[bcf653] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
[0aa122] | 4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
[94d5ac6] | 5 | *
|
---|
| 6 | *
|
---|
| 7 | * This file is part of MoleCuilder.
|
---|
| 8 | *
|
---|
| 9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
| 10 | * it under the terms of the GNU General Public License as published by
|
---|
| 11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
| 12 | * (at your option) any later version.
|
---|
| 13 | *
|
---|
| 14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | * GNU General Public License for more details.
|
---|
| 18 | *
|
---|
| 19 | * You should have received a copy of the GNU General Public License
|
---|
| 20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
[bcf653] | 21 | */
|
---|
| 22 |
|
---|
[6ac7ee] | 23 | /*
|
---|
| 24 | * ellipsoid.cpp
|
---|
| 25 | *
|
---|
[042f82] | 26 | * Created on: Jan 20, 2009
|
---|
| 27 | * Author: heber
|
---|
[6ac7ee] | 28 | */
|
---|
| 29 |
|
---|
[bf3817] | 30 | // include config.h
|
---|
| 31 | #ifdef HAVE_CONFIG_H
|
---|
| 32 | #include <config.h>
|
---|
| 33 | #endif
|
---|
| 34 |
|
---|
[ad011c] | 35 | #include "CodePatterns/MemDebug.hpp"
|
---|
[112b09] | 36 |
|
---|
[357fba] | 37 | #include <gsl/gsl_multimin.h>
|
---|
| 38 | #include <gsl/gsl_vector.h>
|
---|
| 39 |
|
---|
[f66195] | 40 | #include <iomanip>
|
---|
| 41 |
|
---|
| 42 | #include <set>
|
---|
| 43 |
|
---|
[ad011c] | 44 | #include "CodePatterns/Log.hpp"
|
---|
[53c7fc] | 45 | #include "ellipsoid.hpp"
|
---|
[57f243] | 46 | #include "LinearAlgebra/Vector.hpp"
|
---|
[cca9ef] | 47 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
[53c7fc] | 48 | #include "LinkedCell/linkedcell.hpp"
|
---|
| 49 | #include "Tesselation/BoundaryPointSet.hpp"
|
---|
| 50 | #include "Tesselation/boundary.hpp"
|
---|
| 51 | #include "Tesselation/tesselation.hpp"
|
---|
[6ac7ee] | 52 |
|
---|
[a5028f] | 53 | #include "RandomNumbers/RandomNumberGeneratorFactory.hpp"
|
---|
| 54 | #include "RandomNumbers/RandomNumberGenerator.hpp"
|
---|
| 55 |
|
---|
[6ac7ee] | 56 | /** Determines squared distance for a given point \a x to surface of ellipsoid.
|
---|
| 57 | * \param x given point
|
---|
| 58 | * \param EllipsoidCenter center of ellipsoid
|
---|
| 59 | * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
|
---|
| 60 | * \param EllipsoidAngle[3] three rotation angles of ellipsoid
|
---|
| 61 | * \return squared distance from point to surface
|
---|
| 62 | */
|
---|
| 63 | double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
|
---|
| 64 | {
|
---|
[042f82] | 65 | Vector helper, RefPoint;
|
---|
| 66 | double distance = -1.;
|
---|
[cca9ef] | 67 | RealSpaceMatrix Matrix;
|
---|
[042f82] | 68 | double InverseLength[3];
|
---|
| 69 | double psi,theta,phi; // euler angles in ZX'Z'' convention
|
---|
| 70 |
|
---|
[47d041] | 71 | //LOG(3, "Begin of SquaredDistanceToEllipsoid");
|
---|
[042f82] | 72 |
|
---|
| 73 | for(int i=0;i<3;i++)
|
---|
| 74 | InverseLength[i] = 1./EllipsoidLength[i];
|
---|
| 75 |
|
---|
| 76 | // 1. translate coordinate system so that ellipsoid center is in origin
