[bcf653] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
[0aa122] | 4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
[5aaa43] | 5 | * Copyright (C) 2013 Frederik Heber. All rights reserved.
|
---|
[94d5ac6] | 6 | *
|
---|
| 7 | *
|
---|
| 8 | * This file is part of MoleCuilder.
|
---|
| 9 | *
|
---|
| 10 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
| 11 | * it under the terms of the GNU General Public License as published by
|
---|
| 12 | * the Free Software Foundation, either version 2 of the License, or
|
---|
| 13 | * (at your option) any later version.
|
---|
| 14 | *
|
---|
| 15 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 18 | * GNU General Public License for more details.
|
---|
| 19 | *
|
---|
| 20 | * You should have received a copy of the GNU General Public License
|
---|
| 21 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
[bcf653] | 22 | */
|
---|
| 23 |
|
---|
[e38447] | 24 | /*
|
---|
| 25 | * BaseShapes_impl.cpp
|
---|
| 26 | *
|
---|
| 27 | * Created on: Jun 18, 2010
|
---|
| 28 | * Author: crueger
|
---|
| 29 | */
|
---|
| 30 |
|
---|
[bf3817] | 31 | // include config.h
|
---|
| 32 | #ifdef HAVE_CONFIG_H
|
---|
| 33 | #include <config.h>
|
---|
| 34 | #endif
|
---|
| 35 |
|
---|
[ad011c] | 36 | #include "CodePatterns/MemDebug.hpp"
|
---|
[bbbad5] | 37 |
|
---|
[e38447] | 38 | #include "Shapes/BaseShapes.hpp"
|
---|
| 39 | #include "Shapes/BaseShapes_impl.hpp"
|
---|
[b94634] | 40 | #include "Shapes/ShapeExceptions.hpp"
|
---|
[f3526d] | 41 | #include "Shapes/ShapeOps.hpp"
|
---|
[e38447] | 42 |
|
---|
[e4fe8d] | 43 | #include "Helpers/defs.hpp"
|
---|
[5de9da] | 44 |
|
---|
[ad011c] | 45 | #include "CodePatterns/Assert.hpp"
|
---|
[57f243] | 46 | #include "LinearAlgebra/Vector.hpp"
|
---|
[0eb8f4] | 47 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
[6c438f] | 48 | #include "LinearAlgebra/Line.hpp"
|
---|
| 49 | #include "LinearAlgebra/Plane.hpp"
|
---|
| 50 | #include "LinearAlgebra/LineSegment.hpp"
|
---|
| 51 | #include "LinearAlgebra/LineSegmentSet.hpp"
|
---|
[c6f395] | 52 |
|
---|
[5de9da] | 53 | #include <cmath>
|
---|
[d76a7c] | 54 | #include <algorithm>
|
---|
[e38447] | 55 |
|
---|
[0eb8f4] | 56 | // CYLINDER CODE
|
---|
| 57 | // ----------------------------------------------------------------------------
|
---|
| 58 | bool Cylinder_impl::isInside(const Vector &point) const {
|
---|
| 59 | return (Vector(point[0], point[1], 0.0).NormSquared() < 1.0+MYEPSILON) &&
|
---|
| 60 | (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | bool Cylinder_impl::isOnSurface(const Vector &point) const {
|
---|
[66f712] | 64 | // on the side?
|
---|
| 65 | if (fabs(Vector(point[0], point[1], 0.0).NormSquared()-1.0)<MYEPSILON &&
|
---|
| 66 | (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON))
|
---|
| 67 | return true;
|
---|
| 68 | // on top/bottom?
