/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
* Copyright (C) 2013 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* BaseShapes_impl.cpp
*
* Created on: Jun 18, 2010
* Author: crueger
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "Shapes/BaseShapes.hpp"
#include "Shapes/BaseShapes_impl.hpp"
#include "Shapes/ShapeExceptions.hpp"
#include "Shapes/ShapeOps.hpp"
#include "Helpers/defs.hpp"
#include "CodePatterns/Assert.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinearAlgebra/Line.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "LinearAlgebra/LineSegment.hpp"
#include "LinearAlgebra/LineSegmentSet.hpp"
#include
#include
// CYLINDER CODE
// ----------------------------------------------------------------------------
bool Cylinder_impl::isInside(const Vector &point) const {
return (Vector(point[0], point[1], 0.0).NormSquared() < 1.0+MYEPSILON) &&
(point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON);
}
bool Cylinder_impl::isOnSurface(const Vector &point) const {
// on the side?
if (fabs(Vector(point[0], point[1], 0.0).NormSquared()-1.0) -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON))
return true;
// on top/bottom?
if ((Vector(point[0], point[1], 0.0).NormSquared()< 1.0 + MYEPSILON) &&
((fabs(point[2]-1) solutions;
// Common routine to solve quadratic equations, anywhere?
const double neg_p_half = -B/(2.0*A);
const double q = C/A;
const double radicant = neg_p_half*neg_p_half-q;
if (radicant > 0.0) {
const double root = sqrt(radicant);
solutions.push_back(neg_p_half+root);
const double sln2 = neg_p_half-root;
if (sln2 != solutions.back())
solutions.push_back(sln2);
}
// Now get parameter for intersection with z-Planes.
const double origin_z = origin[2];
const double dir_z = direction[2];
if (dir_z != 0.0) {
solutions.push_back((-1.0-origin_z)/dir_z);
solutions.push_back((1.0-origin_z)/dir_z);
}
// Calculate actual vectors from obtained parameters and check,
// if they are actual intersections.
std::vector intersections;
for(unsigned int i=0; i Cylinder_impl::getHomogeneousPointsOnSurface(const size_t N) const {
const double nz_float = sqrt(N/M_PI);
const int nu = round(N/nz_float);
const int nz = round(nz_float);
const double dphi = 2.0*M_PI/nu;
const double dz = 2.0/nz;
std::vector result;
for(int useg=0; useg Cylinder_impl::getHomogeneousPointsInVolume(const size_t N) const {
const double nz_float = pow(N/(2.0*M_PI), 1.0/3.0);
const int nu = round(nz_float*M_PI);
const int nr = round(nz_float*0.5);
const int nz = round(nz_float);
const double dphi = 2.0*M_PI/nu;
const double dz = 2.0/nz;
const double dr = 1.0/nr;
std::vector result;
for(int useg=0; useg intersections = line.getSphereIntersections();
if(intersections.size()==2){
res.insert(LineSegment(intersections[0],intersections[1]));
}
return res;
}
std::string Sphere_impl::toString() const{
return "Sphere()";
}
enum ShapeType Sphere_impl::getType() const
{
return SphereType;
}
/**
* algorithm taken from http://www.cgafaq.info/wiki/Evenly_distributed_points_on_sphere
* \param N number of points on surface
*/
std::vector Sphere_impl::getHomogeneousPointsOnSurface(const size_t N) const
{
std::vector PointsOnSurface;
if (true) {
// Exactly N points but not symmetric.
// This formula is derived by finding a curve on the sphere that spirals down from
// the north pole to the south pole keeping a constant distance between consecutive turns.