|
---|
[273382] | 77 | RefPoint = helper = x - EllipsoidCenter;
|
---|
[47d041] | 78 | //LOG(4, "Translated given point is at " << RefPoint << ".");
|
---|
[042f82] | 79 |
|
---|
| 80 | // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
|
---|
| 81 | psi = EllipsoidAngle[0];
|
---|
| 82 | theta = EllipsoidAngle[1];
|
---|
| 83 | phi = EllipsoidAngle[2];
|
---|
[a679d1] | 84 | Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
|
---|
| 85 | Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
|
---|
| 86 | Matrix.set(2,0, sin(psi)*sin(theta));
|
---|
| 87 | Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
|
---|
| 88 | Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
|
---|
| 89 | Matrix.set(2,1, -cos(psi)*sin(theta));
|
---|
| 90 | Matrix.set(0,2, sin(theta)*sin(phi));
|
---|
| 91 | Matrix.set(1,2, sin(theta)*cos(phi));
|
---|
| 92 | Matrix.set(2,2, cos(theta));
|
---|
[5108e1] | 93 | helper *= Matrix;
|
---|
[1bd79e] | 94 | helper.ScaleAll(InverseLength);
|
---|
[47d041] | 95 | //LOG(4, "Transformed RefPoint is at " << helper << ".");
|
---|
[042f82] | 96 |
|
---|
| 97 | // 3. construct intersection point with unit sphere and ray between origin and x
|
---|
| 98 | helper.Normalize(); // is simply normalizes vector in distance direction
|
---|
[47d041] | 99 | //LOG(4, "Transformed intersection is at " << helper << ".");
|
---|
[042f82] | 100 |
|
---|
| 101 | // 4. transform back the constructed intersection point
|
---|
| 102 | psi = -EllipsoidAngle[0];
|
---|
| 103 | theta = -EllipsoidAngle[1];
|
---|
| 104 | phi = -EllipsoidAngle[2];
|
---|
[1bd79e] | 105 | helper.ScaleAll(EllipsoidLength);
|
---|
[a679d1] | 106 | Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
|
---|
| 107 | Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
|
---|
| 108 | Matrix.set(2,0, sin(psi)*sin(theta));
|
---|
| 109 | Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
|
---|
| 110 | Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
|
---|
| 111 | Matrix.set(2,1, -cos(psi)*sin(theta));
|
---|
| 112 | Matrix.set(0,2, sin(theta)*sin(phi));
|
---|
| 113 | Matrix.set(1,2, sin(theta)*cos(phi));
|
---|
| 114 | Matrix.set(2,2, cos(theta));
|
---|
[5108e1] | 115 | helper *= Matrix;
|
---|
[47d041] | 116 | //LOG(4, "Intersection is at " << helper << ".");
|
---|
[042f82] | 117 |
|
---|
| 118 | // 5. determine distance between backtransformed point and x
|
---|
[273382] | 119 | distance = RefPoint.DistanceSquared(helper);
|
---|
[47d041] | 120 | //LOG(4, "Squared distance between intersection and RefPoint is " << distance << ".");
|
---|
[042f82] | 121 |
|
---|
| 122 | return distance;
|
---|
[47d041] | 123 | //LOG(3, "End of SquaredDistanceToEllipsoid");
|
---|
[6ac7ee] | 124 | };
|
---|
| 125 |
|
---|
| 126 | /** structure for ellipsoid minimisation containing points to fit to.
|
---|
| 127 | */
|
---|
| 128 | struct EllipsoidMinimisation {
|
---|
[042f82] | 129 | int N; //!< dimension of vector set
|
---|
| 130 | Vector *x; //!< array of vectors
|
---|
[6ac7ee] | 131 | };
|
---|
| 132 |
|
---|
| 133 | /** Sum of squared distance to ellipsoid to be minimised.
