| 1 | /* | 
|---|
| 2 | * Project: MoleCuilder | 
|---|
| 3 | * Description: creates and alters molecular systems | 
|---|
| 4 | * Copyright (C)  2010-2012 University of Bonn. All rights reserved. | 
|---|
| 5 | * Copyright (C)  2013 Frederik Heber. All rights reserved. | 
|---|
| 6 | * | 
|---|
| 7 | * | 
|---|
| 8 | *   This file is part of MoleCuilder. | 
|---|
| 9 | * | 
|---|
| 10 | *    MoleCuilder is free software: you can redistribute it and/or modify | 
|---|
| 11 | *    it under the terms of the GNU General Public License as published by | 
|---|
| 12 | *    the Free Software Foundation, either version 2 of the License, or | 
|---|
| 13 | *    (at your option) any later version. | 
|---|
| 14 | * | 
|---|
| 15 | *    MoleCuilder is distributed in the hope that it will be useful, | 
|---|
| 16 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 17 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 18 | *    GNU General Public License for more details. | 
|---|
| 19 | * | 
|---|
| 20 | *    You should have received a copy of the GNU General Public License | 
|---|
| 21 | *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
| 22 | */ | 
|---|
| 23 |  | 
|---|
| 24 | /* | 
|---|
| 25 | * BaseShapes_impl.cpp | 
|---|
| 26 | * | 
|---|
| 27 | *  Created on: Jun 18, 2010 | 
|---|
| 28 | *      Author: crueger | 
|---|
| 29 | */ | 
|---|
| 30 |  | 
|---|
| 31 | // include config.h | 
|---|
| 32 | #ifdef HAVE_CONFIG_H | 
|---|
| 33 | #include <config.h> | 
|---|
| 34 | #endif | 
|---|
| 35 |  | 
|---|
| 36 | #include "CodePatterns/MemDebug.hpp" | 
|---|
| 37 |  | 
|---|
| 38 | #include "Shapes/BaseShapes.hpp" | 
|---|
| 39 | #include "Shapes/BaseShapes_impl.hpp" | 
|---|
| 40 | #include "Shapes/ShapeExceptions.hpp" | 
|---|
| 41 | #include "Shapes/ShapeOps.hpp" | 
|---|
| 42 |  | 
|---|
| 43 | #include "Helpers/defs.hpp" | 
|---|
| 44 |  | 
|---|
| 45 | #include "CodePatterns/Assert.hpp" | 
|---|
| 46 | #include "LinearAlgebra/Vector.hpp" | 
|---|
| 47 | #include "LinearAlgebra/RealSpaceMatrix.hpp" | 
|---|
| 48 | #include "LinearAlgebra/Line.hpp" | 
|---|
| 49 | #include "LinearAlgebra/Plane.hpp" | 
|---|
| 50 | #include "LinearAlgebra/LineSegment.hpp" | 
|---|
| 51 | #include "LinearAlgebra/LineSegmentSet.hpp" | 
|---|
| 52 |  | 
|---|
| 53 | #include <cmath> | 
|---|
| 54 | #include <algorithm> | 
|---|
| 55 |  | 
|---|
| 56 | // CYLINDER CODE | 
|---|
| 57 | // ---------------------------------------------------------------------------- | 
|---|
| 58 | bool Cylinder_impl::isInside(const Vector &point) const { | 
|---|
| 59 | return (Vector(point[0], point[1], 0.0).NormSquared() < 1.0+MYEPSILON) && | 
|---|
| 60 | (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON); | 
|---|
| 61 | } | 
|---|
| 62 |  | 
|---|
| 63 | bool Cylinder_impl::isOnSurface(const Vector &point) const { | 
|---|
| 64 | // on the side? | 
|---|
| 65 | if (fabs(Vector(point[0], point[1], 0.0).NormSquared()-1.0)<MYEPSILON && | 
|---|
| 66 | (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON)) | 
|---|
| 67 | return true; | 
|---|
