source: src/Potentials/PotentialTrainer.cpp@ d24750

Action_Thermostats Add_AtomRandomPerturbation Add_RotateAroundBondAction Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_ChronosMutex Fix_ParseParticles Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion GeometryObjects Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg ThirdParty_MPQC_rebuilt_buildsystem TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps Ubuntu_1604_changes stable
Last change on this file since d24750 was d33f24, checked in by Frederik Heber <heber@…>, 8 years ago

Added additional checks to training data sensibility of PotentialTrainer.

  • Property mode set to 100644
File size: 9.5 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2014 Frederik Heber. All rights reserved.
5 *
6 *
7 * This file is part of MoleCuilder.
8 *
9 * MoleCuilder is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * MoleCuilder is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23/*
24 * PotentialTrainer.cpp
25 *
26 * Created on: Sep 11, 2014
27 * Author: heber
28 */
29
30// include config.h
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35// needs to come before MemDebug due to placement new
36#include <boost/archive/text_iarchive.hpp>
37
38#include "CodePatterns/MemDebug.hpp"
39
40#include "PotentialTrainer.hpp"
41
42#include <algorithm>
43#include <boost/lambda/lambda.hpp>
44#include <boost/filesystem.hpp>
45#include <fstream>
46#include <sstream>
47
48#include "CodePatterns/Assert.hpp"
49#include "CodePatterns/Log.hpp"
50
51#include "Element/element.hpp"
52#include "Fragmentation/Homology/HomologyContainer.hpp"
53#include "Fragmentation/Homology/HomologyGraph.hpp"
54#include "FunctionApproximation/Extractors.hpp"
55#include "FunctionApproximation/FunctionApproximation.hpp"
56#include "FunctionApproximation/FunctionModel.hpp"
57#include "FunctionApproximation/TrainingData.hpp"
58#include "FunctionApproximation/writeDistanceEnergyTable.hpp"
59#include "Potentials/CompoundPotential.hpp"
60#include "Potentials/RegistrySerializer.hpp"
61#include "Potentials/SerializablePotential.hpp"
62
63PotentialTrainer::PotentialTrainer()
64{}
65
66PotentialTrainer::~PotentialTrainer()
67{}
68
69bool PotentialTrainer::operator()(
70 const HomologyContainer &_homologies,
71 const HomologyGraph &_graph,
72 const boost::filesystem::path &_trainingfile,
73 const unsigned int _maxiterations,
74 const double _threshold,
75 const unsigned int _best_of_howmany) const
76{
77 // fit potential
78 FunctionModel *model = new CompoundPotential(_graph);
79 ASSERT( model != NULL,
80 "PotentialTrainer::operator() - model is NULL.");
81
82 {
83 CompoundPotential *compound = static_cast<CompoundPotential *>(model);
84 if (compound->begin() == compound->end()) {
85 ELOG(1, "Could not find any suitable potentials for the compound potential.");
86 return false;
87 }
88 }
89
90 /******************** TRAINING ********************/
91 // fit potential
92 FunctionModel::parameters_t bestparams(model->getParameterDimension(), 0.);
93 {
94 // Afterwards we go through all of this type and gather the distance and the energy value
95 TrainingData data(model->getSpecificFilter());
96 data(_homologies.getHomologousGraphs(_graph));
97
98 // check data
99 const TrainingData::FilteredInputVector_t &inputs = data.getTrainingInputs();
100 for (TrainingData::FilteredInputVector_t::const_iterator iter = inputs.begin();
101 iter != inputs.end(); ++iter)
102 if (((*iter).empty()) || ((*iter).front().empty())) {
103 ELOG(1, "At least one of the training inputs is empty! Correct fragment and potential charges selected?");
104 return false;
105 }
106 const TrainingData::OutputVector_t &outputs = data.getTrainingOutputs();
107 for (TrainingData::OutputVector_t::const_iterator iter = outputs.begin();
108 iter != outputs.end(); ++iter)
109 if ((*iter).empty()) {
110 ELOG(1, "At least one of the training outputs is empty! Correct fragment and potential charges selected?");
111 return false;
112 }
113
114 // print distances and energies if desired for debugging
115 if (!data.getTrainingInputs().empty()) {
116 // print which distance is which
117 size_t counter=1;
118 if (DoLog(3)) {
119 const FunctionModel::arguments_t &inputs = data.getAllArguments()[0];
120 for (FunctionModel::arguments_t::const_iterator iter = inputs.begin();
121 iter != inputs.end(); ++iter) {
122 const argument_t &arg = *iter;
123 LOG(3, "DEBUG: distance " << counter++ << " is between (#"
124 << arg.indices.first << "c" << arg.types.first << ","
125 << arg.indices.second << "c" << arg.types.second << ").");
126 }
127 }
128
129 // print table
130 if (_trainingfile.string().empty()) {
131 LOG(3, "DEBUG: I gathered the following training data:\n" <<
132 _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable()));
133 } else {
134 std::ofstream trainingstream(_trainingfile.string().c_str());