|
---|
| 134 | * \param *x parameters for the ellipsoid
|
---|
| 135 | * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
|
---|
| 136 | * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
|
---|
| 137 | */
|
---|
| 138 | double SumSquaredDistance (const gsl_vector * x, void * params)
|
---|
| 139 | {
|
---|
[042f82] | 140 | Vector *set= ((struct EllipsoidMinimisation *)params)->x;
|
---|
| 141 | int N = ((struct EllipsoidMinimisation *)params)->N;
|
---|
| 142 | double SumDistance = 0.;
|
---|
| 143 | double distance;
|
---|
| 144 | Vector Center;
|
---|
| 145 | double EllipsoidLength[3], EllipsoidAngle[3];
|
---|
| 146 |
|
---|
| 147 | // put parameters into suitable ellipsoid form
|
---|
| 148 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 149 | Center[i] = gsl_vector_get(x, i+0);
|
---|
[042f82] | 150 | EllipsoidLength[i] = gsl_vector_get(x, i+3);
|
---|
| 151 | EllipsoidAngle[i] = gsl_vector_get(x, i+6);
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | // go through all points and sum distance
|
---|
| 155 | for (int i=0;i<N;i++) {
|
---|
| 156 | distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
|
---|
| 157 | if (!isnan(distance)) {
|
---|
| 158 | SumDistance += distance;
|
---|
| 159 | } else {
|
---|
| 160 | SumDistance = GSL_NAN;
|
---|
| 161 | break;
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
| 164 |
|
---|
[47d041] | 165 | //LOG(0, "Current summed distance is " << SumDistance << ".");
|
---|
[042f82] | 166 | return SumDistance;
|
---|
[6ac7ee] | 167 | };
|
---|
| 168 |
|
---|
| 169 | /** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
|
---|
| 170 | * \param *out output stream for debugging
|
---|
| 171 | * \param *set given point set
|
---|
| 172 | * \param N number of points in set
|
---|
| 173 | * \param EllipsoidParamter[3] three parameters in ellipsoid equation
|
---|
| 174 | * \return true - fit successful, false - fit impossible
|
---|
| 175 | */
|
---|
[e138de] | 176 | bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
|
---|
[6ac7ee] | 177 | {
|
---|
[042f82] | 178 | int status = GSL_SUCCESS;
|
---|
[47d041] | 179 | LOG(2, "Begin of FitPointSetToEllipsoid ");
|
---|
[042f82] | 180 | if (N >= 3) { // check that enough points are given (9 d.o.f.)
|
---|
| 181 | struct EllipsoidMinimisation par;
|
---|
| 182 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 183 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 184 | gsl_vector *ss, *x;
|
---|
| 185 | gsl_multimin_function minex_func;
|
---|
| 186 |
|
---|
| 187 | size_t iter = 0;
|
---|
| 188 | double size;
|
---|
| 189 |
|
---|
| 190 | /* Starting point */
|
---|
| 191 | x = gsl_vector_alloc (9);
|
---|
| 192 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 193 | gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
|
---|
[042f82] | 194 | gsl_vector_set (x, i+3, EllipsoidLength[i]);
|
---|
| 195 | gsl_vector_set (x, i+6, EllipsoidAngle[i]);
|
---|
| 196 | }
|
---|
| 197 | par.x = set;
|
---|
| 198 | par.N = N;
|
---|
| 199 |
|
---|
| 200 | /* Set initial step sizes */
|
---|
| 201 | ss = gsl_vector_alloc (9);
|
---|
| 202 | for (int i=0;i<3;i++) {
|
---|
| 203 | gsl_vector_set (ss, i+0, 0.1);
|
---|
| 204 | gsl_vector_set (ss, i+3, 1.0);
|
---|
| 205 | gsl_vector_set (ss, i+6, M_PI/20.);
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | /* Initialize method and iterate */
|
---|
| 209 | minex_func.n = 9;
|
---|
| 210 | minex_func.f = &SumSquaredDistance;
|
---|
| 211 | minex_func.params = (void *)∥
|
---|
| 212 |
|
---|
| 213 | s = gsl_multimin_fminimizer_alloc (T, 9);
|
---|
