/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * Please see the COPYING file or "Copyright notice" in builder.cpp for details. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * PairPotential_Angle.cpp * * Created on: Oct 11, 2012 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "PairPotential_Angle.hpp" #include // for 'map_list_of()' #include #include "CodePatterns/Assert.hpp" #include "Potentials/helpers.hpp" #include "Potentials/ParticleTypeCheckers.hpp" // static definitions const PairPotential_Angle::ParameterNames_t PairPotential_Angle::ParameterNames = boost::assign::list_of ("spring_constant") ("equilibrium_distance") ("") //energy_offset ; const std::string PairPotential_Angle::potential_token("harmonic_angle"); PairPotential_Angle::PairPotential_Angle( const ParticleTypes_t &_ParticleTypes ) : SerializablePotential(_ParticleTypes), params(parameters_t(MAXPARAMS, 0.)) {} PairPotential_Angle::PairPotential_Angle( const ParticleTypes_t &_ParticleTypes, const double _spring_constant, const double _equilibrium_distance, const double _energy_offset) : SerializablePotential(_ParticleTypes), params(parameters_t(MAXPARAMS, 0.)) { params[spring_constant] = _spring_constant; params[equilibrium_distance] = _equilibrium_distance; params[energy_offset] = _energy_offset; } void PairPotential_Angle::setParameters(const parameters_t &_params) { const size_t paramsDim = _params.size(); ASSERT( paramsDim <= getParameterDimension(), "PairPotential_Angle::setParameters() - we need not more than " +toString(getParameterDimension())+" parameters."); for(size_t i=0;i(1, result); } PairPotential_Angle::derivative_components_t PairPotential_Angle::derivative( const arguments_t &arguments ) const { ASSERT( arguments.size() == 3, "PairPotential_Angle::operator() - requires exactly three arguments."); ASSERT( ParticleTypeChecker::checkArgumentsAgainstParticleTypesStrictOrdering( arguments, getParticleTypes()), "PairPotential_Angle::operator() - types don't match with ones in arguments."); derivative_components_t result; const argument_t &r_ij = arguments[0]; const argument_t &r_ik = arguments[1]; const argument_t &r_jk = arguments[2]; result.push_back( 2. * params[spring_constant] * ( function_theta(r_ij.distance, r_ik.distance, r_jk.distance) - params[equilibrium_distance]) ); ASSERT( result.size() == 1, "PairPotential_Angle::operator() - we did not create exactly one component."); return result; } PairPotential_Angle::results_t PairPotential_Angle::parameter_derivative( const arguments_t &arguments, const size_t index ) const { ASSERT( arguments.size() == 3, "PairPotential_Angle::parameter_derivative() - requires exactly three arguments."); ASSERT( ParticleTypeChecker::checkArgumentsAgainstParticleTypesStrictOrdering( arguments, getParticleTypes()), "PairPotential_Angle::operator() - types don't match with ones in arguments."); const argument_t &r_ij = arguments[0]; const argument_t &r_ik = arguments[1]; const argument_t &r_jk = arguments[2]; switch (index) { case spring_constant: { const result_t result = Helpers::pow( function_theta(r_ij.distance, r_ik.distance, r_jk.distance) - params[equilibrium_distance], 2 ); return std::vector(1, result); break; } case equilibrium_distance: { const result_t result = -2. * params[spring_constant] * ( function_theta(r_ij.distance, r_ik.distance, r_jk.distance) - params[equilibrium_distance]); return std::vector(1, result); break; } case energy_offset: { const result_t result = +1.; return std::vector(1, result); break; } default: return PairPotential_Angle::results_t(1, 0.); break; } }