[58fcbe5] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
| 4 | * Copyright (C) 2013 Frederik Heber. All rights reserved.
|
---|
| 5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
| 6 | *
|
---|
| 7 | *
|
---|
| 8 | * This file is part of MoleCuilder.
|
---|
| 9 | *
|
---|
| 10 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
| 11 | * it under the terms of the GNU General Public License as published by
|
---|
| 12 | * the Free Software Foundation, either version 2 of the License, or
|
---|
| 13 | * (at your option) any later version.
|
---|
| 14 | *
|
---|
| 15 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 18 | * GNU General Public License for more details.
|
---|
| 19 | *
|
---|
| 20 | * You should have received a copy of the GNU General Public License
|
---|
| 21 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 22 | */
|
---|
| 23 |
|
---|
| 24 | /*
|
---|
| 25 | * PartialNucleiChargeFitter.cpp
|
---|
| 26 | *
|
---|
| 27 | * Created on: 12.05.2013
|
---|
| 28 | * Author: heber
|
---|
| 29 | */
|
---|
| 30 |
|
---|
| 31 | // include config.h
|
---|
| 32 | #ifdef HAVE_CONFIG_H
|
---|
| 33 | #include <config.h>
|
---|
| 34 | #endif
|
---|
| 35 |
|
---|
| 36 | #include "CodePatterns/MemDebug.hpp"
|
---|
| 37 |
|
---|
| 38 | #include "PartialNucleiChargeFitter.hpp"
|
---|
| 39 |
|
---|
| 40 | #include <cmath>
|
---|
| 41 | #include <fstream>
|
---|
| 42 | #include <limits>
|
---|
| 43 | #include <numeric>
|
---|
| 44 |
|
---|
| 45 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
| 46 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
| 47 |
|
---|
| 48 | #include "CodePatterns/Assert.hpp"
|
---|
| 49 | #include "CodePatterns/Log.hpp"
|
---|
| 50 |
|
---|
| 51 | #include "Fragmentation/Summation/SetValues/SamplingGrid.hpp"
|
---|
| 52 |
|
---|
| 53 | PartialNucleiChargeFitter::dimensions_t
|
---|
| 54 | PartialNucleiChargeFitter::getGridDimensions(const SamplingGrid &grid) const
|
---|
| 55 | {
|
---|
| 56 | // convert sampled potential into a vector
|
---|
| 57 | const double round_offset =
|
---|
| 58 | (std::numeric_limits<size_t>::round_style == std::round_toward_zero) ?
|
---|
| 59 | 0.5 : 0.; // need offset to get to round_toward_nearest behavior
|
---|
| 60 | dimensions_t total(3,0);
|
---|
| 61 | for(size_t index=0;index<3;++index) {
|
---|
| 62 | const double delta = grid.getDeltaPerAxis(index);
|
---|
| 63 | // delta is conversion factor from box length to discrete length, i.e. number of points
|
---|
| 64 | total[index] = (grid.end[index] - grid.begin[index])/delta+round_offset;
|
---|
| 65 | }
|
---|
| 66 | return total;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | PartialNucleiChargeFitter::PartialNucleiChargeFitter(
|
---|
| 70 | const SamplingGrid &grid,
|
---|
| 71 | const positions_t &_positions,
|
---|
| 72 | const double _threshold) :
|
---|
| 73 | total(getGridDimensions(grid)),
|
---|
| 74 | SampledPotential(std::accumulate(total.begin(), total.end(), 1, std::multiplies<double>())),
|
---|
| 75 | grid_properties(static_cast<const SamplingGridProperties &>(grid)),
|
---|
| 76 | positions(_positions),
|
---|
| 77 | PotentialFromCharges(NULL),
|
---|
| 78 | PartialCharges(NULL),
|
---|
| 79 | threshold(_threshold)
|
---|
| 80 | {
|
---|
| 81 | // we must take care of the "window", i.e. there may be less entries in sampled_grid
|
---|
| 82 | // vector as we would expect from size of grid ((2^level)^3) as 0-entries have been
|
---|
| 83 | // omitted.