|
---|
| 69 | if ((Vector(point[0], point[1], 0.0).NormSquared()< 1.0 + MYEPSILON) &&
|
---|
| 70 | ((fabs(point[2]-1)<MYEPSILON) || (fabs(point[2]+1)<MYEPSILON)))
|
---|
| 71 | return true;
|
---|
| 72 | return false;
|
---|
[0eb8f4] | 73 |
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | Vector Cylinder_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException) {
|
---|
| 77 | if(!isOnSurface(point)){
|
---|
| 78 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
| 79 | }
|
---|
| 80 |
|
---|
[66f712] | 81 | Vector n = Vector(0, 0, 0);
|
---|
| 82 | if ((fabs(point[2]-1)<MYEPSILON) || (fabs(point[2]+1)<MYEPSILON))
|
---|
| 83 | n += Vector(0.0, 0.0, point[2]);
|
---|
[0eb8f4] | 84 | else
|
---|
[66f712] | 85 | n += Vector(point[0], point[1], 0.0);
|
---|
| 86 | n.Normalize();
|
---|
| 87 | return n;
|
---|
[0eb8f4] | 88 | }
|
---|
| 89 |
|
---|
| 90 | Vector Cylinder_impl::getCenter() const
|
---|
| 91 | {
|
---|
| 92 | return Vector(0.0, 0.0, 0.0);
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | double Cylinder_impl::getRadius() const
|
---|
| 96 | {
|
---|
| 97 | return 1.0;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | double Cylinder_impl::getVolume() const
|
---|
| 101 | {
|
---|
| 102 | return M_PI*2.0; // pi r^2 h
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | double Cylinder_impl::getSurfaceArea() const
|
---|
| 106 | {
|
---|
| 107 | return 2.0*M_PI*2.0; // 2 pi r h
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | LineSegmentSet Cylinder_impl::getLineIntersections(const Line &line) const {
|
---|
[f4a863] | 111 | const Vector origin = line.getOrigin();
|
---|
| 112 | const Vector direction = line.getDirection();
|
---|
| 113 |
|
---|
| 114 | const Vector e(direction[0], direction[1], 0.0);
|
---|
| 115 | const Vector f(origin[0], origin[1], 0.0);
|
---|
| 116 | const double A = e.ScalarProduct(e);
|
---|
| 117 | const double B = 2.0*e.ScalarProduct(f);
|
---|
| 118 | const double C = f.ScalarProduct(f) - 1.0;
|
---|
| 119 |
|
---|
| 120 | std::vector<double> solutions;
|
---|
| 121 |
|
---|
[66f712] | 122 | // Common routine to solve quadratic equations, anywhere?
|
---|
[f4a863] | 123 | const double neg_p_half = -B/(2.0*A);
|
---|
| 124 | const double q = C/A;
|
---|
| 125 | const double radicant = neg_p_half*neg_p_half-q;
|
---|
| 126 |
|
---|
| 127 | if (radicant > 0.0) {
|
---|
| 128 | const double root = sqrt(radicant);
|
---|
| 129 | solutions.push_back(neg_p_half+root);
|
---|
| 130 | const double sln2 = neg_p_half-root;
|
---|
| 131 | if (sln2 != solutions.back())
|
---|
| 132 | solutions.push_back(sln2);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | // Now get parameter for intersection with z-Planes.
|
---|
| 136 | const double origin_z = origin[2];
|
---|
| 137 | const double dir_z = direction[2];
|
---|
| 138 |
|
---|
| 139 | if (dir_z != 0.0) {
|
---|
| 140 | solutions.push_back((-1.0-origin_z)/dir_z);
|
---|
| 141 | solutions.push_back((1.0-origin_z)/dir_z);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | // Calculate actual vectors from obtained parameters and check,
|
---|
| 145 | // if they are actual intersections.