| 68 | // on top/bottom? | 
|---|
| 69 | if ((Vector(point[0], point[1], 0.0).NormSquared()< 1.0 + MYEPSILON) && | 
|---|
| 70 | ((fabs(point[2]-1)<MYEPSILON) || (fabs(point[2]+1)<MYEPSILON))) | 
|---|
| 71 | return true; | 
|---|
| 72 | return false; | 
|---|
| 73 |  | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | Vector Cylinder_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException) { | 
|---|
| 77 | if(!isOnSurface(point)){ | 
|---|
| 78 | throw NotOnSurfaceException() << ShapeVector(&point); | 
|---|
| 79 | } | 
|---|
| 80 |  | 
|---|
| 81 | Vector n = Vector(0, 0, 0); | 
|---|
| 82 | if ((fabs(point[2]-1)<MYEPSILON) || (fabs(point[2]+1)<MYEPSILON)) | 
|---|
| 83 | n += Vector(0.0, 0.0, point[2]); | 
|---|
| 84 | else | 
|---|
| 85 | n += Vector(point[0], point[1], 0.0); | 
|---|
| 86 | n.Normalize(); | 
|---|
| 87 | return n; | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | Vector Cylinder_impl::getCenter() const | 
|---|
| 91 | { | 
|---|
| 92 | return Vector(0.0, 0.0, 0.0); | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | double Cylinder_impl::getRadius() const | 
|---|
| 96 | { | 
|---|
| 97 | return 1.0; | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | double Cylinder_impl::getVolume() const | 
|---|
| 101 | { | 
|---|
| 102 | return M_PI*2.0; // pi r^2 h | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | double Cylinder_impl::getSurfaceArea() const | 
|---|
| 106 | { | 
|---|
| 107 | return 2.0*M_PI*2.0; // 2 pi r h | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | LineSegmentSet Cylinder_impl::getLineIntersections(const Line &line) const { | 
|---|
| 111 | const Vector origin = line.getOrigin(); | 
|---|
| 112 | const Vector direction = line.getDirection(); | 
|---|
| 113 |  | 
|---|
| 114 | const Vector e(direction[0], direction[1], 0.0); | 
|---|
| 115 | const Vector f(origin[0], origin[1], 0.0); | 
|---|
| 116 | const double A = e.ScalarProduct(e); | 
|---|
| 117 | const double B = 2.0*e.ScalarProduct(f); | 
|---|
| 118 | const double C = f.ScalarProduct(f) - 1.0; | 
|---|
| 119 |  | 
|---|
| 120 | std::vector<double> solutions; | 
|---|
| 121 |  | 
|---|
| 122 | // Common routine to solve quadratic equations, anywhere? | 
|---|
| 123 | const double neg_p_half = -B/(2.0*A); | 
|---|
| 124 | const double q = C/A; | 
|---|
| 125 | const double radicant = neg_p_half*neg_p_half-q; | 
|---|
| 126 |  | 
|---|
| 127 | if (radicant > 0.0) { | 
|---|
| 128 | const double root = sqrt(radicant); | 
|---|
| 129 | solutions.push_back(neg_p_half+root); | 
|---|
| 130 | const double sln2 = neg_p_half-root; | 
|---|
| 131 | if (sln2 != solutions.back()) | 
|---|
| 132 | solutions.push_back(sln2); | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | // Now get parameter for intersection with z-Planes. | 
|---|
| 136 | const double origin_z = origin[2]; | 
|---|
| 137 | const double dir_z = direction[2]; | 
|---|
| 138 |  | 
|---|
| 139 | if (dir_z != 0.0) { | 
|---|
| 140 | solutions.push_back((-1.0-origin_z)/dir_z); | 
|---|
