1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2014 Frederik Heber. All rights reserved.
|
---|
5 | *
|
---|
6 | *
|
---|
7 | * This file is part of MoleCuilder.
|
---|
8 | *
|
---|
9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * PotentialTrainer.cpp
|
---|
25 | *
|
---|
26 | * Created on: Sep 11, 2014
|
---|
27 | * Author: heber
|
---|
28 | */
|
---|
29 |
|
---|
30 | // include config.h
|
---|
31 | #ifdef HAVE_CONFIG_H
|
---|
32 | #include <config.h>
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | // needs to come before MemDebug due to placement new
|
---|
36 | #include <boost/archive/text_iarchive.hpp>
|
---|
37 |
|
---|
38 | #include "CodePatterns/MemDebug.hpp"
|
---|
39 |
|
---|
40 | #include "PotentialTrainer.hpp"
|
---|
41 |
|
---|
42 | #include <algorithm>
|
---|
43 | #include <boost/lambda/lambda.hpp>
|
---|
44 | #include <boost/filesystem.hpp>
|
---|
45 | #include <fstream>
|
---|
46 | #include <sstream>
|
---|
47 |
|
---|
48 | #include "CodePatterns/Assert.hpp"
|
---|
49 | #include "CodePatterns/Log.hpp"
|
---|
50 |
|
---|
51 | #include "Element/element.hpp"
|
---|
52 | #include "Fragmentation/Homology/HomologyContainer.hpp"
|
---|
53 | #include "Fragmentation/Homology/HomologyGraph.hpp"
|
---|
54 | #include "FunctionApproximation/Extractors.hpp"
|
---|
55 | #include "FunctionApproximation/FunctionApproximation.hpp"
|
---|
56 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
57 | #include "FunctionApproximation/TrainingData.hpp"
|
---|
58 | #include "FunctionApproximation/writeDistanceEnergyTable.hpp"
|
---|
59 | #include "Potentials/CompoundPotential.hpp"
|
---|
60 | #include "Potentials/RegistrySerializer.hpp"
|
---|
61 | #include "Potentials/SerializablePotential.hpp"
|
---|
62 |
|
---|
63 | PotentialTrainer::PotentialTrainer()
|
---|
64 | {}
|
---|
65 |
|
---|
66 | PotentialTrainer::~PotentialTrainer()
|
---|
67 | {}
|
---|
68 |
|
---|
69 | bool PotentialTrainer::operator()(
|
---|
70 | const HomologyContainer &_homologies,
|
---|
71 | const HomologyGraph &_graph,
|
---|
72 | const boost::filesystem::path &_trainingfile,
|
---|
73 | const unsigned int _maxiterations,
|
---|
74 | const double _threshold,
|
---|
75 | const unsigned int _best_of_howmany) const
|
---|
76 | {
|
---|
77 | // fit potential
|
---|
78 | FunctionModel *model = new CompoundPotential(_graph);
|
---|
79 | ASSERT( model != NULL,
|
---|
80 | "PotentialTrainer::operator() - model is NULL.");
|
---|
81 |
|
---|
82 | {
|
---|
83 | CompoundPotential *compound = static_cast<CompoundPotential *>(model);
|
---|
84 | if (compound->begin() == compound->end()) {
|
---|
85 | ELOG(1, "Could not find any suitable potentials for the compound potential.");
|
---|
86 | return false;
|
---|
87 | }
|
---|
88 | }
|
---|
89 |
|
---|
90 | /******************** TRAINING ********************/
|
---|
91 | // fit potential
|
---|
92 | FunctionModel::parameters_t bestparams(model->getParameterDimension(), 0.);
|
---|
93 | {
|
---|
94 | // Afterwards we go through all of this type and gather the distance and the energy value
|
---|
95 | TrainingData data(model->getSpecificFilter());
|
---|
96 | data(_homologies.getHomologousGraphs(_graph));
|
---|
97 |
|
---|
98 | // check data
|
---|
99 | const TrainingData::FilteredInputVector_t &inputs = data.getTrainingInputs();
|
---|
100 | for (TrainingData::FilteredInputVector_t::const_iterator iter = inputs.begin();
|
---|
101 | iter != inputs.end(); ++iter)
|
---|
102 | if (((*iter).empty()) || ((*iter).front().empty())) {
|
---|
103 | ELOG(1, "At least one of the training inputs is empty! Correct fragment and potential charges selected?");
|
---|
104 | return false;
|
---|
105 | }
|
---|
106 | const TrainingData::OutputVector_t &outputs = data.getTrainingOutputs();
|
---|
107 | for (TrainingData::OutputVector_t::const_iterator iter = outputs.begin();
