1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010-2011 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * BaseShapes_impl.cpp
|
---|
10 | *
|
---|
11 | * Created on: Jun 18, 2010
|
---|
12 | * Author: crueger
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include "Shapes/BaseShapes.hpp"
|
---|
23 | #include "Shapes/BaseShapes_impl.hpp"
|
---|
24 | #include "Shapes/ShapeExceptions.hpp"
|
---|
25 | #include "Shapes/ShapeOps.hpp"
|
---|
26 |
|
---|
27 | #include "Helpers/defs.hpp"
|
---|
28 |
|
---|
29 | #include "CodePatterns/Assert.hpp"
|
---|
30 | #include "LinearAlgebra/Vector.hpp"
|
---|
31 | #include "LinearAlgebra/Line.hpp"
|
---|
32 | #include "LinearAlgebra/Plane.hpp"
|
---|
33 | #include "LinearAlgebra/LineSegment.hpp"
|
---|
34 | #include "LinearAlgebra/LineSegmentSet.hpp"
|
---|
35 |
|
---|
36 | #include <cmath>
|
---|
37 | #include <algorithm>
|
---|
38 |
|
---|
39 | bool Sphere_impl::isInside(const Vector &point){
|
---|
40 | return point.NormSquared()<=1;
|
---|
41 | }
|
---|
42 |
|
---|
43 | bool Sphere_impl::isOnSurface(const Vector &point){
|
---|
44 | return fabs(point.NormSquared()-1)<MYEPSILON;
|
---|
45 | }
|
---|
46 |
|
---|
47 | Vector Sphere_impl::getNormal(const Vector &point) throw(NotOnSurfaceException){
|
---|
48 | if(!isOnSurface(point)){
|
---|
49 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
50 | }
|
---|
51 | return point;
|
---|
52 | }
|
---|
53 |
|
---|
54 | LineSegmentSet Sphere_impl::getLineIntersections(const Line &line){
|
---|
55 | LineSegmentSet res(line);
|
---|
56 | std::vector<Vector> intersections = line.getSphereIntersections();
|
---|
57 | if(intersections.size()==2){
|
---|
58 | res.insert(LineSegment(intersections[0],intersections[1]));
|
---|
59 | }
|
---|
60 | return res;
|
---|
61 | }
|
---|
62 |
|
---|
63 | string Sphere_impl::toString(){
|
---|
64 | return "Sphere()";
|
---|
65 | }
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * algorithm taken from http://www.cgafaq.info/wiki/Evenly_distributed_points_on_sphere
|
---|
69 | * \param N number of points on surface
|
---|
70 | */
|
---|
71 | std::vector<Vector> Sphere_impl::getHomogeneousPointsOnSurface(const size_t N) const
|
---|
72 | {
|
---|
73 | std::vector<Vector> PointsOnSurface;
|
---|
74 |
|
---|
75 | double PI=3.14159265358979323846;
|
---|
76 | double a=4*PI/N;
|
---|
77 | double d= sqrt(a);
|
---|
78 | int Mtheta=int(PI/d);
|
---|
79 | double dtheta=PI/Mtheta;
|
---|
80 | double dphi=a/dtheta;
|
---|
81 | for (int m=0; m<Mtheta; m++)
|
---|
82 | {
|
---|
83 | double theta=PI*(m+0.5)/Mtheta;
|
---|
84 | int Mphi=int(2*PI*sin(theta)/dphi);
|
---|
85 | for (int n=0; n<Mphi;n++)
|
---|
86 | {
|
---|
87 | double phi= 2*PI*n/Mphi;
|
---|
88 | Vector point;
|
---|
89 | point.Zero();
|
---|
90 | point[0]=sin(theta)*cos(phi);
|
---|
91 | point[1]=sin(theta)*sin(phi);
|
---|
92 | point[2]=cos(theta);
|
---|
93 | PointsOnSurface.push_back(point);
|
---|
94 | }
|
---|
95 | }
|
---|
96 | /*const double dlength = M_PI*(3.-sqrt(5.));
|
---|
97 | double length = 0;
|
---|
98 | const double dz = 2.0/N;
|
---|
99 | double z = 1. - dz/2.;
|
---|
100 | Vector point;
|
---|
101 | for (size_t ka = 0; ka<N; ka++){
|
---|
102 | const double r = sqrt(1.-z*z);
|
---|
103 | point.Zero();
|
---|
104 | point[0] = cos(length)*r;
|
---|
105 | point[1] = sin(length)*r;
|
---|
106 | point[2] = z;
|
---|
107 | PointsOnSurface.push_back(point);
|
---|
108 | z = z - dz;
|
---|
109 | length = length + dlength;*/
|
---|
110 |
|
---|
111 | // ASSERT(PointsOnSurface.size() == N,
|
---|
112 | // "Sphere_impl::getHomogeneousPointsOnSurface() did not create "
|
---|
113 | // +::toString(N)+" but "+::toString(PointsOnSurface.size())+" points.");
|
---|
114 | return PointsOnSurface;
|
---|
115 | }
|
---|
116 |
|
---|
117 |
|
---|
118 | Shape Sphere(){
|
---|
119 | Shape::impl_ptr impl = Shape::impl_ptr(new Sphere_impl());
|
---|
120 | return Shape(impl);
|
---|
121 | }
|
---|
122 |
|
---|
123 | Shape Sphere(const Vector ¢er,double radius){
|
---|
124 | return translate(resize(Sphere(),radius),center);
|
---|
125 | }
|
---|
126 |
|
---|
127 | Shape Ellipsoid(const Vector ¢er, const Vector &radius){