| 141 | solutions.push_back((1.0-origin_z)/dir_z); | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | // Calculate actual vectors from obtained parameters and check, | 
|---|
| 145 | // if they are actual intersections. | 
|---|
| 146 | std::vector<Vector> intersections; | 
|---|
| 147 |  | 
|---|
| 148 | for(unsigned int i=0; i<solutions.size(); i++) { | 
|---|
| 149 | const Vector check_me(origin + direction*solutions[i]); | 
|---|
| 150 | if (isOnSurface(check_me)) | 
|---|
| 151 | intersections.push_back(check_me); | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | LineSegmentSet result(line); | 
|---|
| 155 | if (intersections.size()==2) | 
|---|
| 156 | result.insert(LineSegment(intersections[0], intersections[1])); | 
|---|
| 157 | return result; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | std::string Cylinder_impl::toString() const | 
|---|
| 161 | { | 
|---|
| 162 | return "Cylinder()"; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | enum ShapeType Cylinder_impl::getType() const | 
|---|
| 166 | { | 
|---|
| 167 | return CylinderType; | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | std::vector<Vector> Cylinder_impl::getHomogeneousPointsOnSurface(const size_t N) const { | 
|---|
| 171 | const double nz_float = sqrt(N/M_PI); | 
|---|
| 172 | const int nu = round(N/nz_float); | 
|---|
| 173 | const int nz = round(nz_float); | 
|---|
| 174 |  | 
|---|
| 175 | const double dphi = 2.0*M_PI/nu; | 
|---|
| 176 | const double dz = 2.0/nz; | 
|---|
| 177 |  | 
|---|
| 178 | std::vector<Vector> result; | 
|---|
| 179 |  | 
|---|
| 180 | for(int useg=0; useg<nu; useg++) | 
|---|
| 181 | for(int zseg=0; zseg<=nz; zseg++) | 
|---|
| 182 | result.push_back(Vector(cos(useg*dphi), sin(useg*dphi), zseg*dz-1.0)); | 
|---|
| 183 |  | 
|---|
| 184 | return result; | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | std::vector<Vector> Cylinder_impl::getHomogeneousPointsInVolume(const size_t N) const { | 
|---|
| 188 | const double nz_float = pow(N/(2.0*M_PI), 1.0/3.0); | 
|---|
| 189 | const int nu = round(nz_float*M_PI); | 
|---|
| 190 | const int nr = round(nz_float*0.5); | 
|---|
| 191 | const int nz = round(nz_float); | 
|---|
| 192 |  | 
|---|
| 193 | const double dphi = 2.0*M_PI/nu; | 
|---|
| 194 | const double dz = 2.0/nz; | 
|---|
| 195 | const double dr = 1.0/nr; | 
|---|
| 196 |  | 
|---|
| 197 | std::vector<Vector> result; | 
|---|
| 198 |  | 
|---|
| 199 | for(int useg=0; useg<nu; useg++) | 
|---|
| 200 | for(int zseg=0; zseg<nz; zseg++) | 
|---|
| 201 | for(int rseg=0; rseg<nr; rseg++) | 
|---|
| 202 | { | 
|---|
| 203 | const double r = dr+rseg*dr; | 
|---|
| 204 | result.push_back(Vector(r*cos(useg*dphi), r*sin(useg*dphi), zseg*dz-1.0)); | 
|---|
| 205 | } | 
|---|
| 206 |  | 
|---|
| 207 | return result; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | Shape Cylinder() { | 
|---|
| 211 | Shape::impl_ptr impl = Shape::impl_ptr(new Cylinder_impl()); | 
|---|
| 212 | return Shape(impl); | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | Shape Cylinder(const Vector ¢er, const double xrot, const double yrot, | 
|---|
| 216 | const double height, const double radius) | 