|
---|
108 | iter != outputs.end(); ++iter)
|
---|
109 | if ((*iter).empty()) {
|
---|
110 | ELOG(1, "At least one of the training outputs is empty! Correct fragment and potential charges selected?");
|
---|
111 | return false;
|
---|
112 | }
|
---|
113 |
|
---|
114 | // print distances and energies if desired for debugging
|
---|
115 | if (!data.getTrainingInputs().empty()) {
|
---|
116 | // print which distance is which
|
---|
117 | size_t counter=1;
|
---|
118 | if (DoLog(3)) {
|
---|
119 | const FunctionModel::arguments_t &inputs = data.getAllArguments()[0];
|
---|
120 | for (FunctionModel::arguments_t::const_iterator iter = inputs.begin();
|
---|
121 | iter != inputs.end(); ++iter) {
|
---|
122 | const argument_t &arg = *iter;
|
---|
123 | LOG(3, "DEBUG: distance " << counter++ << " is between (#"
|
---|
124 | << arg.indices.first << "c" << arg.types.first << ","
|
---|
125 | << arg.indices.second << "c" << arg.types.second << ").");
|
---|
126 | }
|
---|
127 | }
|
---|
128 |
|
---|
129 | // print table
|
---|
130 | if (_trainingfile.string().empty()) {
|
---|
131 | LOG(3, "DEBUG: I gathered the following training data:\n" <<
|
---|
132 | _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable()));
|
---|
133 | } else {
|
---|
134 | std::ofstream trainingstream(_trainingfile.string().c_str());
|
---|
135 | if (trainingstream.good()) {
|
---|
136 | LOG(3, "DEBUG: Writing training data to file " <<
|
---|
137 | _trainingfile.string() << ".");
|
---|
138 | trainingstream << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable());
|
---|
139 | }
|
---|
140 | trainingstream.close();
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | if ((_threshold < 1.) && (_best_of_howmany))
|
---|
145 | ELOG(2, "threshold parameter always overrules max_runs, both are specified.");
|
---|
146 | // now perform the function approximation by optimizing the model function
|
---|
147 | FunctionApproximation approximator(data, *model, _threshold, _maxiterations);
|
---|
148 | if (model->isBoxConstraint() && approximator.checkParameterDerivatives()) {
|
---|
149 | double l2error = std::numeric_limits<double>::max();
|
---|
150 | // seed with current time
|
---|
151 | srand((unsigned)time(0));
|
---|
152 | unsigned int runs=0;
|
---|
153 | // threshold overrules max_runs
|
---|
154 | const double threshold = _threshold;
|
---|
155 | const unsigned int max_runs = (threshold >= 1.) ? _best_of_howmany : 1;
|
---|
156 | LOG(1, "INFO: Maximum runs is " << max_runs << " and threshold set to " << threshold << ".");
|
---|
157 | do {
|
---|
158 | // generate new random initial parameter values
|
---|
159 | model->setParametersToRandomInitialValues(data);
|
---|
160 | LOG(1, "INFO: Initial parameters of run " << runs << " are "
|
---|
161 | << model->getParameters() << ".");
|
---|
162 | approximator(FunctionApproximation::ParameterDerivative);
|
---|
163 | LOG(1, "INFO: Final parameters of run " << runs << " are "
|
---|
164 | << model->getParameters() << ".");
|
---|
165 | const double new_l2error = data.getL2Error(*model);
|
---|
166 | if (new_l2error < l2error) {
|
---|
167 | // store currently best parameters
|
---|
168 | l2error = new_l2error;
|
---|
169 | bestparams = model->getParameters();
|
---|
170 | LOG(1, "STATUS: New fit from run " << runs
|
---|
171 | << " has better error of " << l2error << ".");
|
---|
172 | }
|
---|
173 | } while (( ++runs < max_runs) || (l2error > threshold));
|
---|
174 | // reset parameters from best fit
|
---|
175 | model->setParameters(bestparams);
|
---|
176 | LOG(1, "INFO: Best parameters with L2 error of "
|
---|
177 | << l2error << " are " << model->getParameters() << ".");
|
---|
178 | } else {
|
---|
179 | return false;
|
---|
180 | }
|
---|
181 |
|
---|
182 | // create a map of each fragment with error.
