/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2014 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * PotentialTrainer.cpp * * Created on: Sep 11, 2014 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif // needs to come before MemDebug due to placement new #include #include "CodePatterns/MemDebug.hpp" #include "PotentialTrainer.hpp" #include #include #include #include #include #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" #include "Element/element.hpp" #include "Fragmentation/Homology/HomologyContainer.hpp" #include "Fragmentation/Homology/HomologyGraph.hpp" #include "FunctionApproximation/Extractors.hpp" #include "FunctionApproximation/FunctionApproximation.hpp" #include "FunctionApproximation/FunctionModel.hpp" #include "FunctionApproximation/TrainingData.hpp" #include "FunctionApproximation/writeDistanceEnergyTable.hpp" #include "Potentials/CompoundPotential.hpp" #include "Potentials/RegistrySerializer.hpp" #include "Potentials/SerializablePotential.hpp" PotentialTrainer::PotentialTrainer() {} PotentialTrainer::~PotentialTrainer() {} bool PotentialTrainer::operator()( const HomologyContainer &_homologies, const HomologyGraph &_graph, const boost::filesystem::path &_trainingfile, const unsigned int _maxiterations, const double _threshold, const unsigned int _best_of_howmany) const { // fit potential FunctionModel *model = new CompoundPotential(_graph); ASSERT( model != NULL, "PotentialTrainer::operator() - model is NULL."); { CompoundPotential *compound = static_cast(model); if (compound->begin() == compound->end()) { ELOG(1, "Could not find any suitable potentials for the compound potential."); return false; } } /******************** TRAINING ********************/ // fit potential FunctionModel::parameters_t bestparams(model->getParameterDimension(), 0.); { // Afterwards we go through all of this type and gather the distance and the energy value TrainingData data(model->getSpecificFilter()); data(_homologies.getHomologousGraphs(_graph)); // check data const TrainingData::FilteredInputVector_t &inputs = data.getTrainingInputs(); for (TrainingData::FilteredInputVector_t::const_iterator iter = inputs.begin(); iter != inputs.end(); ++iter) if (((*iter).empty()) || ((*iter).front().empty())) { ELOG(1, "At least one of the training inputs is empty! Correct fragment and potential charges selected?"); return false; } const TrainingData::OutputVector_t &outputs = data.getTrainingOutputs(); for (TrainingData::OutputVector_t::const_iterator iter = outputs.begin(); iter != outputs.end(); ++iter) if ((*iter).empty()) { ELOG(1, "At least one of the training outputs is empty! Correct fragment and potential charges selected?"); return false; } // print distances and energies if desired for debugging if (!data.getTrainingInputs().empty()) { // print which distance is which size_t counter=1; if (DoLog(3)) { const FunctionModel::arguments_t &inputs = data.getAllArguments()[0]; for (FunctionModel::arguments_t::const_iterator iter = inputs.begin(); iter != inputs.end(); ++iter) { const argument_t &arg = *iter; LOG(3, "DEBUG: distance " << counter++ << " is between (#" << arg.indices.first << "c" << arg.types.first << "," << arg.indices.second << "c" << arg.types.second << ")."); } } // print table if (_trainingfile.string().empty()) { LOG(3, "DEBUG: I gathered the following training data:\n" << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable())); } else { std::ofstream trainingstream(_trainingfile.string().c_str()); if (trainingstream.good()) { LOG(3, "DEBUG: Writing training data to file " << _trainingfile.string() << "."); trainingstream << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable()); } trainingstream.close(); } } if ((_threshold < 1.) && (_best_of_howmany)) ELOG(2, "threshold parameter always overrules max_runs, both are specified."); // now perform the function approximation by optimizing the model function FunctionApproximation approximator(data, *model, _threshold, _maxiterations); if (model->isBoxConstraint() && approximator.checkParameterDerivatives()) { double l2error = std::numeric_limits::max(); // seed with current time srand((unsigned)time(0)); unsigned int runs=0; // threshold overrules max_runs const double threshold = _threshold; const unsigned int max_runs = (threshold >= 1.) ? _best_of_howmany : 1; LOG(1, "INFO: Maximum runs is " << max_runs << " and threshold set to " << threshold << "."); do { // generate new random initial parameter values model->setParametersToRandomInitialValues(data); LOG(1, "INFO: Initial parameters of run " << runs << " are " << model->getParameters() << "."); approximator(FunctionApproximation::ParameterDerivative); LOG(1, "INFO: Final parameters of run " << runs << " are " << model->getParameters() << "."); const double new_l2error = data.getL2Error(*model); if (new_l2error < l2error) { // store currently best parameters l2error = new_l2error; bestparams = model->getParameters(); LOG(1, "STATUS: New fit from run " << runs << " has better error of " << l2error << "."); } } while (( ++runs < max_runs) || (l2error > threshold)); // reset parameters from best fit model->setParameters(bestparams); LOG(1, "INFO: Best parameters with L2 error of " << l2error << " are " << model->getParameters() << "."); } else { return false; } // create a map of each fragment with error. HomologyContainer::range_t fragmentrange = _homologies.getHomologousGraphs(_graph); TrainingData::L2ErrorConfigurationIndexMap_t WorseFragmentMap = data.getWorstFragmentMap(*model, fragmentrange); LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << "."); } delete model; return true; } HomologyGraph PotentialTrainer::getFirstGraphwithSpecifiedElements( const HomologyContainer &homologies, const SerializablePotential::ParticleTypes_t &types) { ASSERT( !types.empty(), "getFirstGraphwithSpecifiedElements() - charges is empty?"); // create charges Fragment::charges_t charges; charges.resize(types.size()); std::transform(types.begin(), types.end(), charges.begin(), boost::lambda::_1); // convert into count map Extractors::elementcounts_t counts_per_charge = Extractors::_detail::getElementCounts(charges); ASSERT( !counts_per_charge.empty(), "getFirstGraphwithSpecifiedElements() - charge counts are empty?"); LOG(1, "DEBUG: counts_per_charge is " << counts_per_charge << "."); // we want to check each (unique) key only once HomologyContainer::const_key_iterator olditer = homologies.key_end(); for (HomologyContainer::const_key_iterator iter = homologies.key_begin(); iter != homologies.key_end(); iter = homologies.getNextKey(iter)) { // if it's the same as the old one, skip it if (olditer == iter) continue; else olditer = iter; // check whether we have the same set of atomic numbers const HomologyGraph::nodes_t &nodes = (*iter).getNodes(); Extractors::elementcounts_t nodes_counts_per_charge; for (HomologyGraph::nodes_t::const_iterator nodeiter = nodes.begin(); nodeiter != nodes.end(); ++nodeiter) { const Extractors::element_t elem = nodeiter->first.getAtomicNumber(); const std::pair inserter = nodes_counts_per_charge.insert( std::make_pair(elem, (Extractors::count_t)nodeiter->second ) ); if (!inserter.second) inserter.first->second += (Extractors::count_t)nodeiter->second; } LOG(1, "DEBUG: Node (" << *iter << ")'s counts_per_charge is " << nodes_counts_per_charge << "."); if (counts_per_charge == nodes_counts_per_charge) return *iter; } return HomologyGraph(); } SerializablePotential::ParticleTypes_t PotentialTrainer::getNumbersFromElements( const std::vector &fragment) { SerializablePotential::ParticleTypes_t fragmentnumbers; std::transform(fragment.begin(), fragment.end(), std::back_inserter(fragmentnumbers), boost::bind(&element::getAtomicNumber, _1)); return fragmentnumbers; }