|
---|
128 | return translate(stretch(Sphere(),radius),center);
|
---|
129 | }
|
---|
130 |
|
---|
131 | bool Cuboid_impl::isInside(const Vector &point){
|
---|
132 | return (point[0]>=0 && point[0]<=1) && (point[1]>=0 && point[1]<=1) && (point[2]>=0 && point[2]<=1);
|
---|
133 | }
|
---|
134 |
|
---|
135 | bool Cuboid_impl::isOnSurface(const Vector &point){
|
---|
136 | bool retVal = isInside(point);
|
---|
137 | // test all borders of the cuboid
|
---|
138 | // double fabs
|
---|
139 | retVal = retVal &&
|
---|
140 | (((fabs(point[0]-1.) < MYEPSILON) || (fabs(point[0]) < MYEPSILON)) ||
|
---|
141 | ((fabs(point[1]-1.) < MYEPSILON) || (fabs(point[1]) < MYEPSILON)) ||
|
---|
142 | ((fabs(point[2]-1.) < MYEPSILON) || (fabs(point[2]) < MYEPSILON)));
|
---|
143 | return retVal;
|
---|
144 | }
|
---|
145 |
|
---|
146 | Vector Cuboid_impl::getNormal(const Vector &point) throw(NotOnSurfaceException){
|
---|
147 | if(!isOnSurface(point)){
|
---|
148 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
149 | }
|
---|
150 | Vector res;
|
---|
151 | // figure out on which sides the Vector lies (maximum 3, when it is in a corner)
|
---|
152 | for(int i=NDIM;i--;){
|
---|
153 | if(fabs(fabs(point[i])-1)<MYEPSILON){
|
---|
154 | // add the scaled (-1/+1) Vector to the set of surface vectors
|
---|
155 | res[i] = point[i];
|
---|
156 | }
|
---|
157 | }
|
---|
158 | ASSERT(res.NormSquared()>=1 && res.NormSquared()<=3,"To many or to few sides found for this Vector");
|
---|
159 |
|
---|
160 | res.Normalize();
|
---|
161 | return res;
|
---|
162 | }
|
---|
163 |
|
---|
164 | LineSegmentSet Cuboid_impl::getLineIntersections(const Line &line){
|
---|
165 | LineSegmentSet res(line);
|
---|
166 | // get the intersection on each of the six faces
|
---|
167 | vector<Vector> intersections;
|
---|
168 | intersections.resize(2);
|
---|
169 | int c=0;
|
---|
170 | int x[2]={-1,+1};
|
---|
171 | for(int i=NDIM;i--;){
|
---|
172 | for(int p=0;p<2;++p){
|
---|
173 | if(c==2) goto end; // I know this sucks, but breaking two loops is stupid
|
---|
174 | Vector base;
|
---|
175 | base[i]=x[p];
|
---|
176 | // base now points to the surface and is normal to it at the same time
|
---|
177 | Plane p(base,base);
|
---|
178 | Vector intersection = p.GetIntersection(line);
|
---|
179 | if(isInside(intersection)){
|
---|
180 | // if we have a point on the edge it might already be contained
|
---|
181 | if(c==1 && intersections[0]==intersection)
|
---|
182 | continue;
|
---|
183 | intersections[c++]=intersection;
|
---|
184 | }
|
---|
185 | }
|
---|
186 | }
|
---|
187 | end:
|
---|
188 | if(c==2){
|
---|
189 | res.insert(LineSegment(intersections[0],intersections[1]));
|
---|
190 | }
|
---|
191 | return res;
|
---|
192 | }
|
---|
193 |
|
---|
194 | string Cuboid_impl::toString(){
|
---|
195 | return "Cuboid()";
|
---|
196 | }
|
---|
197 |
|
---|
198 | /**
|
---|
199 | * \param N number of points on surface
|
---|
200 | */
|
---|
201 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsOnSurface(const size_t N) const {
|
---|
202 | std::vector<Vector> PointsOnSurface;
|
---|
203 | ASSERT(false, "Cuboid_impl::getHomogeneousPointsOnSurface() not implemented yet");
|
---|
204 | return PointsOnSurface;
|
---|
205 | }
|
---|
206 |
|
---|
207 | Shape Cuboid(){
|
---|
208 | Shape::impl_ptr impl = Shape::impl_ptr(new Cuboid_impl());
|
---|
209 | return Shape(impl);
|
---|
210 | }
|
---|
211 |
|
---|
212 | Shape Cuboid(const Vector &corner1, const Vector &corner2){
|
---|
213 | // make sure the two edges are upper left front and lower right back
|
---|
214 | Vector sortedC1;
|
---|
215 | Vector sortedC2;
|
---|
216 | for(int i=NDIM;i--;){
|
---|
217 | sortedC1[i] = min(corner1[i],corner2[i]);
|
---|
218 | sortedC2[i] = max(corner1[i],corner2[i]);
|
---|
219 | ASSERT(corner1[i]!=corner2[i],"Given points for cuboid edges did not define a valid space");
|
---|
220 | }
|
---|
221 | // get the middle point
|
---|
222 | Vector middle = (1./2.)*(sortedC1+sortedC2);
|
---|
223 | Vector factors = sortedC2-middle;
|
---|
224 | return translate(stretch(Cuboid(),factors),middle);
|
---|
225 | }
|
---|