|---|
| 217 | { | 
|---|
| 218 | RealSpaceMatrix rot; | 
|---|
| 219 | rot.setRotation(xrot, yrot, 0.0); | 
|---|
| 220 |  | 
|---|
| 221 | return translate( | 
|---|
| 222 | transform( | 
|---|
| 223 | stretch( | 
|---|
| 224 | Cylinder(), | 
|---|
| 225 | Vector(radius, radius, height*0.5)), | 
|---|
| 226 | rot), | 
|---|
| 227 | center); | 
|---|
| 228 | } | 
|---|
| 229 | // ---------------------------------------------------------------------------- | 
|---|
| 230 |  | 
|---|
| 231 | bool Sphere_impl::isInside(const Vector &point) const{ | 
|---|
| 232 | return point.NormSquared() <= 1. + MYEPSILON; | 
|---|
| 233 | } | 
|---|
| 234 |  | 
|---|
| 235 | bool Sphere_impl::isOnSurface(const Vector &point) const{ | 
|---|
| 236 | return fabs(point.NormSquared()-1.)<MYEPSILON; | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | Vector Sphere_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){ | 
|---|
| 240 | if(!isOnSurface(point)){ | 
|---|
| 241 | throw NotOnSurfaceException() << ShapeVector(&point); | 
|---|
| 242 | } | 
|---|
| 243 | return point; | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | Vector Sphere_impl::getCenter() const | 
|---|
| 247 | { | 
|---|
| 248 | return Vector(0.,0.,0.); | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | double Sphere_impl::getRadius() const | 
|---|
| 252 | { | 
|---|
| 253 | return 1.; | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | double Sphere_impl::getVolume() const | 
|---|
| 257 | { | 
|---|
| 258 | return (4./3.)*M_PI; // 4/3 pi r^3 | 
|---|
| 259 | } | 
|---|
| 260 |  | 
|---|
| 261 | double Sphere_impl::getSurfaceArea() const | 
|---|
| 262 | { | 
|---|
| 263 | return 2.*M_PI; // 2 pi r^2 | 
|---|
| 264 | } | 
|---|
| 265 |  | 
|---|
| 266 |  | 
|---|
| 267 | LineSegmentSet Sphere_impl::getLineIntersections(const Line &line) const{ | 
|---|
| 268 | LineSegmentSet res(line); | 
|---|
| 269 | std::vector<Vector> intersections = line.getSphereIntersections(); | 
|---|
| 270 | if(intersections.size()==2){ | 
|---|
| 271 | res.insert(LineSegment(intersections[0],intersections[1])); | 
|---|
| 272 | } | 
|---|
| 273 | return res; | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | std::string Sphere_impl::toString() const{ | 
|---|
| 277 | return "Sphere()"; | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | enum ShapeType Sphere_impl::getType() const | 
|---|
| 281 | { | 
|---|
| 282 | return SphereType; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | /** | 
|---|
| 286 | * algorithm taken from http://www.cgafaq.info/wiki/Evenly_distributed_points_on_sphere | 
|---|
| 287 | * \param N number of points on surface | 
|---|
| 288 | */ | 
|---|
| 289 | std::vector<Vector> Sphere_impl::getHomogeneousPointsOnSurface(const size_t N) const | 
|---|
| 290 | { | 
|---|
| 291 | std::vector<Vector> PointsOnSurface; | 
|---|
| 292 | if (true) { | 
|---|
| 293 | // Exactly N points but not symmetric. | 
|---|
| 294 |  | 
|---|
| 295 | // This formula is derived by finding a curve on the sphere that spirals down from | 
|---|
