|
---|
3474 | else
|
---|
3475 | continue;
|
---|
3476 | finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
|
---|
3477 | if (finder != TrianglesOnBoundary.end())
|
---|
3478 | partnerTriangle = finder->second;
|
---|
3479 | else
|
---|
3480 | continue;
|
---|
3481 |
|
---|
3482 | // determine which lines are shared by the two triangles
|
---|
3483 | bool trianglesShareLine = false;
|
---|
3484 | for (int i = 0; i < 3; ++i)
|
---|
3485 | for (int j = 0; j < 3; ++j)
|
---|
3486 | trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
|
---|
3487 |
|
---|
3488 | if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) {
|
---|
3489 | // check whether we have to fix lines
|
---|
3490 | BoundaryTriangleSet *Othertriangle = NULL;
|
---|
3491 | BoundaryTriangleSet *OtherpartnerTriangle = NULL;
|
---|
3492 | TriangleMap::iterator TriangleRunner;
|
---|
3493 | for (int i = 0; i < 3; ++i)
|
---|
3494 | for (int j = 0; j < 3; ++j)
|
---|
3495 | if (triangle->lines[i] != partnerTriangle->lines[j]) {
|
---|
3496 | // get the other two triangles
|
---|
3497 | for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
|
---|
3498 | if (TriangleRunner->second != triangle) {
|
---|
3499 | Othertriangle = TriangleRunner->second;
|
---|
3500 | }
|
---|
3501 | for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
|
---|
3502 | if (TriangleRunner->second != partnerTriangle) {
|
---|
3503 | OtherpartnerTriangle = TriangleRunner->second;
|
---|
3504 | }
|
---|
3505 | /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
|
---|
3506 | // the line of triangle receives the degenerated ones
|
---|
3507 | triangle->lines[i]->triangles.erase(Othertriangle->Nr);
|
---|
3508 | triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle));
|
---|
3509 | for (int k = 0; k < 3; k++)
|
---|
3510 | if (triangle->lines[i] == Othertriangle->lines[k]) {
|
---|
3511 | Othertriangle->lines[k] = partnerTriangle->lines[j];
|
---|
3512 | break;
|
---|
3513 | }
|
---|
3514 | // the line of partnerTriangle receives the non-degenerated ones
|
---|
3515 | partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr);
|
---|
3516 | partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle));
|
---|
3517 | partnerTriangle->lines[j] = triangle->lines[i];
|
---|
3518 | }
|
---|
3519 |
|
---|
3520 | // erase the pair
|
---|
3521 | count += (int) DegeneratedTriangles->erase(triangle->Nr);
|
---|
3522 | LOG(0, "RemoveDegeneratedTriangles() removes triangle " << *triangle << ".");
|
---|
3523 | RemoveTesselationTriangle(triangle);
|
---|
3524 | count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
|
---|
3525 | LOG(0, "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << ".");
|
---|
3526 | RemoveTesselationTriangle(partnerTriangle);
|
---|
3527 | } else {
|
---|
3528 | LOG(0, "RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure.");
|
---|
3529 | }
|
---|
3530 | }
|
---|
3531 | delete (DegeneratedTriangles);
|
---|
3532 | if (count > 0)
|
---|
3533 | LastTriangle = NULL;
|
---|
3534 |
|
---|
3535 | LOG(0, "RemoveDegeneratedTriangles() removed " << count << " triangles:");
|
---|
3536 | }
|
---|
3537 |
|
---|
3538 | /** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
|
---|
3539 | * We look for the closest point on the boundary, we look through its connected boundary lines and
|
---|
3540 | * seek the one with the minimum angle between its center point and the new point and this base line.
