/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* BoundaryTriangleSet.cpp
*
* Created on: Jul 29, 2010
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "BoundaryTriangleSet.hpp"
#include
#include "BoundaryLineSet.hpp"
#include "BoundaryPointSet.hpp"
#include "Atom/TesselPoint.hpp"
#include "Helpers/defs.hpp"
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Info.hpp"
#include "CodePatterns/Log.hpp"
#include "CodePatterns/Verbose.hpp"
#include "LinearAlgebra/Exceptions.hpp"
#include "LinearAlgebra/Line.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "LinearAlgebra/Vector.hpp"
using namespace std;
/** Constructor for BoundaryTriangleSet.
*/
BoundaryTriangleSet::BoundaryTriangleSet() :
Nr(-1)
{
//Info FunctionInfo(__func__);
for (int i = 0; i < 3; i++) {
endpoints[i] = NULL;
lines[i] = NULL;
}
}
;
/** Constructor for BoundaryTriangleSet with three lines.
* \param *line[3] lines that make up the triangle
* \param number number of triangle
*/
BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
Nr(number)
{
//Info FunctionInfo(__func__);
// set number
// set lines
for (int i = 0; i < 3; i++) {
lines[i] = line[i];
lines[i]->AddTriangle(this);
}
// get ascending order of endpoints
PointMap OrderMap;
for (int i = 0; i < 3; i++) {
// for all three lines
for (int j = 0; j < 2; j++) { // for both endpoints
OrderMap.insert(pair (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
// and we don't care whether insertion fails
}
}
// set endpoints
int Counter = 0;
LOG(4, "DEBUG: New triangle " << Nr << " with end points ... and lines:");
for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
endpoints[Counter] = runner->second;
LOG(4, "DEBUG: " << *endpoints[Counter] << "\t\t" << *lines[Counter]);
Counter++;
}
ASSERT(Counter >= 3,"We have a triangle with only two distinct endpoints!");
};
/** Destructor of BoundaryTriangleSet.
* Removes itself from each of its lines' LineMap and removes them if necessary.
* \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
*/
BoundaryTriangleSet::~BoundaryTriangleSet()
{
//Info FunctionInfo(__func__);
for (int i = 0; i < 3; i++) {
if (lines[i] != NULL) {
if (lines[i]->triangles.erase(Nr)) {
//LOG(5, "DEBUG: Triangle Nr." << Nr << " erased in line " << *lines[i] << ".");
}
if (lines[i]->triangles.empty()) {
//LOG(5, "DEBUG: " << *lines[i] << " is no more attached to any triangle, erasing.");
delete (lines[i]);
lines[i] = NULL;
}
}
}
//LOG(5, "DEBUG: Erasing triangle Nr." << Nr << " itself.");
}
;
/** Calculates the area of this triangle.
*
* @return surface area in between the tree points of this triangle
*/
double BoundaryTriangleSet::getArea() const
{
Vector x;
Vector y;
x = getEndpoint(0) - getEndpoint(1);
y = getEndpoint(0) - getEndpoint(2);
const double a = x.Norm();
const double b = y.Norm();
const double c = getEndpoint(2).distance(getEndpoint(1));
const double area = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
return area;
}
/** Calculates the normal vector for this triangle.
* Is made unique by comparison with \a OtherVector to point in the other direction.
* \param &OtherVector direction vector to make normal vector unique.
*/
void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
{
//Info FunctionInfo(__func__);
// get normal vector
NormalVector = Plane((endpoints[0]->node->getPosition()),
(endpoints[1]->node->getPosition()),
(endpoints[2]->node->getPosition())).getNormal();
// make it always point inward (any offset vector onto plane projected onto normal vector suffices)
if (NormalVector.ScalarProduct(OtherVector) > 0.)
NormalVector.Scale(-1.);
LOG(4, "DEBUG: Normal Vector of " << *this << " is " << NormalVector << ".");
}
;
/** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
* We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
* Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
* The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
* given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
* the first two basepoints) or not.
