/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2019 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * export_numpy.cpp * * Created on: Mar 23, 2019 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif //#include "CodePatterns/MemDebug.hpp" #include #include #include #include #include "CodePatterns/Assert.hpp" #include "World.hpp" namespace p = boost::python; namespace np = boost::python::numpy; unsigned int get_num_atoms() { return World::getInstance().countSelectedAtoms(); } np::ndarray allocate_ndarray(const unsigned int num_atoms) { p::tuple shape = p::make_tuple(num_atoms, 3); np::dtype dtype = np::dtype::get_builtin(); np::ndarray array = np::zeros(shape, dtype); return array; } np::ndarray get_ndarray(boost::function &_get_function) { unsigned int num_atoms = get_num_atoms(); //std::cout << num_atoms << std::endl; np::ndarray positions = allocate_ndarray(num_atoms); unsigned int ia=0; for (World::AtomSelectionConstIterator iter = World::getInstance().beginAtomSelection(); iter != World::getInstance().endAtomSelection(); ++iter) { const atom & current = *iter->second; for (unsigned int i=0;i get_vector = boost::bind(&AtomInfo::getPosition, _1); return get_ndarray(get_vector); } np::ndarray get_velocities() { static boost::function< const Vector&(const atom&) > get_vector = boost::bind(&AtomInfo::getAtomicVelocity, _1); return get_ndarray(get_vector); } np::ndarray get_forces() { static boost::function< const Vector&(const atom&) > get_vector = boost::bind(&AtomInfo::getAtomicForce, _1); return get_ndarray(get_vector); } np::ndarray get_masses() { unsigned int num_atoms = get_num_atoms(); //std::cout << num_atoms << std::endl; p::tuple shape = p::make_tuple(num_atoms); np::dtype dtype = np::dtype::get_builtin(); np::ndarray masses = np::zeros(shape, dtype); unsigned int ia=0; for (World::AtomSelectionConstIterator iter = World::getInstance().beginAtomSelection(); iter != World::getInstance().endAtomSelection(); ++iter) { const atom & current = *iter->second; masses[ia] = current.getMass(); ++ia; ASSERT(ia <= num_atoms, "get_masses() - more atoms selected than expected."); } return masses; } void set_ndarray( const np::ndarray &_positions, boost::function &_set_function) { unsigned int num_atoms = get_num_atoms(); // check whether shape of array is correct ASSERT( _positions.shape(0) == num_atoms, "pyMoleCuilder::set_ndarray() - numpy array has unexpected size."); np::ndarray new_positions = _positions.copy(); unsigned int ia=0; Vector temp; for (World::AtomSelectionIterator iter = World::getInstance().beginAtomSelection(); iter != World::getInstance().endAtomSelection(); ++iter) { atom ¤t = *iter->second; for (unsigned int i=0;i(p::str(new_positions[ia][i])) << std::endl; temp[i] = p::extract(new_positions[ia][i]); } _set_function(current, temp); ++ia; ASSERT(ia <= num_atoms, "set_ndarray() - more atoms selected than expected."); } } void set_positions(const np::ndarray &new_positions) { static boost::function< void (atom&, const Vector&) > set_vector = boost::bind(&AtomInfo::setPosition, _1, _2); set_ndarray(new_positions, set_vector); } void set_velocities(const np::ndarray &new_positions) { static boost::function< void (atom&, const Vector&) > set_vector = boost::bind(&AtomInfo::setAtomicVelocity, _1, _2); set_ndarray(new_positions, set_vector); } void set_forces(const np::ndarray &new_positions) { static boost::function< void (atom&, const Vector&) > set_vector = boost::bind(&AtomInfo::setAtomicForce, _1, _2); set_ndarray(new_positions, set_vector); } void export_numpy() { p::def("get_positions", get_positions); p::def("get_velocities", get_velocities); p::def("get_forces", get_forces); p::def("get_masses", get_masses); p::def("set_positions", set_positions, p::args("position")); p::def("set_velocities", set_velocities, p::args("velocity")); p::def("set_forces", set_forces, p::args("force")); }