| 214 | gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
|
---|
| 215 |
|
---|
| 216 | do {
|
---|
| 217 | iter++;
|
---|
| 218 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 219 |
|
---|
| 220 | if (status)
|
---|
| 221 | break;
|
---|
| 222 |
|
---|
| 223 | size = gsl_multimin_fminimizer_size (s);
|
---|
| 224 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
| 225 |
|
---|
| 226 | if (status == GSL_SUCCESS) {
|
---|
| 227 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 228 | EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
|
---|
[042f82] | 229 | EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
|
---|
| 230 | EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
|
---|
| 231 | }
|
---|
[47d041] | 232 | LOG(4, setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << ".");
|
---|
[042f82] | 233 | }
|
---|
| 234 |
|
---|
| 235 | } while (status == GSL_CONTINUE && iter < 1000);
|
---|
| 236 |
|
---|
| 237 | gsl_vector_free(x);
|
---|
| 238 | gsl_vector_free(ss);
|
---|
| 239 | gsl_multimin_fminimizer_free (s);
|
---|
| 240 |
|
---|
| 241 | } else {
|
---|
[47d041] | 242 | LOG(3, "Not enough points provided for fit to ellipsoid.");
|
---|
[042f82] | 243 | return false;
|
---|
| 244 | }
|
---|
[47d041] | 245 | LOG(2, "End of FitPointSetToEllipsoid");
|
---|
[042f82] | 246 | if (status == GSL_SUCCESS)
|
---|
| 247 | return true;
|
---|
| 248 | else
|
---|
| 249 | return false;
|
---|
[6ac7ee] | 250 | };
|
---|
| 251 |
|
---|
| 252 | /** Picks a number of random points from a LC neighbourhood as a fitting set.
|
---|
| 253 | * \param *out output stream for debugging
|
---|
| 254 | * \param *T Tesselation containing boundary points
|
---|
| 255 | * \param *LC linked cell list of all atoms
|
---|
| 256 | * \param *&x random point set on return (not allocated!)
|
---|
| 257 | * \param PointsToPick number of points in set to pick
|
---|
| 258 | */
|
---|
[6bd7e0] | 259 | void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell_deprecated *LC, Vector *&x, size_t PointsToPick)
|
---|
[6ac7ee] | 260 | {
|
---|
[70c333f] | 261 | size_t PointsLeft = 0;
|
---|
| 262 | size_t PointsPicked = 0;
|
---|
[042f82] | 263 | int Nlower[NDIM], Nupper[NDIM];
|
---|
| 264 | set<int> PickedAtomNrs; // ordered list of picked atoms
|
---|
| 265 | set<int>::iterator current;
|
---|
| 266 | int index;
|
---|
[357fba] | 267 | TesselPoint *Candidate = NULL;
|
---|
[47d041] | 268 | LOG(2, "Begin of PickRandomPointSet");
|
---|
[042f82] | 269 |
|
---|
| 270 | // allocate array
|
---|
| 271 | if (x == NULL) {
|
---|
| 272 | x = new Vector[PointsToPick];
|
---|
| 273 | } else {
|
---|
[47d041] | 274 | ELOG(2, "Given pointer to vector array seems already allocated.");
|
---|
[042f82] | 275 | }
|
---|
| 276 |
|
---|
[a5028f] | 277 | RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
|
---|
| 278 | // check that random number generator's bounds are ok
|
---|
| 279 | ASSERT(random.min() == 0,
|
---|
| 280 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's min "
|
---|
| 281 | +toString(random.min())+" is not 0!");
|
---|
| 282 | ASSERT(random.max() >= LC->N[0],
|
---|
| 283 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
|
---|
| 284 | +toString(random.max())+" is too small"+toString(LC->N[0])
|
---|
| 285 | +" for axis 0!");
|
---|
| 286 | ASSERT(random.max() >= LC->N[1],
|
---|
| 287 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
|
---|
| 288 | +toString(random.max())+" is too small"+toString(LC->N[1])
|
---|
| 289 | +" for axis 1!");
|
---|
| 290 | ASSERT(random.max() >= LC->N[2],
|
---|
| 291 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