* \param *out output stream for debugging
* \param &MolCenter offset vector of line
* \param &x second endpoint of line, minus \a *MolCenter is directional vector of line
* \param &Intersection intersection on plane on return
* \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
*/
bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector & MolCenter, const Vector & x, Vector &Intersection) const
{
//Info FunctionInfo(__func__);
Vector CrossPoint;
Vector helper;
try {
Line centerLine = makeLineThrough(MolCenter, x);
Intersection = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(centerLine);
LOG(4, "DEBUG: Triangle is " << *this << ".");
LOG(4, "DEBUG: Line is from " << MolCenter << " to " << x << ".");
LOG(4, "DEBUG: Intersection is " << Intersection << ".");
if (Intersection.DistanceSquared(endpoints[0]->node->getPosition()) < MYEPSILON) {
LOG(4, "DEBUG: Intersection coindices with first endpoint.");
return true;
} else if (Intersection.DistanceSquared(endpoints[1]->node->getPosition()) < MYEPSILON) {
LOG(4, "DEBUG: Intersection coindices with second endpoint.");
return true;
} else if (Intersection.DistanceSquared(endpoints[2]->node->getPosition()) < MYEPSILON) {
LOG(4, "DEBUG: Intersection coindices with third endpoint.");
return true;
}
// Calculate cross point between one baseline and the line from the third endpoint to intersection
int i = 0;
do {
Line line1 = makeLineThrough((endpoints[i%3]->node->getPosition()),(endpoints[(i+1)%3]->node->getPosition()));
Line line2 = makeLineThrough((endpoints[(i+2)%3]->node->getPosition()),Intersection);
CrossPoint = line1.getIntersection(line2);
helper = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition());
CrossPoint -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector
const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared();
LOG(4, "DEBUG: Factor s is " << s << ".");
if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) {
LOG(4, "DEBUG: Crosspoint " << CrossPoint << "outside of triangle.");
return false;
}
i++;
} while (i < 3);
LOG(4, "DEBUG: Crosspoint " << CrossPoint << " inside of triangle.");
return true;
}
catch (LinearAlgebraException &excp) {
LOG(1, boost::diagnostic_information(excp));
ELOG(1, "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!");
return false;
}
return true;
}
/** Finds the point on the triangle to the point \a *x.
* We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
* Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
* boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
* Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
* The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
* given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
* the first two basepoints) or not.
* \param *x point
* \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
* \return Distance squared between \a *x and closest point inside triangle
*/
double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector &x, Vector &ClosestPoint) const
{
//Info FunctionInfo(__func__);
Vector Direction;
// 1. get intersection with plane
LOG(4, "DEBUG: Looking for closest point of triangle " << *this << " to " << x << ".");
LOG(5, "DEBUG: endpoints are " << endpoints[0]->node->getPosition() << ","
<< endpoints[1]->node->getPosition() << ", and " << endpoints[2]->node->getPosition() << ".");
try {
ClosestPoint = Plane(NormalVector, (endpoints[0]->node->getPosition())).getClosestPoint(x);
}
catch (LinearAlgebraException &excp) {
(ClosestPoint) = (x);
}
Vector InPlane(ClosestPoint); // points from plane intersection to straight-down point
LOG(5, "DEBUG: Closest point on triangle plane is " << ClosestPoint << ".");
// 2. Calculate in plane part of line (x, intersection)
// Calculate cross point between one baseline and the desired point such that distance is shortest
Vector CrossDirection[3];
Vector CrossPoint[3];
for (int i = 0; i < 3; i++) {
const Vector Direction = (endpoints[i%3]->node->getPosition()) - (endpoints[(i+1)%3]->node->getPosition());
// calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
Line l = makeLineThrough((endpoints[i%3]->node->getPosition()), (endpoints[(i+1)%3]->node->getPosition()));