|
---|
3541 | * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
|
---|
3542 | * \param *out output stream for debugging
|
---|
3543 | * \param *point point to add
|
---|
3544 | * \param *LC Linked Cell structure to find nearest point
|
---|
3545 | */
|
---|
3546 | void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC)
|
---|
3547 | {
|
---|
3548 | Info FunctionInfo(__func__);
|
---|
3549 | // find nearest boundary point
|
---|
3550 | class TesselPoint *BackupPoint = NULL;
|
---|
3551 | class TesselPoint *NearestPoint = FindClosestTesselPoint(point->getPosition(), BackupPoint, LC);
|
---|
3552 | class BoundaryPointSet *NearestBoundaryPoint = NULL;
|
---|
3553 | PointMap::iterator PointRunner;
|
---|
3554 |
|
---|
3555 | if (NearestPoint == point)
|
---|
3556 | NearestPoint = BackupPoint;
|
---|
3557 | PointRunner = PointsOnBoundary.find(NearestPoint->getNr());
|
---|
3558 | if (PointRunner != PointsOnBoundary.end()) {
|
---|
3559 | NearestBoundaryPoint = PointRunner->second;
|
---|
3560 | } else {
|
---|
3561 | ELOG(1, "I cannot find the boundary point.");
|
---|
3562 | return;
|
---|
3563 | }
|
---|
3564 | LOG(0, "Nearest point on boundary is " << NearestPoint->getName() << ".");
|
---|
3565 |
|
---|
3566 | // go through its lines and find the best one to split
|
---|
3567 | Vector CenterToPoint;
|
---|
3568 | Vector BaseLine;
|
---|
3569 | double angle, BestAngle = 0.;
|
---|
3570 | class BoundaryLineSet *BestLine = NULL;
|
---|
3571 | for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
|
---|
3572 | BaseLine = (Runner->second->endpoints[0]->node->getPosition()) -
|
---|
3573 | (Runner->second->endpoints[1]->node->getPosition());
|
---|
3574 | CenterToPoint = 0.5 * ((Runner->second->endpoints[0]->node->getPosition()) +
|
---|
3575 | (Runner->second->endpoints[1]->node->getPosition()));
|
---|
3576 | CenterToPoint -= (point->getPosition());
|
---|
3577 | angle = CenterToPoint.Angle(BaseLine);
|
---|
3578 | if (fabs(angle - M_PI/2.) < fabs(BestAngle - M_PI/2.)) {
|
---|
3579 | BestAngle = angle;
|
---|
3580 | BestLine = Runner->second;
|
---|
3581 | }
|
---|
3582 | }
|
---|
3583 |
|
---|
3584 | // remove one triangle from the chosen line
|
---|
3585 | class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
|
---|
3586 | BestLine->triangles.erase(TempTriangle->Nr);
|
---|
3587 | int nr = -1;
|
---|
3588 | for (int i = 0; i < 3; i++) {
|
---|
3589 | if (TempTriangle->lines[i] == BestLine) {
|
---|
3590 | nr = i;
|
---|
3591 | break;
|
---|
3592 | }
|
---|
3593 | }
|
---|
3594 |
|
---|
3595 | // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
|
---|
3596 | LOG(2, "Adding new triangle points.");
|
---|
3597 | AddTesselationPoint((BestLine->endpoints[0]->node), 0);
|
---|
3598 | AddTesselationPoint((BestLine->endpoints[1]->node), 1);
|
---|
3599 | AddTesselationPoint(point, 2);
|
---|
3600 | LOG(2, "Adding new triangle lines.");
|
---|
3601 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3602 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3603 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3604 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3605 | BTS->GetNormalVector(TempTriangle->NormalVector);
|
---|
3606 | BTS->NormalVector.Scale(-1.);
|
---|
3607 | LOG(1, "INFO: NormalVector of new triangle is " << BTS->NormalVector << ".");
|
---|
3608 | AddTesselationTriangle();
|
---|
3609 |
|
---|
3610 | // create other side of this triangle and close both new sides of the first created triangle
|
---|
3611 | LOG(2, "Adding new triangle points.");
|
---|
3612 | AddTesselationPoint((BestLine->endpoints[0]->node), 0);
|
---|
3613 | AddTesselationPoint((BestLine->endpoints[1]->node), 1);
|
---|
3614 | AddTesselationPoint(point, 2);
|
---|
3615 | LOG(2, "Adding new triangle lines.");
|
---|
3616 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3617 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3618 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3619 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3620 | BTS->GetNormalVector(TempTriangle->NormalVector);
|
---|
3621 | LOG(1, "INFO: NormalVector of other new triangle is " << BTS->NormalVector << ".");
|
---|
3622 | AddTesselationTriangle();
|
---|
3623 |
|
---|
3624 | // add removed triangle to the last open line of the second triangle
|
---|
3625 | for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion)
|
---|
3626 | if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
|
---|
3627 | if (BestLine == BTS->lines[i]) {
|
---|
3628 | ELOG(0, "BestLine is same as found line, something's wrong here!");
|
---|
3629 | performCriticalExit();
|
---|
3630 | }
|
---|
3631 | BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));
|
---|
3632 | TempTriangle->lines[nr] = BTS->lines[i];
|
---|
3633 | break;
|
---|
3634 | }
|
---|
3635 | }
|
---|
3636 | }
|
---|
3637 | ;
|
---|
3638 |
|
---|
3639 | /** Writes the envelope to file.