| 296 | // the north pole to the south pole keeping a constant distance between consecutive turns. | 
|---|
| 297 | // The curve is then parametrized by arch length and evaluated in constant intervals. | 
|---|
| 298 | double a = sqrt(N) * 2; | 
|---|
| 299 | for (size_t i=0; i<N; ++i){ | 
|---|
| 300 | double t0 = ((double)i + 0.5) / (double)N; | 
|---|
| 301 | double t = (sqrt(t0) - sqrt(1.0 - t0) + 1.0) / 2.0 * M_PI; | 
|---|
| 302 | Vector point; | 
|---|
| 303 | point.Zero(); | 
|---|
| 304 | point[0] = sin(t) * sin(t * a); | 
|---|
| 305 | point[1] = sin(t) * cos(t * a); | 
|---|
| 306 | point[2] = cos(t); | 
|---|
| 307 | PointsOnSurface.push_back(point); | 
|---|
| 308 | } | 
|---|
| 309 | ASSERT(PointsOnSurface.size() == N, | 
|---|
| 310 | "Sphere_impl::getHomogeneousPointsOnSurface() did not create " | 
|---|
| 311 | +::toString(N)+" but "+::toString(PointsOnSurface.size())+" points."); | 
|---|
| 312 | } else { | 
|---|
| 313 | // Symmetric but only approximately N points. | 
|---|
| 314 | double a=4*M_PI/N; | 
|---|
| 315 | double d= sqrt(a); | 
|---|
| 316 | size_t Mtheta=round(M_PI/d); | 
|---|
| 317 | double dtheta=M_PI/Mtheta; | 
|---|
| 318 | double dphi=a/dtheta; | 
|---|
| 319 | for (size_t m=0; m<Mtheta; ++m) | 
|---|
| 320 | { | 
|---|
| 321 | double theta=M_PI*(m+0.5)/Mtheta; | 
|---|
| 322 | size_t Mphi=round(2*M_PI*sin(theta)/dphi); | 
|---|
| 323 | for (size_t n=0; n<Mphi;++n) | 
|---|
| 324 | { | 
|---|
| 325 | double phi= 2*M_PI*n/Mphi; | 
|---|
| 326 | Vector point; | 
|---|
| 327 | point.Zero(); | 
|---|
| 328 | point[0]=sin(theta)*cos(phi); | 
|---|
| 329 | point[1]=sin(theta)*sin(phi); | 
|---|
| 330 | point[2]=cos(theta); | 
|---|
| 331 | PointsOnSurface.push_back(point); | 
|---|
| 332 | } | 
|---|
| 333 | } | 
|---|
| 334 | } | 
|---|
| 335 | return PointsOnSurface; | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | std::vector<Vector> Sphere_impl::getHomogeneousPointsInVolume(const size_t N) const { | 
|---|
| 339 | ASSERT(0, | 
|---|
| 340 | "Sphere_impl::getHomogeneousPointsInVolume() - not implemented."); | 
|---|
| 341 | return std::vector<Vector>(); | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 | Shape Sphere(){ | 
|---|
| 345 | Shape::impl_ptr impl = Shape::impl_ptr(new Sphere_impl()); | 
|---|
| 346 | return Shape(impl); | 
|---|
| 347 | } | 
|---|
| 348 |  | 
|---|
| 349 | Shape Sphere(const Vector ¢er,double radius){ | 
|---|
| 350 | return translate(resize(Sphere(),radius),center); | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | Shape Ellipsoid(const Vector ¢er, const Vector &radius){ | 
|---|
| 354 | return translate(stretch(Sphere(),radius),center); | 
|---|
| 355 | } | 
|---|
| 356 |  | 
|---|
| 357 | bool Cuboid_impl::isInside(const Vector &point) const{ | 
|---|
| 358 | return (point[0]>=-MYEPSILON && point[0]<=1+MYEPSILON) && (point[1]>=-MYEPSILON && point[1]<=1+MYEPSILON) && (point[2]>=-MYEPSILON && point[2]<=1+MYEPSILON); | 
|---|
| 359 | } | 
|---|
| 360 |  | 
|---|
| 361 | bool Cuboid_impl::isOnSurface(const Vector &point) const{ | 
|---|
| 362 | bool retVal = isInside(point); | 