|
---|
| 146 | std::vector<Vector> intersections;
|
---|
| 147 |
|
---|
| 148 | for(unsigned int i=0; i<solutions.size(); i++) {
|
---|
| 149 | const Vector check_me(origin + direction*solutions[i]);
|
---|
| 150 | if (isOnSurface(check_me))
|
---|
| 151 | intersections.push_back(check_me);
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | LineSegmentSet result(line);
|
---|
| 155 | if (intersections.size()==2)
|
---|
| 156 | result.insert(LineSegment(intersections[0], intersections[1]));
|
---|
| 157 | return result;
|
---|
[0eb8f4] | 158 | }
|
---|
| 159 |
|
---|
| 160 | std::string Cylinder_impl::toString() const
|
---|
| 161 | {
|
---|
| 162 | return "Cylinder()";
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | enum ShapeType Cylinder_impl::getType() const
|
---|
| 166 | {
|
---|
| 167 | return CylinderType;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | std::vector<Vector> Cylinder_impl::getHomogeneousPointsOnSurface(const size_t N) const {
|
---|
[9e2737] | 171 | const double nz_float = sqrt(N/M_PI);
|
---|
| 172 | const int nu = round(N/nz_float);
|
---|
| 173 | const int nz = round(nz_float);
|
---|
[6f0507e] | 174 |
|
---|
| 175 | const double dphi = 2.0*M_PI/nu;
|
---|
| 176 | const double dz = 2.0/nz;
|
---|
| 177 |
|
---|
| 178 | std::vector<Vector> result;
|
---|
| 179 |
|
---|
| 180 | for(int useg=0; useg<nu; useg++)
|
---|
[66f712] | 181 | for(int zseg=0; zseg<=nz; zseg++)
|
---|
[6f0507e] | 182 | result.push_back(Vector(cos(useg*dphi), sin(useg*dphi), zseg*dz-1.0));
|
---|
| 183 |
|
---|
| 184 | return result;
|
---|
[0eb8f4] | 185 | }
|
---|
| 186 |
|
---|
| 187 | std::vector<Vector> Cylinder_impl::getHomogeneousPointsInVolume(const size_t N) const {
|
---|
[9e2737] | 188 | const double nz_float = pow(N/(2.0*M_PI), 1.0/3.0);
|
---|
| 189 | const int nu = round(nz_float*M_PI);
|
---|
| 190 | const int nr = round(nz_float*0.5);
|
---|
| 191 | const int nz = round(nz_float);
|
---|
| 192 |
|
---|
| 193 | const double dphi = 2.0*M_PI/nu;
|
---|
| 194 | const double dz = 2.0/nz;
|
---|
| 195 | const double dr = 1.0/nr;
|
---|
| 196 |
|
---|
| 197 | std::vector<Vector> result;
|
---|
| 198 |
|
---|
| 199 | for(int useg=0; useg<nu; useg++)
|
---|
| 200 | for(int zseg=0; zseg<nz; zseg++)
|
---|
| 201 | for(int rseg=0; rseg<nr; rseg++)
|
---|
| 202 | {
|
---|
[5d4179f] | 203 | const double r = dr+rseg*dr;
|
---|
[9e2737] | 204 | result.push_back(Vector(r*cos(useg*dphi), r*sin(useg*dphi), zseg*dz-1.0));
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | return result;
|
---|
[0eb8f4] | 208 | }
|
---|
| 209 |
|
---|
| 210 | Shape Cylinder() {
|
---|
| 211 | Shape::impl_ptr impl = Shape::impl_ptr(new Cylinder_impl());
|
---|
| 212 | return Shape(impl);
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | Shape Cylinder(const Vector ¢er, const double xrot, const double yrot,
|
---|
| 216 | const double height, const double radius)
|
---|
| 217 | {
|
---|
| 218 | RealSpaceMatrix rot;
|
---|
| 219 | rot.setRotation(xrot, yrot, 0.0);
|
---|
| 220 |
|
---|
| 221 | return translate(
|
---|
| 222 | transform(
|
---|
| 223 | stretch(
|
---|
| 224 | Cylinder(),
|
---|
| 225 | Vector(radius, radius, height*0.5)),
|
---|
| 226 | rot),
|
---|
| 227 | center);
|
---|
| 228 | }
|
---|
| 229 | // ----------------------------------------------------------------------------
|
---|
| 230 |
|
---|
[735940] | 231 | bool Sphere_impl::isInside(const Vector &point) const{
|
---|
[13202c] | 232 | return point.NormSquared() <= 1. + MYEPSILON;