|
---|
| 84 | size_t pre_offset[3];
|
---|
| 85 | size_t post_offset[3];
|
---|
| 86 | size_t length[3];
|
---|
| 87 | size_t total[3];
|
---|
| 88 | grid.getDiscreteWindowIndices(
|
---|
| 89 | grid.begin, grid.end,
|
---|
| 90 | grid.begin_window, grid.end_window,
|
---|
| 91 | pre_offset,
|
---|
| 92 | post_offset,
|
---|
| 93 | length,
|
---|
| 94 | total
|
---|
| 95 | );
|
---|
| 96 | const size_t calculated_size = length[0]*length[1]*length[2];
|
---|
| 97 | ASSERT( calculated_size == grid.sampled_grid.size(),
|
---|
| 98 | "PartialNucleiChargeFitter::PartialNucleiChargeFitter() - grid does not match size indicated by its window.");
|
---|
| 99 |
|
---|
| 100 | const double potential_sum = std::accumulate(grid.sampled_grid.begin(), grid.sampled_grid.end(), 0.);
|
---|
| 101 | if ( fabs(potential_sum) > std::numeric_limits<double>::epsilon()*1e4 ) {
|
---|
[8eafd6] | 102 | ELOG(2, "Potential sum is not less than "
|
---|
[58fcbe5] | 103 | << std::numeric_limits<double>::epsilon()*1e4 << " but "
|
---|
| 104 | << potential_sum << ".");
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | SamplingGrid::sampledvalues_t::const_iterator griditer = grid.sampled_grid.begin();
|
---|
| 108 | size_t index=0;
|
---|
| 109 | size_t N[3];
|
---|
| 110 | Vector grid_position; // position of grid point in real domain
|
---|
| 111 | size_t masked_points = 0;
|
---|
| 112 | // store step length per axis
|
---|
| 113 | double delta[3];
|
---|
| 114 | for (size_t i=0;i<3;++i)
|
---|
| 115 | delta[i] = grid_properties.getDeltaPerAxis(i);
|
---|
| 116 | /// convert sampled potential into a vector
|
---|
| 117 | grid_position[0] = grid_properties.begin[0];
|
---|
| 118 | for(N[0]=0; N[0] < pre_offset[0]; ++N[0]) {
|
---|
| 119 | grid_position[1] = grid_properties.begin[1];
|
---|
| 120 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
| 121 | grid_position[2] = grid_properties.begin[2];
|
---|
| 122 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 123 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 124 | grid_position[2] += delta[2];
|
---|
| 125 | }
|
---|
| 126 | grid_position[1] += delta[1];
|
---|
| 127 | }
|
---|
| 128 | grid_position[0] += delta[0];
|
---|
| 129 | }
|
---|
| 130 | for(N[0]=0; N[0] < length[0]; ++N[0]) {
|
---|
| 131 | grid_position[1] = grid_properties.begin[1];
|
---|
| 132 | for(N[1]=0; N[1] < pre_offset[1]; ++N[1]) {
|
---|
| 133 | grid_position[2] = grid_properties.begin[2];
|
---|
| 134 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 135 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 136 | grid_position[2] += delta[2];
|
---|
| 137 | }
|
---|
| 138 | grid_position[1] += delta[1];
|
---|
| 139 | }
|
---|
| 140 | for(N[1]=0; N[1] < length[1]; ++N[1]) {
|
---|
| 141 | grid_position[2] = grid_properties.begin[2];
|
---|
| 142 | for(N[2]=0; N[2] < pre_offset[2]; ++N[2]) {
|
---|
| 143 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 144 | grid_position[2] += delta[2];
|
---|
| 145 | }
|
---|
| 146 | for(N[2]=0; N[2] < length[2]; ++N[2]) {
|
---|
| 147 | if (isGridPointSettable(positions, grid_position))
|
---|
| 148 | const_cast<VectorContent &>(SampledPotential)[index++] = *griditer++;
|
---|
| 149 | else {
|
---|
| 150 | // skip point
|
---|
| 151 | ++griditer;
|
---|
| 152 | ++masked_points;
|
---|
| 153 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 154 | }
|
---|
| 155 | grid_position[2] += delta[2];
|
---|
| 156 | }
|
---|
| 157 | for(N[2]=0; N[2] < post_offset[2]; ++N[2]) {
|
---|
| 158 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 159 | grid_position[2] += delta[2];
|
---|
| 160 | }
|
---|
| 161 | grid_position[1] += delta[1];
|
---|
| 162 | }
|
---|
| 163 | for(N[1]=0; N[1] < post_offset[1]; ++N[1]) {
|
---|
| 164 | grid_position[2] = grid_properties.begin[2];
|
---|