CrossPoint[i] = l.getClosestPoint(InPlane);
// NOTE: direction of line is normalized, hence s must not necessarily be in [0,1] for the baseline
LOG(5, "DEBUG: Closest point on line from " << (endpoints[(i+1)%3]->node->getPosition())
<< " to " << (endpoints[i%3]->node->getPosition()) << " is " << CrossPoint[i] << ".");
CrossPoint[i] -= (endpoints[(i+1)%3]->node->getPosition()); // cross point was returned as absolute vector
const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared();
LOG(6, "DEBUG: Factor s is " << s << ".");
if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) {
CrossPoint[i] += (endpoints[(i+1)%3]->node->getPosition()); // make cross point absolute again
LOG(6, "DEBUG: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between "
<< endpoints[i % 3]->node->getPosition() << " and "
<< endpoints[(i + 1) % 3]->node->getPosition() << ".");
} else {
// set to either endpoint of BoundaryLine
if (s < -MYEPSILON)
CrossPoint[i] = (endpoints[(i+1)%3]->node->getPosition());
else
CrossPoint[i] = (endpoints[i%3]->node->getPosition());
LOG(6, "DEBUG: Crosspoint is " << CrossPoint[i] << ", intersecting outside of BoundaryLine between "
<< endpoints[i % 3]->node->getPosition() << " and "
<< endpoints[(i + 1) % 3]->node->getPosition() << ".");
}
CrossDirection[i] = CrossPoint[i] - InPlane;
}
bool InsideFlag = true;
double ShortestDistance = -1.;
for (int i = 0; i < 3; i++) {
const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]);
const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]);
if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
InsideFlag = false;
// update current best candidate
const double distance = CrossPoint[i].DistanceSquared(x);
if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
ShortestDistance = distance;
(ClosestPoint) = CrossPoint[i];
}
}
if (InsideFlag) {
(ClosestPoint) = InPlane;
ShortestDistance = InPlane.DistanceSquared(x);
}
LOG(4, "DEBUG: Closest Point is " << ClosestPoint << " with shortest squared distance is " << ShortestDistance << ".");
return ShortestDistance;
}
/** Checks whether lines is any of the three boundary lines this triangle contains.
* \param *line line to test
* \return true - line is of the triangle, false - is not
*/
bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
{
//Info FunctionInfo(__func__);
for (int i = 0; i < 3; i++)
if (line == lines[i])
return true;
return false;
}
;
/** Checks whether point is any of the three endpoints this triangle contains.
* \param *point point to test
* \return true - point is of the triangle, false - is not
*/
bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
{
//Info FunctionInfo(__func__);
for (int i = 0; i < 3; i++)
if (point == endpoints[i])
return true;
return false;
}
;
/** Checks whether point is any of the three endpoints this triangle contains.
* \param *point TesselPoint to test
* \return true - point is of the triangle, false - is not
*/
bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
{
//Info FunctionInfo(__func__);
for (int i = 0; i < 3; i++)
if (point == endpoints[i]->node)
return true;
return false;
}
;
/** Checks whether three given \a *Points coincide with triangle's endpoints.
* \param *Points[3] pointer to BoundaryPointSet
* \return true - is the very triangle, false - is not
*/
bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
{
//Info FunctionInfo(__func__);
LOG(5, "DEBUG: Checking " << *Points[0] << "," << *Points[1] << "," << *Points[2]
<< " against " << *this); //*endpoints[0] << "," << *endpoints[1] << "," << *endpoints[2] << ".");
return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2]))
&& ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2]))
&& ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
));
}
;
/** Checks whether three given \a *Points coincide with triangle's endpoints.
* \param *Points[3] pointer to BoundaryPointSet
* \return true - is the very triangle, false - is not
*/
bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
{
//Info FunctionInfo(__func__);
return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
));
}
;
/** Checks whether a given point is inside the plane of the triangle and inside the
* bounds defined by its BoundaryLineSet's.