|
---|
[e38447] | 233 | }
|
---|
| 234 |
|
---|
[735940] | 235 | bool Sphere_impl::isOnSurface(const Vector &point) const{
|
---|
| 236 | return fabs(point.NormSquared()-1.)<MYEPSILON;
|
---|
[5de9da] | 237 | }
|
---|
| 238 |
|
---|
[735940] | 239 | Vector Sphere_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){
|
---|
[5de9da] | 240 | if(!isOnSurface(point)){
|
---|
[b94634] | 241 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
[5de9da] | 242 | }
|
---|
| 243 | return point;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
[6acc2f3] | 246 | Vector Sphere_impl::getCenter() const
|
---|
| 247 | {
|
---|
| 248 | return Vector(0.,0.,0.);
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | double Sphere_impl::getRadius() const
|
---|
| 252 | {
|
---|
| 253 | return 1.;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
[c67c65] | 256 | double Sphere_impl::getVolume() const
|
---|
| 257 | {
|
---|
| 258 | return (4./3.)*M_PI; // 4/3 pi r^3
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | double Sphere_impl::getSurfaceArea() const
|
---|
| 262 | {
|
---|
| 263 | return 2.*M_PI; // 2 pi r^2
|
---|
| 264 | }
|
---|
| 265 |
|
---|
[6acc2f3] | 266 |
|
---|
[735940] | 267 | LineSegmentSet Sphere_impl::getLineIntersections(const Line &line) const{
|
---|
[c6f395] | 268 | LineSegmentSet res(line);
|
---|
| 269 | std::vector<Vector> intersections = line.getSphereIntersections();
|
---|
| 270 | if(intersections.size()==2){
|
---|
| 271 | res.insert(LineSegment(intersections[0],intersections[1]));
|
---|
| 272 | }
|
---|
| 273 | return res;
|
---|
| 274 | }
|
---|
| 275 |
|
---|
[b92e4a] | 276 | std::string Sphere_impl::toString() const{
|
---|
[cfda65] | 277 | return "Sphere()";
|
---|
| 278 | }
|
---|
| 279 |
|
---|
[b92e4a] | 280 | enum ShapeType Sphere_impl::getType() const
|
---|
| 281 | {
|
---|
| 282 | return SphereType;
|
---|
| 283 | }
|
---|
| 284 |
|
---|
[c5186e] | 285 | /**
|
---|
| 286 | * algorithm taken from http://www.cgafaq.info/wiki/Evenly_distributed_points_on_sphere
|
---|
| 287 | * \param N number of points on surface
|
---|
| 288 | */
|
---|
[f6ba43] | 289 | std::vector<Vector> Sphere_impl::getHomogeneousPointsOnSurface(const size_t N) const
|
---|
| 290 | {
|
---|
[c5186e] | 291 | std::vector<Vector> PointsOnSurface;
|
---|
[125841] | 292 | if (true) {
|
---|
| 293 | // Exactly N points but not symmetric.
|
---|
| 294 |
|
---|
| 295 | // This formula is derived by finding a curve on the sphere that spirals down from
|
---|
| 296 | // the north pole to the south pole keeping a constant distance between consecutive turns.
|
---|
| 297 | // The curve is then parametrized by arch length and evaluated in constant intervals.
|
---|
| 298 | double a = sqrt(N) * 2;
|
---|
[a2a2f7] | 299 | for (size_t i=0; i<N; ++i){
|
---|
[125841] | 300 | double t0 = ((double)i + 0.5) / (double)N;
|
---|
| 301 | double t = (sqrt(t0) - sqrt(1.0 - t0) + 1.0) / 2.0 * M_PI;
|
---|
| 302 | Vector point;
|
---|
| 303 | point.Zero();
|
---|
| 304 | point[0] = sin(t) * sin(t * a);
|
---|
| 305 | point[1] = sin(t) * cos(t * a);
|
---|
| 306 | point[2] = cos(t);
|
---|
| 307 | PointsOnSurface.push_back(point);
|
---|
| 308 | }
|
---|
| 309 | ASSERT(PointsOnSurface.size() == N,
|
---|
| 310 | "Sphere_impl::getHomogeneousPointsOnSurface() did not create "
|
---|
| 311 | +::toString(N)+" but "+::toString(PointsOnSurface.size())+" points.");
|
---|
| 312 | } else {
|
---|
| 313 | // Symmetric but only approximately N points.