| 165 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 166 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 167 | grid_position[2] += delta[2];
|
---|
| 168 | }
|
---|
| 169 | grid_position[1] += delta[1];
|
---|
| 170 | }
|
---|
| 171 | grid_position[0] += delta[0];
|
---|
| 172 | }
|
---|
| 173 | for(N[0]=0; N[0] < post_offset[0]; ++N[0]) {
|
---|
| 174 | grid_position[1] = grid_properties.begin[1];
|
---|
| 175 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
| 176 | grid_position[2] = grid_properties.begin[2];
|
---|
| 177 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 178 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
| 179 | grid_position[2] += delta[2];
|
---|
| 180 | }
|
---|
| 181 | grid_position[1] += delta[1];
|
---|
| 182 | }
|
---|
| 183 | grid_position[0] += delta[0];
|
---|
| 184 | }
|
---|
| 185 | // set remainder of points to zero
|
---|
| 186 | ASSERT( index == SampledPotential.getDimension(),
|
---|
| 187 | "PartialNucleiChargeFitter::PartialNucleiChargeFitter() - not enough or more than calculated sample points.");
|
---|
| 188 |
|
---|
[f60d95] | 189 | #ifndef NDEBUG
|
---|
| 190 | // write vector as paraview csv file file
|
---|
| 191 | {
|
---|
| 192 | size_t N[3];
|
---|
| 193 | size_t index = 0;
|
---|
| 194 | std::ofstream paraview_output("solution.csv");
|
---|
| 195 | paraview_output << "x coord,y coord,z coord,scalar" << std::endl;
|
---|
| 196 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
| 197 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
| 198 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 199 | paraview_output
|
---|
| 200 | << (double)N[0]/(double)total[0] << ","
|
---|
| 201 | << (double)N[1]/(double)total[1] << ","
|
---|
| 202 | << (double)N[2]/(double)total[2] << ","
|
---|
| 203 | << SampledPotential.at(index++) << std::endl;
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | paraview_output.close();
|
---|
| 208 | }
|
---|
| 209 | #endif
|
---|
[58fcbe5] | 210 |
|
---|
| 211 | LOG(1, "INFO: I masked " << masked_points << " points in right-hand-side.");
|
---|
| 212 | // LOG(4, "DEBUG: Right-hand side vector is " << SampledPotential << ".");
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | bool PartialNucleiChargeFitter::isGridPointSettable(
|
---|
| 216 | const positions_t &_positions,
|
---|
| 217 | const Vector &grid_position) const
|
---|
| 218 | {
|
---|
| 219 | bool status = true;
|
---|
| 220 | for (positions_t::const_iterator iter = _positions.begin();
|
---|
| 221 | iter != _positions.end(); ++iter) {
|
---|
| 222 | status &= grid_position.DistanceSquared(*iter) > threshold*threshold;
|
---|
| 223 | }
|
---|
| 224 | return status;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | PartialNucleiChargeFitter::~PartialNucleiChargeFitter()
|
---|
| 228 | {
|
---|
[6b3e5e] | 229 | if (PartialCharges != NULL)
|
---|
| 230 | delete PartialCharges;
|
---|
| 231 |
|
---|
| 232 | if (PotentialFromCharges != NULL)
|
---|
| 233 | delete PotentialFromCharges;
|
---|
[58fcbe5] | 234 | }
|
---|
| 235 |
|
---|
| 236 |
|
---|
| 237 | void PartialNucleiChargeFitter::constructMatrix()
|
---|
| 238 | {
|
---|
| 239 | const size_t rows = SampledPotential.getDimension();
|
---|
| 240 | const size_t cols = positions.size();
|
---|
[6b3e5e] | 241 |
|
---|
| 242 | // allocate memory for PotentialFromCharges
|
---|
| 243 | if (PotentialFromCharges != NULL) {
|
---|
| 244 | delete PotentialFromCharges;
|
---|
| 245 | PotentialFromCharges = NULL;
|
---|
| 246 | }
|
---|
[58fcbe5] | 247 | PotentialFromCharges = new MatrixContent( rows, cols );
|
---|
| 248 | // store step length per axis
|
---|
| 249 | double delta[3];
|
---|
| 250 | for (size_t i=0;i<3;++i)
|
---|
| 251 | delta[i] = grid_properties.getDeltaPerAxis(i);
|
---|
| 252 | // then for each charge ...