|
---|
3640 | * \param *out otuput stream for debugging
|
---|
3641 | * \param *filename basename of output file
|
---|
3642 | * \param *cloud IPointCloud structure with all nodes
|
---|
3643 | */
|
---|
3644 | void Tesselation::Output(const char *filename, IPointCloud & cloud)
|
---|
3645 | {
|
---|
3646 | Info FunctionInfo(__func__);
|
---|
3647 | ofstream *tempstream = NULL;
|
---|
3648 | string NameofTempFile;
|
---|
3649 | string NumberName;
|
---|
3650 |
|
---|
3651 | if (LastTriangle != NULL) {
|
---|
3652 | stringstream sstr;
|
---|
3653 | sstr << "-"<< TrianglesOnBoundary.size() << "-" << LastTriangle->getEndpointName(0) << "_" << LastTriangle->getEndpointName(1) << "_" << LastTriangle->getEndpointName(2);
|
---|
3654 | NumberName = sstr.str();
|
---|
3655 | if (DoTecplotOutput) {
|
---|
3656 | string NameofTempFile(filename);
|
---|
3657 | NameofTempFile.append(NumberName);
|
---|
3658 | for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
|
---|
3659 | NameofTempFile.erase(npos, 1);
|
---|
3660 | NameofTempFile.append(TecplotSuffix);
|
---|
3661 | LOG(1, "INFO: Writing temporary non convex hull to file " << NameofTempFile << ".");
|
---|
3662 | tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
|
---|
3663 | WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
|
---|
3664 | tempstream->close();
|
---|
3665 | tempstream->flush();
|
---|
3666 | delete (tempstream);
|
---|
3667 | }
|
---|
3668 |
|
---|
3669 | if (DoRaster3DOutput) {
|
---|
3670 | string NameofTempFile(filename);
|
---|
3671 | NameofTempFile.append(NumberName);
|
---|
3672 | for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
|
---|
3673 | NameofTempFile.erase(npos, 1);
|
---|
3674 | NameofTempFile.append(Raster3DSuffix);
|
---|
3675 | LOG(1, "INFO: Writing temporary non convex hull to file " << NameofTempFile << ".");
|
---|
3676 | tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
|
---|
3677 | WriteRaster3dFile(tempstream, this, cloud);
|
---|
3678 | IncludeSphereinRaster3D(tempstream, this, cloud);
|
---|
3679 | tempstream->close();
|
---|
3680 | tempstream->flush();
|
---|
3681 | delete (tempstream);
|
---|
3682 | }
|
---|
3683 | }
|
---|
3684 | if (DoTecplotOutput || DoRaster3DOutput)
|
---|
3685 | TriangleFilesWritten++;
|
---|
3686 | }
|
---|
3687 | ;
|
---|
3688 |
|
---|
3689 | struct BoundaryPolygonSetCompare
|
---|
3690 | {
|
---|
3691 | bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const
|
---|
3692 | {
|
---|
3693 | if (s1->endpoints.size() < s2->endpoints.size())
|
---|
3694 | return true;
|
---|
3695 | else if (s1->endpoints.size() > s2->endpoints.size())
|
---|
3696 | return false;
|
---|
3697 | else { // equality of number of endpoints
|
---|
3698 | PointSet::const_iterator Walker1 = s1->endpoints.begin();
|
---|
3699 | PointSet::const_iterator Walker2 = s2->endpoints.begin();
|
---|
3700 | while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
|
---|
3701 | if ((*Walker1)->Nr < (*Walker2)->Nr)
|
---|
3702 | return true;
|
---|
3703 | else if ((*Walker1)->Nr > (*Walker2)->Nr)
|
---|
3704 | return false;
|
---|
3705 | Walker1++;
|
---|
3706 | Walker2++;
|
---|
3707 | }
|
---|
3708 | return false;
|
---|
3709 | }
|
---|
3710 | }
|
---|
3711 | };
|
---|
3712 |
|
---|
3713 | #define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
|
---|
3714 |
|
---|
3715 | /** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
|
---|
3716 | * \return number of polygons found
|
---|
3717 | */
|
---|
3718 | int Tesselation::CorrectAllDegeneratedPolygons()
|
---|
3719 | {
|
---|
3720 | Info FunctionInfo(__func__);
|
---|
3721 | /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
|
---|
3722 | IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
|
---|
3723 | set<BoundaryPointSet *> EndpointCandidateList;
|
---|
3724 | pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester;
|
---|
3725 | pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester;
|
---|
3726 | for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
|
---|
3727 | LOG(0, "Current point is " << *Runner->second << ".");
|
---|
3728 | map<int, Vector *> TriangleVectors;
|
---|
3729 | // gather all NormalVectors
|
---|
3730 | LOG(1, "Gathering triangles ...");
|
---|
3731 | for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
|
---|
3732 | for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
|
---|
3733 | if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
|
---|
3734 | TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));
|