|
---|
183 | HomologyContainer::range_t fragmentrange = _homologies.getHomologousGraphs(_graph);
|
---|
184 | TrainingData::L2ErrorConfigurationIndexMap_t WorseFragmentMap =
|
---|
185 | data.getWorstFragmentMap(*model, fragmentrange);
|
---|
186 | LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << ".");
|
---|
187 |
|
---|
188 | }
|
---|
189 | delete model;
|
---|
190 |
|
---|
191 | return true;
|
---|
192 | }
|
---|
193 |
|
---|
194 | HomologyGraph PotentialTrainer::getFirstGraphwithSpecifiedElements(
|
---|
195 | const HomologyContainer &homologies,
|
---|
196 | const SerializablePotential::ParticleTypes_t &types)
|
---|
197 | {
|
---|
198 | ASSERT( !types.empty(),
|
---|
199 | "getFirstGraphwithSpecifiedElements() - charges is empty?");
|
---|
200 | // create charges
|
---|
201 | Fragment::charges_t charges;
|
---|
202 | charges.resize(types.size());
|
---|
203 | std::transform(types.begin(), types.end(),
|
---|
204 | charges.begin(), boost::lambda::_1);
|
---|
205 | // convert into count map
|
---|
206 | Extractors::elementcounts_t counts_per_charge =
|
---|
207 | Extractors::_detail::getElementCounts(charges);
|
---|
208 | ASSERT( !counts_per_charge.empty(),
|
---|
209 | "getFirstGraphwithSpecifiedElements() - charge counts are empty?");
|
---|
210 | LOG(1, "DEBUG: counts_per_charge is " << counts_per_charge << ".");
|
---|
211 | // we want to check each (unique) key only once
|
---|
212 | HomologyContainer::const_key_iterator olditer = homologies.key_end();
|
---|
213 | for (HomologyContainer::const_key_iterator iter =
|
---|
214 | homologies.key_begin(); iter != homologies.key_end();
|
---|
215 | iter = homologies.getNextKey(iter)) {
|
---|
216 | // if it's the same as the old one, skip it
|
---|
217 | if (olditer == iter)
|
---|
218 | continue;
|
---|
219 | else
|
---|
220 | olditer = iter;
|
---|
221 | // check whether we have the same set of atomic numbers
|
---|
222 | const HomologyGraph::nodes_t &nodes = (*iter).getNodes();
|
---|
223 | Extractors::elementcounts_t nodes_counts_per_charge;
|
---|
224 | for (HomologyGraph::nodes_t::const_iterator nodeiter = nodes.begin();
|
---|
225 | nodeiter != nodes.end(); ++nodeiter) {
|
---|
226 | const Extractors::element_t elem = nodeiter->first.getAtomicNumber();
|
---|
227 | const std::pair<Extractors::elementcounts_t::iterator, bool> inserter =
|
---|
228 | nodes_counts_per_charge.insert( std::make_pair(elem, (Extractors::count_t)nodeiter->second ) );
|
---|
229 | if (!inserter.second)
|
---|
230 | inserter.first->second += (Extractors::count_t)nodeiter->second;
|
---|
231 | }
|
---|
232 | LOG(1, "DEBUG: Node (" << *iter << ")'s counts_per_charge is " << nodes_counts_per_charge << ".");
|
---|
233 | if (counts_per_charge == nodes_counts_per_charge)
|
---|
234 | return *iter;
|
---|
235 | }
|
---|
236 | return HomologyGraph();
|
---|
237 | }
|
---|
238 |
|
---|
239 | SerializablePotential::ParticleTypes_t PotentialTrainer::getNumbersFromElements(
|
---|
240 | const std::vector<const element *> &fragment)
|
---|
241 | {
|
---|
242 | SerializablePotential::ParticleTypes_t fragmentnumbers;
|
---|
243 | std::transform(fragment.begin(), fragment.end(), std::back_inserter(fragmentnumbers),
|
---|
244 | boost::bind(&element::getAtomicNumber, _1));
|
---|
245 | return fragmentnumbers;
|
---|
246 | }
|
---|