|---|
| 363 | // test all borders of the cuboid | 
|---|
| 364 | // double fabs | 
|---|
| 365 | retVal = retVal && | 
|---|
| 366 | (((fabs(point[0]-1.)  < MYEPSILON) || (fabs(point[0])  < MYEPSILON)) || | 
|---|
| 367 | ((fabs(point[1]-1.)  < MYEPSILON) || (fabs(point[1])  < MYEPSILON)) || | 
|---|
| 368 | ((fabs(point[2]-1.)  < MYEPSILON) || (fabs(point[2])  < MYEPSILON))); | 
|---|
| 369 | return retVal; | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | Vector Cuboid_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){ | 
|---|
| 373 | if(!isOnSurface(point)){ | 
|---|
| 374 | throw NotOnSurfaceException() << ShapeVector(&point); | 
|---|
| 375 | } | 
|---|
| 376 | Vector res; | 
|---|
| 377 | // figure out on which sides the Vector lies (maximum 3, when it is in a corner) | 
|---|
| 378 | for(int i=NDIM;i--;){ | 
|---|
| 379 | if((fabs(point[i])<MYEPSILON) || (fabs(point[i]-1.)<MYEPSILON)){ | 
|---|
| 380 | // add the scaled (-1/+1) Vector to the set of surface vectors | 
|---|
| 381 | res[i] = point[i] * 2.0 - 1.0; | 
|---|
| 382 | } | 
|---|
| 383 | } | 
|---|
| 384 | ASSERT((fabs(res.NormSquared() - 1.) >= -MYEPSILON) | 
|---|
| 385 | && (fabs(res.NormSquared() - 3.) >= -MYEPSILON), | 
|---|
| 386 | "To many or to few sides found for this Vector"); | 
|---|
| 387 |  | 
|---|
| 388 | res.Normalize(); | 
|---|
| 389 | return res; | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 |  | 
|---|
| 393 | Vector Cuboid_impl::getCenter() const | 
|---|
| 394 | { | 
|---|
| 395 | return Vector(0.5,0.5,0.5); | 
|---|
| 396 | } | 
|---|
| 397 |  | 
|---|
| 398 | double Cuboid_impl::getRadius() const | 
|---|
| 399 | { | 
|---|
| 400 | return .5; | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | double Cuboid_impl::getVolume() const | 
|---|
| 404 | { | 
|---|
| 405 | return 1.; // l^3 | 
|---|
| 406 | } | 
|---|
| 407 |  | 
|---|
| 408 | double Cuboid_impl::getSurfaceArea() const | 
|---|
| 409 | { | 
|---|
| 410 | return 6.;      // 6 * l^2 | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | LineSegmentSet Cuboid_impl::getLineIntersections(const Line &line) const{ | 
|---|
| 414 | LineSegmentSet res(line); | 
|---|
| 415 | // get the intersection on each of the six faces | 
|---|
| 416 | std::vector<Vector> intersections; | 
|---|
| 417 | intersections.resize(2); | 
|---|
| 418 | int c=0; | 
|---|
| 419 | int x[2]={-1,+1}; | 
|---|
| 420 | for(int i=NDIM;i--;){ | 
|---|
| 421 | for(int j=0;j<2;++j){ | 
|---|
| 422 | if(c==2) goto end; // I know this sucks, but breaking two loops is stupid | 
|---|
| 423 | Vector base; | 
|---|
| 424 | base[i]=x[j]; | 
|---|
| 425 | // base now points to the surface and is normal to it at the same time | 
|---|
| 426 | Plane p(base,base); | 
|---|
| 427 | Vector intersection = p.GetIntersection(line); | 
|---|
| 428 | if(isInside(intersection)){ | 
|---|
| 429 | // if we have a point on the edge it might already be contained | 
|---|
| 430 | if(c==1 && intersections[0]==intersection) | 
|---|
| 431 | continue; | 
|---|
| 432 | intersections[c++]=intersection; | 
|---|