|
---|
| 292 | +toString(random.max())+" is too small"+toString(LC->N[2])
|
---|
| 293 | +" for axis 2!");
|
---|
| 294 |
|
---|
[042f82] | 295 | do {
|
---|
| 296 | for(int i=0;i<NDIM;i++) // pick three random indices
|
---|
[a5028f] | 297 | LC->n[i] = ((int)random() % LC->N[i]);
|
---|
[47d041] | 298 | LOG(2, "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << ".");
|
---|
[042f82] | 299 | // get random cell
|
---|
[34c43a] | 300 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[042f82] | 301 | if (List == NULL) { // set index to it
|
---|
| 302 | continue;
|
---|
| 303 | }
|
---|
[47d041] | 304 | LOG(2, "INFO: Cell index is No. " << LC->index << ".");
|
---|
| 305 |
|
---|
| 306 | if (DoLog(2)) {
|
---|
| 307 | std::stringstream output;
|
---|
| 308 | output << "LC Intervals:";
|
---|
| 309 | for (int i=0;i<NDIM;i++)
|
---|
| 310 | output << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
| 311 | LOG(2, output.str());
|
---|
| 312 | }
|
---|
[042f82] | 313 |
|
---|
| 314 | for (int i=0;i<NDIM;i++) {
|
---|
| 315 | Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
|
---|
| 316 | Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | // count whether there are sufficient atoms in this cell+neighbors
|
---|
| 320 | PointsLeft=0;
|
---|
| 321 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 322 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 323 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[34c43a] | 324 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[042f82] | 325 | PointsLeft += List->size();
|
---|
| 326 | }
|
---|
[47d041] | 327 | LOG(2, "There are " << PointsLeft << " atoms in this neighbourhood.");
|
---|
[042f82] | 328 | if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
|
---|
| 329 | continue;
|
---|
| 330 | }
|
---|
| 331 |
|
---|
| 332 | // pre-pick a fixed number of atoms
|
---|
| 333 | PickedAtomNrs.clear();
|
---|
| 334 | do {
|
---|
[a5028f] | 335 | index = (((int)random()) % PointsLeft);
|
---|
[042f82] | 336 | current = PickedAtomNrs.find(index); // not present?
|
---|
| 337 | if (current == PickedAtomNrs.end()) {
|
---|
[47d041] | 338 | //LOG(2, "Picking atom Nr. " << index << ".");
|
---|
[042f82] | 339 | PickedAtomNrs.insert(index);
|
---|
| 340 | }
|
---|
| 341 | } while (PickedAtomNrs.size() < PointsToPick);
|
---|
| 342 |
|
---|
| 343 | index = 0; // now go through all and pick those whose from PickedAtomsNr
|
---|
| 344 | PointsPicked=0;
|
---|
| 345 | current = PickedAtomNrs.begin();
|
---|
| 346 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 347 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 348 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[34c43a] | 349 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[47d041] | 350 | // LOG(2, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points.");
|
---|
[042f82] | 351 | if (List != NULL) {
|
---|
| 352 | // if (List->begin() != List->end())
|
---|
[47d041] | 353 | // LOG(2, "Going through candidates ... ");
|
---|
[042f82] | 354 | // else
|
---|
[47d041] | 355 | // LOG(2, "Cell is empty ... ");
|
---|
[34c43a] | 356 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[042f82] | 357 | if ((current != PickedAtomNrs.end()) && (*current == index)) {
|
---|
| 358 | Candidate = (*Runner);
|
---|
[47d041] | 359 | LOG(2, "Current picked node is " << (*Runner)->getName() << " with index " << index << ".");
|
---|
[d74077] | 360 | x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
|
---|
[042f82] | 361 | current++; // next pre-picked atom
|
---|
| 362 | }
|
---|
[5309ba] | 363 | index++; // next atom Nr.
