/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010 University of Bonn. All rights reserved. * Please see the LICENSE file or "Copyright notice" in builder.cpp for details. */ /* * BoundaryTriangleSet.cpp * * Created on: Jul 29, 2010 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "BoundaryTriangleSet.hpp" #include #include "BoundaryLineSet.hpp" #include "BoundaryPointSet.hpp" #include "TesselPoint.hpp" #include "Helpers/defs.hpp" #include "CodePatterns/Assert.hpp" #include "CodePatterns/Info.hpp" #include "CodePatterns/Log.hpp" #include "CodePatterns/Verbose.hpp" #include "LinearAlgebra/Exceptions.hpp" #include "LinearAlgebra/Line.hpp" #include "LinearAlgebra/Plane.hpp" #include "LinearAlgebra/Vector.hpp" using namespace std; /** Constructor for BoundaryTriangleSet. */ BoundaryTriangleSet::BoundaryTriangleSet() : Nr(-1) { Info FunctionInfo(__func__); for (int i = 0; i < 3; i++) { endpoints[i] = NULL; lines[i] = NULL; } } ; /** Constructor for BoundaryTriangleSet with three lines. * \param *line[3] lines that make up the triangle * \param number number of triangle */ BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) : Nr(number) { Info FunctionInfo(__func__); // set number // set lines for (int i = 0; i < 3; i++) { lines[i] = line[i]; lines[i]->AddTriangle(this); } // get ascending order of endpoints PointMap OrderMap; for (int i = 0; i < 3; i++) { // for all three lines for (int j = 0; j < 2; j++) { // for both endpoints OrderMap.insert(pair (line[i]->endpoints[j]->Nr, line[i]->endpoints[j])); // and we don't care whether insertion fails } } // set endpoints int Counter = 0; LOG(0, "New triangle " << Nr << " with end points: "); for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) { endpoints[Counter] = runner->second; LOG(0, " " << *endpoints[Counter]); Counter++; } ASSERT(Counter >= 3,"We have a triangle with only two distinct endpoints!"); }; /** Destructor of BoundaryTriangleSet. * Removes itself from each of its lines' LineMap and removes them if necessary. * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle() */ BoundaryTriangleSet::~BoundaryTriangleSet() { Info FunctionInfo(__func__); for (int i = 0; i < 3; i++) { if (lines[i] != NULL) { if (lines[i]->triangles.erase(Nr)) { //LOG(0, "Triangle Nr." << Nr << " erased in line " << *lines[i] << "."); } if (lines[i]->triangles.empty()) { //LOG(0, *lines[i] << " is no more attached to any triangle, erasing."); delete (lines[i]); lines[i] = NULL; } } } //LOG(0, "Erasing triangle Nr." << Nr << " itself."); } ; /** Calculates the normal vector for this triangle. * Is made unique by comparison with \a OtherVector to point in the other direction. * \param &OtherVector direction vector to make normal vector unique. */ void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector) { Info FunctionInfo(__func__); // get normal vector NormalVector = Plane((endpoints[0]->node->getPosition()), (endpoints[1]->node->getPosition()), (endpoints[2]->node->getPosition())).getNormal(); // make it always point inward (any offset vector onto plane projected onto normal vector suffices) if (NormalVector.ScalarProduct(OtherVector) > 0.) NormalVector.Scale(-1.); LOG(1, "Normal Vector is " << NormalVector << "."); } ; /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses. * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between * the first two basepoints) or not. * \param *out output stream for debugging * \param &MolCenter offset vector of line * \param &x second endpoint of line, minus \a *MolCenter is directional vector of line * \param &Intersection intersection on plane on return * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle. */ bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector & MolCenter, const Vector & x, Vector &Intersection) const { Info FunctionInfo(__func__); Vector CrossPoint; Vector helper; try { Line centerLine = makeLineThrough(MolCenter, x); Intersection = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(centerLine); LOG(1, "INFO: Triangle is " << *this << "."); LOG(1, "INFO: Line is from " << MolCenter << " to " << x << "."); LOG(1, "INFO: Intersection is " << Intersection << "."); if (Intersection.DistanceSquared(endpoints[0]->node->getPosition()) < MYEPSILON) { LOG(1, "Intersection coindices with first endpoint."); return true; } else if (Intersection.DistanceSquared(endpoints[1]->node->getPosition()) < MYEPSILON) { LOG(1, "Intersection coindices with second endpoint."); return true; } else if (Intersection.DistanceSquared(endpoints[2]->node->getPosition()) < MYEPSILON) { LOG(1, "Intersection coindices with third endpoint."); return true; } // Calculate cross point between one baseline and the line from the third endpoint to intersection int i = 0; do { Line line1 = makeLineThrough((endpoints[i%3]->node->getPosition()),(endpoints[(i+1)%3]->node->getPosition())); Line line2 = makeLineThrough((endpoints[(i+2)%3]->node->getPosition()),Intersection); CrossPoint = line1.getIntersection(line2); helper = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition()); CrossPoint -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared(); LOG(1, "INFO: Factor s is " << s << "."); if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) { LOG(1, "INFO: Crosspoint " << CrossPoint << "outside of triangle."); return false; } i++; } while (i < 3); LOG(1, "INFO: Crosspoint " << CrossPoint << " inside of triangle."); return true; } catch (LinearAlgebraException &excp) { LOG(1, boost::diagnostic_information(excp)); ELOG(1, "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!"); return false; } } ; /** Finds the point on the triangle to the point \a *x. * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point. * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down. * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between * the first two basepoints) or not. * \param *x point * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector * \return Distance squared between \a *x and closest point inside triangle */ double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector &x, Vector &ClosestPoint) const { Info FunctionInfo(__func__); Vector Direction; // 1. get intersection with plane LOG(1, "INFO: Looking for closest point of triangle " << *this << " to " << x << "."); GetCenter(Direction); try { Line l = makeLineThrough(x, Direction); ClosestPoint = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(l); } catch (LinearAlgebraException &excp) { (ClosestPoint) = (x); } // 2. Calculate in plane part of line (x, intersection) Vector InPlane = (x) - (ClosestPoint); // points from plane intersection to straight-down point InPlane.ProjectOntoPlane(NormalVector); InPlane += ClosestPoint; LOG(2, "INFO: Triangle is " << *this << "."); LOG(2, "INFO: Line is from " << Direction << " to " << x << "."); LOG(2, "INFO: In-plane part is " << InPlane << "."); // Calculate cross point between one baseline and the desired point such that distance is shortest double ShortestDistance = -1.; bool InsideFlag = false; Vector CrossDirection[3]; Vector CrossPoint[3]; Vector helper; for (int i = 0; i < 3; i++) { // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point Direction = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition()); // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal); Line l = makeLineThrough((endpoints[i%3]->node->getPosition()), (endpoints[(i+1)%3]->node->getPosition())); CrossPoint[i] = Plane(Direction, InPlane).GetIntersection(l); CrossDirection[i] = CrossPoint[i] - InPlane; CrossPoint[i] -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared(); LOG(2, "INFO: Factor s is " << s << "."); if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) { CrossPoint[i] += (endpoints[i%3]->node->getPosition()); // make cross point absolute again LOG(2, "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << endpoints[i % 3]->node->getPosition() << " and " << endpoints[(i + 1) % 3]->node->getPosition() << "."); const double distance = CrossPoint[i].DistanceSquared(x); if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { ShortestDistance = distance; (ClosestPoint) = CrossPoint[i]; } } else CrossPoint[i].Zero(); } InsideFlag = true; for (int i = 0; i < 3; i++) { const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]); const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]); if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign InsideFlag = false; } if (InsideFlag) { (ClosestPoint) = InPlane; ShortestDistance = InPlane.DistanceSquared(x); } else { // also check endnodes for (int i = 0; i < 3; i++) { const double distance = x.DistanceSquared(endpoints[i]->node->getPosition()); if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { ShortestDistance = distance; (ClosestPoint) = (endpoints[i]->node->getPosition()); } } } LOG(1, "INFO: Closest Point is " << ClosestPoint << " with shortest squared distance is " << ShortestDistance << "."); return ShortestDistance; } ; /** Checks whether lines is any of the three boundary lines this triangle contains. * \param *line line to test * \return true - line is of the triangle, false - is not */ bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const { Info FunctionInfo(__func__); for (int i = 0; i < 3; i++) if (line == lines[i]) return true; return false; } ; /** Checks whether point is any of the three endpoints this triangle contains. * \param *point point to test * \return true - point is of the triangle, false - is not */ bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const { Info FunctionInfo(__func__); for (int i = 0; i < 3; i++) if (point == endpoints[i]) return true; return false; } ; /** Checks whether point is any of the three endpoints this triangle contains. * \param *point TesselPoint to test * \return true - point is of the triangle, false - is not */ bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const { Info FunctionInfo(__func__); for (int i = 0; i < 3; i++) if (point == endpoints[i]->node) return true; return false; } ; /** Checks whether three given \a *Points coincide with triangle's endpoints. * \param *Points[3] pointer to BoundaryPointSet * \return true - is the very triangle, false - is not */ bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const { Info FunctionInfo(__func__); LOG(1, "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "."); return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2]) )); } ; /** Checks whether three given \a *Points coincide with triangle's endpoints. * \param *Points[3] pointer to BoundaryPointSet * \return true - is the very triangle, false - is not */ bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const { Info FunctionInfo(__func__); return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2]) )); } ; /** Returns the endpoint which is not contained in the given \a *line. * \param *line baseline defining two endpoints * \return pointer third endpoint or NULL if line does not belong to triangle. */ class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const { Info FunctionInfo(__func__); // sanity check if (!ContainsBoundaryLine(line)) return NULL; for (int i = 0; i < 3; i++) if (!line->ContainsBoundaryPoint(endpoints[i])) return endpoints[i]; // actually, that' impossible :) return NULL; } ; /** Returns the baseline which does not contain the given boundary point \a *point. * \param *point endpoint which is neither endpoint of the desired line * \return pointer to desired third baseline */ class BoundaryLineSet *BoundaryTriangleSet::GetThirdLine(const BoundaryPointSet * const point) const { Info FunctionInfo(__func__); // sanity check if (!ContainsBoundaryPoint(point)) return NULL; for (int i = 0; i < 3; i++) if (!lines[i]->ContainsBoundaryPoint(point)) return lines[i]; // actually, that' impossible :) return NULL; } ; /** Calculates the center point of the triangle. * Is third of the sum of all endpoints. * \param *center central point on return. */ void BoundaryTriangleSet::GetCenter(Vector & center) const { Info FunctionInfo(__func__); center.Zero(); for (int i = 0; i < 3; i++) (center) += (endpoints[i]->node->getPosition()); center.Scale(1. / 3.); LOG(1, "INFO: Center is at " << center << "."); } /** * gets the Plane defined by the three triangle Basepoints */ Plane BoundaryTriangleSet::getPlane() const{ ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined"); return Plane(endpoints[0]->node->getPosition(), endpoints[1]->node->getPosition(), endpoints[2]->node->getPosition()); } Vector BoundaryTriangleSet::getEndpoint(int i) const{ ASSERT(i>=0 && i<3,"Index of Endpoint out of Range"); return endpoints[i]->node->getPosition(); } string BoundaryTriangleSet::getEndpointName(int i) const{ ASSERT(i>=0 && i<3,"Index of Endpoint out of Range"); return endpoints[i]->node->getName(); } /** output operator for BoundaryTriangleSet. * \param &ost output stream * \param &a boundary triangle */ ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a) { ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]"; // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]"; return ost; } ;