135 if (trainingstream.good()) {
136 LOG(3, "DEBUG: Writing training data to file " <<
137 _trainingfile.string() << ".");
138 trainingstream << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable());
139 }
140 trainingstream.close();
141 }
142 }
143
144 if ((_threshold < 1.) && (_best_of_howmany))
145 ELOG(2, "threshold parameter always overrules max_runs, both are specified.");
146 // now perform the function approximation by optimizing the model function
147 FunctionApproximation approximator(data, *model, _threshold, _maxiterations);
148 if (model->isBoxConstraint() && approximator.checkParameterDerivatives()) {
149 double l2error = std::numeric_limits<double>::max();
150 // seed with current time
151 srand((unsigned)time(0));
152 unsigned int runs=0;
153 // threshold overrules max_runs
154 const double threshold = _threshold;
155 const unsigned int max_runs = (threshold >= 1.) ? _best_of_howmany : 1;
156 LOG(1, "INFO: Maximum runs is " << max_runs << " and threshold set to " << threshold << ".");
157 do {
158 // generate new random initial parameter values
159 model->setParametersToRandomInitialValues(data);
160 LOG(1, "INFO: Initial parameters of run " << runs << " are "
161 << model->getParameters() << ".");
162 approximator(FunctionApproximation::ParameterDerivative);
163 LOG(1, "INFO: Final parameters of run " << runs << " are "
164 << model->getParameters() << ".");
165 const double new_l2error = data.getL2Error(*model);
166 if (new_l2error < l2error) {
167 // store currently best parameters
168 l2error = new_l2error;
169 bestparams = model->getParameters();
170 LOG(1, "STATUS: New fit from run " << runs
171 << " has better error of " << l2error << ".");
172 }
173 } while (( ++runs < max_runs) || (l2error > threshold));
174 // reset parameters from best fit
175 model->setParameters(bestparams);
176 LOG(1, "INFO: Best parameters with L2 error of "
177 << l2error << " are " << model->getParameters() << ".");
178 } else {
179 return false;
180 }
181
182 // create a map of each fragment with error.
183 HomologyContainer::range_t fragmentrange = _homologies.getHomologousGraphs(_graph);
184 TrainingData::L2ErrorConfigurationIndexMap_t WorseFragmentMap =
185 data.getWorstFragmentMap(*model, fragmentrange);
186 LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << ".");
187
188 }
189 delete model;
190
191 return true;
192}
193
194HomologyGraph PotentialTrainer::getFirstGraphwithSpecifiedElements(
195 const HomologyContainer &homologies,
196 const SerializablePotential::ParticleTypes_t &types)
197{
198 ASSERT( !types.empty(),
199 "getFirstGraphwithSpecifiedElements() - charges is empty?");
200 // create charges
201 Fragment::charges_t charges;
202 charges.resize(types.size());
203 std::transform(types.begin(), types.end(),
204 charges.begin(), boost::lambda::_1);
205 // convert into count map
206 Extractors::elementcounts_t counts_per_charge =
207 Extractors::_detail::getElementCounts(charges);
208 ASSERT( !counts_per_charge.empty(),
209 "getFirstGraphwithSpecifiedElements() - charge counts are empty?");
210 LOG(1, "DEBUG: counts_per_charge is " << counts_per_charge << ".");
211 // we want to check each (unique) key only once
212 HomologyContainer::const_key_iterator olditer = homologies.key_end();
213 for (HomologyContainer::const_key_iterator iter =
214 homologies.key_begin(); iter != homologies.key_end();
215 iter = homologies.getNextKey(iter)) {
216 // if it's the same as the old one, skip it
217 if (olditer == iter)
218 continue;
219 else
220 olditer = iter;
221 // check whether we have the same set of atomic numbers
222 const HomologyGraph::nodes_t &nodes = (*iter).getNodes();
223 Extractors::elementcounts_t nodes_counts_per_charge;
224 for (HomologyGraph::nodes_t::const_iterator nodeiter = nodes.begin();
225 nodeiter != nodes.end(); ++nodeiter) {
226 const Extractors::element_t elem = nodeiter->first.getAtomicNumber();
227 const std::pair<Extractors::elementcounts_t::iterator, bool> inserter =
228 nodes_counts_per_charge.insert( std::make_pair(elem, (Extractors::count_t)nodeiter->second ) );
229 if (!inserter.second)
230 inserter.first->second += (Extractors::count_t)nodeiter->second;
231 }
232 LOG(1, "DEBUG: Node (" << *iter << ")'s counts_per_charge is " << nodes_counts_per_charge << ".");
233 if (counts_per_charge == nodes_counts_per_charge)
234 return *iter;
235 }
236 return HomologyGraph();
237}
238
239SerializablePotential::ParticleTypes_t PotentialTrainer::getNumbersFromElements(
240 const std::vector<const element *> &fragment)
241{
242 SerializablePotential::ParticleTypes_t fragmentnumbers;
243 std::transform(fragment.begin(), fragment.end(), std::back_inserter(fragmentnumbers),
244 boost::bind(&element::getAtomicNumber, _1));
245 return fragmentnumbers;
246}
Note: See TracBrowser for help on using the repository browser.