|
---|
[042f82] | 364 | }
|
---|
| 365 | // } else {
|
---|
[47d041] | 366 | // LOG(2, "List for this index not allocated!");
|
---|
[042f82] | 367 | }
|
---|
| 368 | }
|
---|
[47d041] | 369 | LOG(2, "The following points were picked: ");
|
---|
[042f82] | 370 | for (size_t i=0;i<PointsPicked;i++)
|
---|
[47d041] | 371 | LOG(2, x[i]);
|
---|
[042f82] | 372 | if (PointsPicked == PointsToPick) // break out of loop if we have all
|
---|
| 373 | break;
|
---|
| 374 | } while(1);
|
---|
| 375 |
|
---|
[47d041] | 376 | LOG(2, "End of PickRandomPointSet");
|
---|
[6ac7ee] | 377 | };
|
---|
| 378 |
|
---|
| 379 | /** Picks a number of random points from a set of boundary points as a fitting set.
|
---|
| 380 | * \param *out output stream for debugging
|
---|
| 381 | * \param *T Tesselation containing boundary points
|
---|
| 382 | * \param *&x random point set on return (not allocated!)
|
---|
| 383 | * \param PointsToPick number of points in set to pick
|
---|
| 384 | */
|
---|
[e138de] | 385 | void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
|
---|
[6ac7ee] | 386 | {
|
---|
[70c333f] | 387 | size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
|
---|
| 388 | size_t PointsPicked = 0;
|
---|
[042f82] | 389 | double value, threshold;
|
---|
| 390 | PointMap *List = &T->PointsOnBoundary;
|
---|
[47d041] | 391 | LOG(2, "Begin of PickRandomPointSet");
|
---|
[042f82] | 392 |
|
---|
| 393 | // allocate array
|
---|
| 394 | if (x == NULL) {
|
---|
| 395 | x = new Vector[PointsToPick];
|
---|
| 396 | } else {
|
---|
[47d041] | 397 | ELOG(2, "Given pointer to vector array seems already allocated.");
|
---|
[042f82] | 398 | }
|
---|
| 399 |
|
---|
[a5028f] | 400 | RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
|
---|
| 401 | const double rng_min = random.min();
|
---|
| 402 | const double rng_max = random.max();
|
---|
[042f82] | 403 | if (List != NULL)
|
---|
| 404 | for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 405 | threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
|
---|
[a5028f] | 406 | value = (double)random()/(double)(rng_max-rng_min);
|
---|
[042f82] | 407 | if (value > threshold) {
|
---|
[d74077] | 408 | x[PointsPicked] = (Runner->second->node->getPosition());
|
---|
[042f82] | 409 | PointsPicked++;
|
---|
[47d041] | 410 | //LOG(3, "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": IN.");
|
---|
[042f82] | 411 | } else {
|
---|
[47d041] | 412 | //LOG(3, "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": OUT.");
|
---|
[042f82] | 413 | }
|
---|
| 414 | PointsLeft--;
|
---|
| 415 | }
|
---|
[47d041] | 416 | LOG(2, "The following points were picked: ");
|
---|
[042f82] | 417 | for (size_t i=0;i<PointsPicked;i++)
|
---|
[47d041] | 418 | LOG(3, x[i]);
|
---|
[042f82] | 419 |
|
---|
[47d041] | 420 | LOG(2, "End of PickRandomPointSet");
|
---|
[6ac7ee] | 421 | };
|
---|
| 422 |
|
---|
| 423 | /** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
|
---|
| 424 | * \param *out output stream for debugging
|
---|
| 425 | * \param *T Tesselation containing boundary points
|
---|
| 426 | * \param *LCList linked cell list of all atoms
|
---|
| 427 | * \param N number of unique points in ellipsoid fit, must be greater equal 6
|
---|
| 428 | * \param number of fits (i.e. parameter sets in output file)
|
---|
| 429 | * \param *filename name for output file
|
---|
| 430 | */
|
---|
[6bd7e0] | 431 | void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell_deprecated *LCList, int N, int number, const char *filename)