|
---|
| 314 | double a=4*M_PI/N;
|
---|
[faca99] | 315 | double d= sqrt(a);
|
---|
[a2a2f7] | 316 | size_t Mtheta=round(M_PI/d);
|
---|
[125841] | 317 | double dtheta=M_PI/Mtheta;
|
---|
[faca99] | 318 | double dphi=a/dtheta;
|
---|
[a2a2f7] | 319 | for (size_t m=0; m<Mtheta; ++m)
|
---|
[faca99] | 320 | {
|
---|
[125841] | 321 | double theta=M_PI*(m+0.5)/Mtheta;
|
---|
[a2a2f7] | 322 | size_t Mphi=round(2*M_PI*sin(theta)/dphi);
|
---|
| 323 | for (size_t n=0; n<Mphi;++n)
|
---|
[125841] | 324 | {
|
---|
| 325 | double phi= 2*M_PI*n/Mphi;
|
---|
| 326 | Vector point;
|
---|
| 327 | point.Zero();
|
---|
| 328 | point[0]=sin(theta)*cos(phi);
|
---|
| 329 | point[1]=sin(theta)*sin(phi);
|
---|
| 330 | point[2]=cos(theta);
|
---|
| 331 | PointsOnSurface.push_back(point);
|
---|
| 332 | }
|
---|
[faca99] | 333 | }
|
---|
[125841] | 334 | }
|
---|
[c5186e] | 335 | return PointsOnSurface;
|
---|
| 336 | }
|
---|
| 337 |
|
---|
[5a8d61] | 338 | std::vector<Vector> Sphere_impl::getHomogeneousPointsInVolume(const size_t N) const {
|
---|
| 339 | ASSERT(0,
|
---|
| 340 | "Sphere_impl::getHomogeneousPointsInVolume() - not implemented.");
|
---|
| 341 | return std::vector<Vector>();
|
---|
| 342 | }
|
---|
[c5186e] | 343 |
|
---|
[e38447] | 344 | Shape Sphere(){
|
---|
| 345 | Shape::impl_ptr impl = Shape::impl_ptr(new Sphere_impl());
|
---|
| 346 | return Shape(impl);
|
---|
| 347 | }
|
---|
| 348 |
|
---|
[f3526d] | 349 | Shape Sphere(const Vector ¢er,double radius){
|
---|
| 350 | return translate(resize(Sphere(),radius),center);
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | Shape Ellipsoid(const Vector ¢er, const Vector &radius){
|
---|
| 354 | return translate(stretch(Sphere(),radius),center);
|
---|
| 355 | }
|
---|
| 356 |
|
---|
[735940] | 357 | bool Cuboid_impl::isInside(const Vector &point) const{
|
---|
[13202c] | 358 | return (point[0]>=-MYEPSILON && point[0]<=1+MYEPSILON) && (point[1]>=-MYEPSILON && point[1]<=1+MYEPSILON) && (point[2]>=-MYEPSILON && point[2]<=1+MYEPSILON);
|
---|
[5de9da] | 359 | }
|
---|
| 360 |
|
---|
[735940] | 361 | bool Cuboid_impl::isOnSurface(const Vector &point) const{
|
---|
[5de9da] | 362 | bool retVal = isInside(point);
|
---|
| 363 | // test all borders of the cuboid
|
---|
| 364 | // double fabs
|
---|
| 365 | retVal = retVal &&
|
---|
[6c438f] | 366 | (((fabs(point[0]-1.) < MYEPSILON) || (fabs(point[0]) < MYEPSILON)) ||
|
---|
| 367 | ((fabs(point[1]-1.) < MYEPSILON) || (fabs(point[1]) < MYEPSILON)) ||
|
---|
| 368 | ((fabs(point[2]-1.) < MYEPSILON) || (fabs(point[2]) < MYEPSILON)));
|
---|
[5de9da] | 369 | return retVal;
|
---|
| 370 | }
|
---|
| 371 |
|
---|
[735940] | 372 | Vector Cuboid_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){
|
---|
[5de9da] | 373 | if(!isOnSurface(point)){
|
---|