*
* @param point point to check
* @return true - point is inside place and inside all BoundaryLine's
*/
bool BoundaryTriangleSet::IsInsideTriangle(const Vector &point) const
{
Info FunctionInfo(__func__);
// check if it's inside the plane
try {
Plane trianglePlane(
endpoints[0]->node->getPosition(),
endpoints[1]->node->getPosition(),
endpoints[2]->node->getPosition());
if (!trianglePlane.isContained(point)) {
LOG(1, "INFO: Point " << point << " is not inside plane " << trianglePlane << " by "
<< trianglePlane.distance(point) << ".");
return false;
}
} catch(LinearDependenceException) {
// triangle is degenerated, it's just a line (i.e. one endpoint is right in between two others
for (size_t i = 0; i < NDIM; ++i) {
try {
Line l = makeLineThrough(
lines[i]->endpoints[0]->node->getPosition(),
lines[i]->endpoints[1]->node->getPosition());
if (l.isContained(GetThirdEndpoint(lines[i])->node->getPosition())) {
// we have the largest of the three lines
LOG(1, "INFO: Linear-dependent case where point " << point << " is on line " << l << ".");
return (l.isContained(point));
}
} catch(ZeroVectorException) {
// two points actually coincide
try {
Line l = makeLineThrough(
lines[i]->endpoints[0]->node->getPosition(),
GetThirdEndpoint(lines[i])->node->getPosition());
LOG(1, "INFO: Degenerated case where point " << point << " is on line " << l << ".");
return (l.isContained(point));
} catch(ZeroVectorException) {
// all three points coincide
if (point.DistanceSquared(lines[i]->endpoints[0]->node->getPosition()) < MYEPSILON) {
LOG(1, "INFO: Full-Degenerated case where point " << point << " is on three endpoints "
<< lines[i]->endpoints[0]->node->getPosition() << ".");
return true;
}
else return false;
}
}
}
}
// check whether it lies on the correct side as given by third endpoint for
// each BoundaryLine.
// NOTE: we assume here that endpoints are linear independent, as the case
// has been caught before already extensively
for (size_t i = 0; i < NDIM; ++i) {
Line l = makeLineThrough(
lines[i]->endpoints[0]->node->getPosition(),
lines[i]->endpoints[1]->node->getPosition());
Vector onLine( l.getClosestPoint(point) );
LOG(1, "INFO: Closest point on boundary line is " << onLine << ".");
Vector inTriangleDirection( GetThirdEndpoint(lines[i])->node->getPosition() - onLine );
Vector inPointDirection(point - onLine);
if ((inTriangleDirection.NormSquared() > MYEPSILON) && (inPointDirection.NormSquared() > MYEPSILON))
if (inTriangleDirection.ScalarProduct(inPointDirection) < -MYEPSILON)
return false;
}
return true;
}
/** Returns the endpoint which is not contained in the given \a *line.
* \param *line baseline defining two endpoints
* \return pointer third endpoint or NULL if line does not belong to triangle.
*/
class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
{
//Info FunctionInfo(__func__);
// sanity check
if (!ContainsBoundaryLine(line))
return NULL;
for (int i = 0; i < 3; i++)
if (!line->ContainsBoundaryPoint(endpoints[i]))
return endpoints[i];
// actually, that' impossible :)
return NULL;
}
;
/** Returns the baseline which does not contain the given boundary point \a *point.
* \param *point endpoint which is neither endpoint of the desired line
* \return pointer to desired third baseline
*/
class BoundaryLineSet *BoundaryTriangleSet::GetThirdLine(const BoundaryPointSet * const point) const
{
//Info FunctionInfo(__func__);
// sanity check
if (!ContainsBoundaryPoint(point))
return NULL;
for (int i = 0; i < 3; i++)
if (!lines[i]->ContainsBoundaryPoint(point))
return lines[i];
// actually, that' impossible :)
return NULL;
}
;
/** Calculates the center point of the triangle.
* Is third of the sum of all endpoints.
* \param *center central point on return.
*/
void BoundaryTriangleSet::GetCenter(Vector & center) const
{
//Info FunctionInfo(__func__);
center.Zero();
for (int i = 0; i < 3; i++)
(center) += (endpoints[i]->node->getPosition());
center.Scale(1. / 3.);
LOG(4, "DEBUG: Center of BoundaryTriangleSet is at " << center << ".");
}
/**
* gets the Plane defined by the three triangle Basepoints
*/
Plane BoundaryTriangleSet::getPlane() const{
ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined");
return Plane(endpoints[0]->node->getPosition(),
endpoints[1]->node->getPosition(),
endpoints[2]->node->getPosition());
}
Vector BoundaryTriangleSet::getEndpoint(int i) const{
ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
return endpoints[i]->node->getPosition();
}
string BoundaryTriangleSet::getEndpointName(int i) const{
ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
return endpoints[i]->node->getName();
}
/** output operator for BoundaryTriangleSet.
* \param &ost output stream
* \param &a boundary triangle
*/
ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
{
ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]";
// ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
// << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
return ost;
}
;