|
---|
[6ac7ee] | 432 | {
|
---|
[042f82] | 433 | ofstream output;
|
---|
| 434 | Vector *x = NULL;
|
---|
| 435 | Vector Center;
|
---|
| 436 | Vector EllipsoidCenter;
|
---|
| 437 | double EllipsoidLength[3];
|
---|
| 438 | double EllipsoidAngle[3];
|
---|
| 439 | double distance, MaxDistance, MinDistance;
|
---|
[47d041] | 440 | LOG(0, "Begin of FindDistributionOfEllipsoids");
|
---|
[042f82] | 441 |
|
---|
| 442 | // construct center of gravity of boundary point set for initial ellipsoid center
|
---|
| 443 | Center.Zero();
|
---|
| 444 | for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
|
---|
[d74077] | 445 | Center += (Runner->second->node->getPosition());
|
---|
[042f82] | 446 | Center.Scale(1./T->PointsOnBoundaryCount);
|
---|
[ce7bfd] | 447 | LOG(4, "DEBUG: Center of PointsOnBoundary is at " << Center << ".");
|
---|
[042f82] | 448 |
|
---|
| 449 | // Output header
|
---|
| 450 | output.open(filename, ios::trunc);
|
---|
| 451 | output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
|
---|
| 452 |
|
---|
| 453 | // loop over desired number of parameter sets
|
---|
| 454 | for (;number >0;number--) {
|
---|
[47d041] | 455 | LOG(1, "Determining data set " << number << " ... ");
|
---|
[042f82] | 456 | // pick the point set
|
---|
| 457 | x = NULL;
|
---|
[e138de] | 458 | //PickRandomPointSet(T, LCList, x, N);
|
---|
| 459 | PickRandomNeighbouredPointSet(T, LCList, x, N);
|
---|
[042f82] | 460 |
|
---|
| 461 | // calculate some sensible starting values for parameter fit
|
---|
| 462 | MaxDistance = 0.;
|
---|
[273382] | 463 | MinDistance = x[0].ScalarProduct(x[0]);
|
---|
[042f82] | 464 | for (int i=0;i<N;i++) {
|
---|
[273382] | 465 | distance = x[i].ScalarProduct(x[i]);
|
---|
[042f82] | 466 | if (distance > MaxDistance)
|
---|
| 467 | MaxDistance = distance;
|
---|
| 468 | if (distance < MinDistance)
|
---|
| 469 | MinDistance = distance;
|
---|
| 470 | }
|
---|
[47d041] | 471 | //LOG(2, "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << ".");
|
---|
[273382] | 472 | EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
|
---|
[042f82] | 473 | for (int i=0;i<3;i++)
|
---|
| 474 | EllipsoidAngle[i] = 0.;
|
---|
| 475 | EllipsoidLength[0] = sqrt(MaxDistance);
|
---|
| 476 | EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
|
---|
| 477 | EllipsoidLength[2] = sqrt(MinDistance);
|
---|
| 478 |
|
---|
| 479 | // fit the parameters
|
---|
[e138de] | 480 | if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
|
---|
[47d041] | 481 | LOG(1, "Picking succeeded!");
|
---|
[042f82] | 482 | // output obtained parameter set
|
---|
| 483 | output << number << "\t";
|
---|
| 484 | for (int i=0;i<3;i++)
|
---|
[0a4f7f] | 485 | output << setprecision(9) << EllipsoidCenter[i] << "\t";
|
---|
[042f82] | 486 | for (int i=0;i<3;i++)
|
---|
| 487 | output << setprecision(9) << EllipsoidLength[i] << "\t";
|
---|
| 488 | for (int i=0;i<3;i++)
|
---|
| 489 | output << setprecision(9) << EllipsoidAngle[i] << "\t";
|
---|
| 490 | output << endl;
|
---|
| 491 | } else { // increase N to pick one more
|
---|
[47d041] | 492 | LOG(1, "Picking failed!");
|
---|
[042f82] | 493 | number++;
|
---|
| 494 | }
|
---|
| 495 | delete[](x); // free allocated memory for point set
|
---|
| 496 | }
|
---|
| 497 | // close output and finish
|
---|
| 498 | output.close();
|
---|
| 499 |
|
---|
[47d041] | 500 | LOG(0, "End of FindDistributionOfEllipsoids");
|
---|
[6ac7ee] | 501 | };
|
---|