// The curve is then parametrized by arch length and evaluated in constant intervals.
double a = sqrt(N) * 2;
for (size_t i=0; i Sphere_impl::getHomogeneousPointsInVolume(const size_t N) const {
ASSERT(0,
"Sphere_impl::getHomogeneousPointsInVolume() - not implemented.");
return std::vector();
}
Shape Sphere(){
Shape::impl_ptr impl = Shape::impl_ptr(new Sphere_impl());
return Shape(impl);
}
Shape Sphere(const Vector ¢er,double radius){
return translate(resize(Sphere(),radius),center);
}
Shape Ellipsoid(const Vector ¢er, const Vector &radius){
return translate(stretch(Sphere(),radius),center);
}
bool Cuboid_impl::isInside(const Vector &point) const{
return (point[0]>=-MYEPSILON && point[0]<=1+MYEPSILON) && (point[1]>=-MYEPSILON && point[1]<=1+MYEPSILON) && (point[2]>=-MYEPSILON && point[2]<=1+MYEPSILON);
}
bool Cuboid_impl::isOnSurface(const Vector &point) const{
bool retVal = isInside(point);
// test all borders of the cuboid
// double fabs
retVal = retVal &&
(((fabs(point[0]-1.) < MYEPSILON) || (fabs(point[0]) < MYEPSILON)) ||
((fabs(point[1]-1.) < MYEPSILON) || (fabs(point[1]) < MYEPSILON)) ||
((fabs(point[2]-1.) < MYEPSILON) || (fabs(point[2]) < MYEPSILON)));
return retVal;
}
Vector Cuboid_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){
if(!isOnSurface(point)){
throw NotOnSurfaceException() << ShapeVector(&point);
}
Vector res;
// figure out on which sides the Vector lies (maximum 3, when it is in a corner)
for(int i=NDIM;i--;){
if((fabs(point[i])= -MYEPSILON)
&& (fabs(res.NormSquared() - 3.) >= -MYEPSILON),
"To many or to few sides found for this Vector");
res.Normalize();
return res;
}
Vector Cuboid_impl::getCenter() const
{
return Vector(0.5,0.5,0.5);
}
double Cuboid_impl::getRadius() const
{
return .5;
}
double Cuboid_impl::getVolume() const
{
return 1.; // l^3
}
double Cuboid_impl::getSurfaceArea() const
{
return 6.; // 6 * l^2
}
LineSegmentSet Cuboid_impl::getLineIntersections(const Line &line) const{
LineSegmentSet res(line);
// get the intersection on each of the six faces
std::vector intersections;
intersections.resize(2);
int c=0;
int x[2]={-1,+1};
for(int i=NDIM;i--;){
for(int j=0;j<2;++j){
if(c==2) goto end; // I know this sucks, but breaking two loops is stupid
Vector base;
base[i]=x[j];
// base now points to the surface and is normal to it at the same time
Plane p(base,base);
Vector intersection = p.GetIntersection(line);
if(isInside(intersection)){
// if we have a point on the edge it might already be contained
if(c==1 && intersections[0]==intersection)
continue;
intersections[c++]=intersection;
}
}
}
end:
if(c==2){
res.insert(LineSegment(intersections[0],intersections[1]));
}
return res;
}
std::string Cuboid_impl::toString() const{
return "Cuboid()";
}
enum ShapeType Cuboid_impl::getType() const
{
return CuboidType;
}
/**
* \param N number of points on surface
*/
std::vector Cuboid_impl::getHomogeneousPointsOnSurface(const size_t N) const {
std::vector PointsOnSurface;
// sides
int n = sqrt((N - 1) / 6) + 1;
for (int i=0; i<=n; i++){
double ii = (double)i / (double)n;
for (int k=0; k Cuboid_impl::getHomogeneousPointsInVolume(const size_t N) const {
ASSERT(0,
"Cuboid_impl::getHomogeneousPointsInVolume() - not implemented.");
return std::vector();
}
Shape Cuboid(){
Shape::impl_ptr impl = Shape::impl_ptr(new Cuboid_impl());
return Shape(impl);
}
Shape Cuboid(const Vector &corner1, const Vector &corner2){
// make sure the two edges are upper left front and lower right back
Vector sortedC1;
Vector sortedC2;
for(int i=NDIM;i--;){
sortedC1[i] = std::min(corner1[i],corner2[i]);
sortedC2[i] = std::max(corner1[i],corner2[i]);
ASSERT(corner1[i]!=corner2[i],"Given points for cuboid edges did not define a valid space");
}
// get the middle point
Vector middle = (1./2.)*(sortedC1+sortedC2);
Vector factors = sortedC2-middle;
return translate(stretch(Cuboid(),factors),middle);
}