| 433 | } | 
|---|
| 434 | } | 
|---|
| 435 | } | 
|---|
| 436 | end: | 
|---|
| 437 | if(c==2){ | 
|---|
| 438 | res.insert(LineSegment(intersections[0],intersections[1])); | 
|---|
| 439 | } | 
|---|
| 440 | return res; | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | std::string Cuboid_impl::toString() const{ | 
|---|
| 444 | return "Cuboid()"; | 
|---|
| 445 | } | 
|---|
| 446 |  | 
|---|
| 447 | enum ShapeType Cuboid_impl::getType() const | 
|---|
| 448 | { | 
|---|
| 449 | return CuboidType; | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | /** | 
|---|
| 453 | * \param N number of points on surface | 
|---|
| 454 | */ | 
|---|
| 455 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsOnSurface(const size_t N) const { | 
|---|
| 456 | std::vector<Vector> PointsOnSurface; | 
|---|
| 457 | // sides | 
|---|
| 458 | int n = sqrt((N - 1) / 6) + 1; | 
|---|
| 459 | for (int i=0; i<=n; i++){ | 
|---|
| 460 | double ii = (double)i / (double)n; | 
|---|
| 461 | for (int k=0; k<n; k++){ | 
|---|
| 462 | double kk = (double)k / (double)n; | 
|---|
| 463 | PointsOnSurface.push_back(Vector(ii, kk, 1)); | 
|---|
| 464 | PointsOnSurface.push_back(Vector(ii, 1, 1-kk)); | 
|---|
| 465 | PointsOnSurface.push_back(Vector(ii, 1-kk, 0)); | 
|---|
| 466 | PointsOnSurface.push_back(Vector(ii, 0, kk)); | 
|---|
| 467 | } | 
|---|
| 468 | } | 
|---|
| 469 | // top and bottom | 
|---|
| 470 | for (int i=1; i<n; i++){ | 
|---|
| 471 | double ii = (double)i / (double)n; | 
|---|
| 472 | for (int k=1; k<n; k++){ | 
|---|
| 473 | double kk = (double)k / (double)n; | 
|---|
| 474 | PointsOnSurface.push_back(Vector(0, ii, kk)); | 
|---|
| 475 | PointsOnSurface.push_back(Vector(1, ii, kk)); | 
|---|
| 476 | } | 
|---|
| 477 | } | 
|---|
| 478 | return PointsOnSurface; | 
|---|
| 479 | } | 
|---|
| 480 |  | 
|---|
| 481 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsInVolume(const size_t N) const { | 
|---|
| 482 | ASSERT(0, | 
|---|
| 483 | "Cuboid_impl::getHomogeneousPointsInVolume() - not implemented."); | 
|---|
| 484 | return std::vector<Vector>(); | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 | Shape Cuboid(){ | 
|---|
| 488 | Shape::impl_ptr impl = Shape::impl_ptr(new Cuboid_impl()); | 
|---|
| 489 | return Shape(impl); | 
|---|
| 490 | } | 
|---|
| 491 |  | 
|---|
| 492 | Shape Cuboid(const Vector &corner1, const Vector &corner2){ | 
|---|
| 493 | // make sure the two edges are upper left front and lower right back | 
|---|
| 494 | Vector sortedC1; | 
|---|
| 495 | Vector sortedC2; | 
|---|
| 496 | for(int i=NDIM;i--;){ | 
|---|
| 497 | sortedC1[i] = std::min(corner1[i],corner2[i]); | 
|---|
| 498 | sortedC2[i] = std::max(corner1[i],corner2[i]); | 
|---|
| 499 | ASSERT(corner1[i]!=corner2[i],"Given points for cuboid edges did not define a valid space"); | 
|---|
| 500 | } | 
|---|
| 501 | // get the middle point | 
|---|
| 502 | Vector middle = (1./2.)*(sortedC1+sortedC2); | 
|---|
| 503 | Vector factors = sortedC2-middle; | 
|---|
| 504 | return translate(stretch(Cuboid(),factors),middle); | 
|---|
| 505 | } | 
|---|