---|
3735 | if (TriangleInsertionTester.second)
|
---|
3736 | LOG(1, " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list.");
|
---|
3737 | } else {
|
---|
3738 | LOG(1, " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one.");
|
---|
3739 | }
|
---|
3740 | }
|
---|
3741 | // check whether there are two that are parallel
|
---|
3742 | LOG(1, "Finding two parallel triangles ...");
|
---|
3743 | for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
|
---|
3744 | for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
|
---|
3745 | if (VectorWalker != VectorRunner) { // skip equals
|
---|
3746 | const double SCP = VectorWalker->second->ScalarProduct(*VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
|
---|
3747 | LOG(1, "Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP);
|
---|
3748 | if (fabs(SCP + 1.) < ParallelEpsilon) {
|
---|
3749 | InsertionTester = EndpointCandidateList.insert((Runner->second));
|
---|
3750 | if (InsertionTester.second)
|
---|
3751 | LOG(0, " Adding " << *Runner->second << " to endpoint candidate list.");
|
---|
3752 | // and break out of both loops
|
---|
3753 | VectorWalker = TriangleVectors.end();
|
---|
3754 | VectorRunner = TriangleVectors.end();
|
---|
3755 | break;
|
---|
3756 | }
|
---|
3757 | }
|
---|
3758 | }
|
---|
3759 | delete DegeneratedTriangles;
|
---|
3760 |
|
---|
3761 | /// 3. Find connected endpoint candidates and put them into a polygon
|
---|
3762 | UniquePolygonSet ListofDegeneratedPolygons;
|
---|
3763 | BoundaryPointSet *Walker = NULL;
|
---|
3764 | BoundaryPointSet *OtherWalker = NULL;
|
---|
3765 | BoundaryPolygonSet *Current = NULL;
|
---|
3766 | stack<BoundaryPointSet*> ToCheckConnecteds;
|
---|
3767 | while (!EndpointCandidateList.empty()) {
|
---|
3768 | Walker = *(EndpointCandidateList.begin());
|
---|
3769 | if (Current == NULL) { // create a new polygon with current candidate
|
---|
3770 | LOG(0, "Starting new polygon set at point " << *Walker);
|
---|
3771 | Current = new BoundaryPolygonSet;
|
---|
3772 | Current->endpoints.insert(Walker);
|
---|
3773 | EndpointCandidateList.erase(Walker);
|
---|
3774 | ToCheckConnecteds.push(Walker);
|
---|
3775 | }
|
---|
3776 |
|
---|
3777 | // go through to-check stack
|
---|
3778 | while (!ToCheckConnecteds.empty()) {
|
---|
3779 | Walker = ToCheckConnecteds.top(); // fetch ...
|
---|
3780 | ToCheckConnecteds.pop(); // ... and remove
|
---|
3781 | for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
|
---|
3782 | OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
|
---|
3783 | LOG(1, "Checking " << *OtherWalker);
|
---|
3784 | set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
|
---|
3785 | if (Finder != EndpointCandidateList.end()) { // found a connected partner
|
---|
3786 | LOG(1, " Adding to polygon.");
|
---|
3787 | Current->endpoints.insert(OtherWalker);
|
---|
3788 | EndpointCandidateList.erase(Finder); // remove from candidates
|
---|
3789 | ToCheckConnecteds.push(OtherWalker); // but check its partners too
|
---|
3790 | } else {
|
---|
3791 | LOG(1, " is not connected to " << *Walker);
|
---|
3792 | }
|
---|
3793 | }
|
---|
3794 | }
|
---|
3795 |
|
---|
3796 | LOG(0, "Final polygon is " << *Current);
|
---|
3797 | ListofDegeneratedPolygons.insert(Current);
|
---|
3798 | Current = NULL;
|
---|
3799 | }
|
---|
3800 |
|
---|
3801 | const int counter = ListofDegeneratedPolygons.size();
|
---|
3802 |
|
---|
3803 | if (DoLog(0)) {
|
---|
3804 | std::stringstream output;
|
---|
3805 | output << "The following " << counter << " degenerated polygons have been found: ";
|
---|
3806 | for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
|
---|
3807 | output << " " << **PolygonRunner;
|
---|
3808 | LOG(0, output.str());
|
---|
3809 | }
|
---|
3810 |
|
---|
3811 | /// 4. Go through all these degenerated polygons
|
---|
3812 | for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
|
---|
3813 | stack<int> TriangleNrs;
|
---|
3814 | Vector NormalVector;
|
---|
3815 | /// 4a. Gather all triangles of this polygon
|
---|
3816 | TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
|
---|
3817 |
|
---|
3818 | // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
|
---|
3819 | if (T->size() == 2) {
|
---|
3820 | LOG(1, " Skipping degenerated polygon, is just a (already simply degenerated) triangle.");
|
---|
3821 | delete (T);
|
---|
3822 | continue;
|
---|
3823 | }
|
---|
3824 |
|
---|
3825 | // check whether number is even
|
---|
3826 | // If this case occurs, we have to think about it!