[b94634] | 374 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
[5de9da] | 375 | }
|
---|
| 376 | Vector res;
|
---|
| 377 | // figure out on which sides the Vector lies (maximum 3, when it is in a corner)
|
---|
| 378 | for(int i=NDIM;i--;){
|
---|
[9ec4b8] | 379 | if((fabs(point[i])<MYEPSILON) || (fabs(point[i]-1.)<MYEPSILON)){
|
---|
[5de9da] | 380 | // add the scaled (-1/+1) Vector to the set of surface vectors
|
---|
[7de208] | 381 | res[i] = point[i] * 2.0 - 1.0;
|
---|
[5de9da] | 382 | }
|
---|
| 383 | }
|
---|
[9ec4b8] | 384 | ASSERT((fabs(res.NormSquared() - 1.) >= -MYEPSILON)
|
---|
| 385 | && (fabs(res.NormSquared() - 3.) >= -MYEPSILON),
|
---|
| 386 | "To many or to few sides found for this Vector");
|
---|
[5de9da] | 387 |
|
---|
| 388 | res.Normalize();
|
---|
| 389 | return res;
|
---|
[e38447] | 390 | }
|
---|
| 391 |
|
---|
[6acc2f3] | 392 |
|
---|
| 393 | Vector Cuboid_impl::getCenter() const
|
---|
| 394 | {
|
---|
| 395 | return Vector(0.5,0.5,0.5);
|
---|
| 396 | }
|
---|
| 397 |
|
---|
| 398 | double Cuboid_impl::getRadius() const
|
---|
| 399 | {
|
---|
| 400 | return .5;
|
---|
| 401 | }
|
---|
| 402 |
|
---|
[c67c65] | 403 | double Cuboid_impl::getVolume() const
|
---|
| 404 | {
|
---|
| 405 | return 1.; // l^3
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 | double Cuboid_impl::getSurfaceArea() const
|
---|
| 409 | {
|
---|
| 410 | return 6.; // 6 * l^2
|
---|
| 411 | }
|
---|
| 412 |
|
---|
[735940] | 413 | LineSegmentSet Cuboid_impl::getLineIntersections(const Line &line) const{
|
---|
[c6f395] | 414 | LineSegmentSet res(line);
|
---|
| 415 | // get the intersection on each of the six faces
|
---|
[955b91] | 416 | std::vector<Vector> intersections;
|
---|
[c6f395] | 417 | intersections.resize(2);
|
---|
| 418 | int c=0;
|
---|
| 419 | int x[2]={-1,+1};
|
---|
| 420 | for(int i=NDIM;i--;){
|
---|
[87d6bd] | 421 | for(int j=0;j<2;++j){
|
---|
[c6f395] | 422 | if(c==2) goto end; // I know this sucks, but breaking two loops is stupid
|
---|
| 423 | Vector base;
|
---|
[87d6bd] | 424 | base[i]=x[j];
|
---|
[c6f395] | 425 | // base now points to the surface and is normal to it at the same time
|
---|
| 426 | Plane p(base,base);
|
---|
| 427 | Vector intersection = p.GetIntersection(line);
|
---|
| 428 | if(isInside(intersection)){
|
---|
| 429 | // if we have a point on the edge it might already be contained
|
---|
| 430 | if(c==1 && intersections[0]==intersection)
|
---|
| 431 | continue;
|
---|
| 432 | intersections[c++]=intersection;
|
---|
| 433 | }
|
---|
| 434 | }
|
---|
| 435 | }
|
---|
| 436 | end:
|
---|
| 437 | if(c==2){
|
---|
| 438 | res.insert(LineSegment(intersections[0],intersections[1]));
|
---|
| 439 | }
|
---|
| 440 | return res;
|
---|
| 441 | }
|
---|
| 442 |
|
---|
[b92e4a] | 443 | std::string Cuboid_impl::toString() const{
|
---|
[cfda65] | 444 | return "Cuboid()";
|
---|
| 445 | }
|
---|
| 446 |
|
---|
[b92e4a] | 447 | enum ShapeType Cuboid_impl::getType() const
|
---|
| 448 | {
|
---|
| 449 | return CuboidType;
|
---|
| 450 | }
|
---|
| 451 |
|
---|
[c5186e] | 452 | /**
|
---|
| 453 | * \param N number of points on surface
|
---|
| 454 | */
|
---|
[9c1c89] | 455 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsOnSurface(const size_t N) const {
|
---|
[c5186e] | 456 | std::vector<Vector> PointsOnSurface;
|
---|
[bf8318] | 457 | // sides
|
---|
| 458 | int n = sqrt((N - 1) / 6) + 1;
|
---|
| 459 | for (int i=0; i<=n; i++){
|
---|
| 460 | double ii = (double)i / (double)n;
|
---|
| 461 | for (int k=0; k<n; k++){
|
---|
| 462 | double kk = (double)k / (double)n;
|
---|
| 463 | PointsOnSurface.push_back(Vector(ii, kk, 1));
|
---|
| 464 | PointsOnSurface.push_back(Vector(ii, 1, 1-kk));
|
---|
| 465 | PointsOnSurface.push_back(Vector(ii, 1-kk, 0));
|
---|
| 466 | PointsOnSurface.push_back(Vector(ii, 0, kk));
|
---|
| 467 | }
|
---|
| 468 | }
|
---|
| 469 | // top and bottom
|
---|
| 470 | for (int i=1; i<n; i++){
|
---|
| 471 | double ii = (double)i / (double)n;
|
---|
| 472 | for (int k=1; k<n; k++){
|
---|
| 473 | double kk = (double)k / (double)n;
|
---|
| 474 | PointsOnSurface.push_back(Vector(0, ii, kk));
|
---|
| 475 | PointsOnSurface.push_back(Vector(1, ii, kk));
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
[c5186e] | 478 | return PointsOnSurface;
|
---|
| 479 | }
|
---|
| 480 |
|
---|
[5a8d61] | 481 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsInVolume(const size_t N) const {
|
---|
| 482 | ASSERT(0,
|
---|
| 483 | "Cuboid_impl::getHomogeneousPointsInVolume() - not implemented.");
|
---|
| 484 | return std::vector<Vector>();
|
---|
| 485 | }
|
---|
| 486 |
|
---|
[e38447] | 487 | Shape Cuboid(){
|
---|
[5de9da] | 488 | Shape::impl_ptr impl = Shape::impl_ptr(new Cuboid_impl());
|
---|
[e38447] | 489 | return Shape(impl);
|
---|
| 490 | }
|
---|
[d76a7c] | 491 |
|
---|
| 492 | Shape Cuboid(const Vector &corner1, const Vector &corner2){
|
---|
| 493 | // make sure the two edges are upper left front and lower right back
|
---|
| 494 | Vector sortedC1;
|
---|
| 495 | Vector sortedC2;
|
---|
| 496 | for(int i=NDIM;i--;){
|
---|
[955b91] | 497 | sortedC1[i] = std::min(corner1[i],corner2[i]);
|
---|
| 498 | sortedC2[i] = std::max(corner1[i],corner2[i]);
|
---|
[d76a7c] | 499 | ASSERT(corner1[i]!=corner2[i],"Given points for cuboid edges did not define a valid space");
|
---|
| 500 | }
|
---|
| 501 | // get the middle point
|
---|
| 502 | Vector middle = (1./2.)*(sortedC1+sortedC2);
|
---|
| 503 | Vector factors = sortedC2-middle;
|
---|
| 504 | return translate(stretch(Cuboid(),factors),middle);
|
---|
| 505 | }
|
---|