|
---|
3827 | // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
|
---|
3828 | // connections to either polygon ...
|
---|
3829 | if (T->size() % 2 != 0) {
|
---|
3830 | ELOG(0, " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!");
|
---|
3831 | performCriticalExit();
|
---|
3832 | }
|
---|
3833 | TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
|
---|
3834 | /// 4a. Get NormalVector for one side (this is "front")
|
---|
3835 | NormalVector = (*TriangleWalker)->NormalVector;
|
---|
3836 | LOG(1, "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector);
|
---|
3837 | TriangleWalker++;
|
---|
3838 | TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
|
---|
3839 | /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
|
---|
3840 | BoundaryTriangleSet *triangle = NULL;
|
---|
3841 | while (TriangleSprinter != T->end()) {
|
---|
3842 | TriangleWalker = TriangleSprinter;
|
---|
3843 | triangle = *TriangleWalker;
|
---|
3844 | TriangleSprinter++;
|
---|
3845 | LOG(1, "Current triangle to test for removal: " << *triangle);
|
---|
3846 | if (triangle->NormalVector.ScalarProduct(NormalVector) < 0) { // if from other side, then delete and remove from list
|
---|
3847 | LOG(1, " Removing ... ");
|
---|
3848 | TriangleNrs.push(triangle->Nr);
|
---|
3849 | T->erase(TriangleWalker);
|
---|
3850 | RemoveTesselationTriangle(triangle);
|
---|
3851 | } else
|
---|
3852 | LOG(1, " Keeping ... ");
|
---|
3853 | }
|
---|
3854 | /// 4c. Copy all "front" triangles but with inverse NormalVector
|
---|
3855 | TriangleWalker = T->begin();
|
---|
3856 | while (TriangleWalker != T->end()) { // go through all front triangles
|
---|
3857 | LOG(1, " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector);
|
---|
3858 | for (int i = 0; i < 3; i++)
|
---|
3859 | AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
|
---|
3860 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3861 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3862 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3863 | if (TriangleNrs.empty())
|
---|
3864 | ELOG(0, "No more free triangle numbers!");
|
---|
3865 | BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
|
---|
3866 | AddTesselationTriangle(); // ... and add
|
---|
3867 | TriangleNrs.pop();
|
---|
3868 | BTS->NormalVector = -1 * (*TriangleWalker)->NormalVector;
|
---|
3869 | TriangleWalker++;
|
---|
3870 | }
|
---|
3871 | if (!TriangleNrs.empty()) {
|
---|
3872 | ELOG(0, "There have been less triangles created than removed!");
|
---|
3873 | }
|
---|
3874 | delete (T); // remove the triangleset
|
---|
3875 | }
|
---|
3876 | IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
|
---|
3877 | LOG(0, "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:");
|
---|
3878 | IndexToIndex::iterator it;
|
---|
3879 | for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
|
---|
3880 | LOG(0, (*it).first << " => " << (*it).second);
|
---|
3881 | delete (SimplyDegeneratedTriangles);
|
---|
3882 | /// 5. exit
|
---|
3883 | UniquePolygonSet::iterator PolygonRunner;
|
---|
3884 | while (!ListofDegeneratedPolygons.empty()) {
|
---|
3885 | PolygonRunner = ListofDegeneratedPolygons.begin();
|
---|
3886 | delete (*PolygonRunner);
|
---|
3887 | ListofDegeneratedPolygons.erase(PolygonRunner);
|
---|
3888 | }
|
---|
3889 |
|
---|
3890 | return counter;
|
---|
3891 | }
|
---|
3892 | ;
|
---|