|
---|
| 253 | size_t masked_points = 0;
|
---|
| 254 | for (size_t nuclei_index = 0; nuclei_index < cols; ++nuclei_index) {
|
---|
| 255 | // ... calculate potential at each grid position,
|
---|
| 256 | // i.e. step through grid and calculate distance to charge position
|
---|
| 257 | Vector grid_position; // position of grid point in real domain
|
---|
| 258 | grid_position[0] = grid_properties.begin[0];
|
---|
| 259 | size_t N[3]; // discrete grid position
|
---|
| 260 | size_t index = 0; // component of column vector
|
---|
| 261 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
| 262 | grid_position[1] = grid_properties.begin[1];
|
---|
| 263 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
| 264 | grid_position[2] = grid_properties.begin[2];
|
---|
| 265 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 266 | if (isGridPointSettable(positions, grid_position)) {
|
---|
| 267 | const double distance = positions[nuclei_index].distance(grid_position);
|
---|
| 268 | ASSERT( distance >= 0,
|
---|
| 269 | "PartialNucleiChargeFitter::constructMatrix() - distance is negative?");
|
---|
| 270 | // Coulomb's constant is 1 in atomic units, see http://en.wikipedia.org/wiki/Atomic_units
|
---|
| 271 | const double epsilon0_au = 1.; //4.*M_PI*0.007957747154594767;
|
---|
| 272 | // ... with epsilon_0 in atom units from http://folk.uio.no/michalj/node72.html
|
---|
| 273 | const double value = 1./(epsilon0_au*distance);
|
---|
| 274 | PotentialFromCharges->at(index++, nuclei_index) = value;
|
---|
| 275 | } else {
|
---|
| 276 | ++masked_points;
|
---|
| 277 | PotentialFromCharges->at(index++, nuclei_index) = 0.;
|
---|
| 278 | }
|
---|
| 279 | grid_position[2] += delta[2];
|
---|
| 280 | }
|
---|
| 281 | grid_position[1] += delta[1];
|
---|
| 282 | }
|
---|
| 283 | grid_position[0] += delta[0];
|
---|
| 284 | }
|
---|
| 285 | ASSERT( index == PotentialFromCharges->getRows(),
|
---|
| 286 | "PartialNucleiChargeFitter::operator() - number of sampled positions "
|
---|
| 287 | +toString(index)+" unequal to set rows "
|
---|
| 288 | +toString(PotentialFromCharges->getRows())+".");
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | LOG(1, "INFO: I masked " << masked_points/cols << " points in matrix.");
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | double PartialNucleiChargeFitter::operator()()
|
---|
| 295 | {
|
---|
| 296 | // prepare PartialCharges
|
---|
[6b3e5e] | 297 | if (PartialCharges != NULL) {
|
---|
| 298 | delete PartialCharges;
|
---|
| 299 | PartialCharges = NULL;
|
---|
| 300 | }
|
---|
[58fcbe5] | 301 | PartialCharges = new VectorContent(positions.size());
|
---|
| 302 |
|
---|
| 303 | // set up over-determined system's problem matrix A for Ax=b
|
---|
| 304 | // i.e. columns represent potential of a single charge at grid positions
|
---|
| 305 | constructMatrix();
|
---|
| 306 |
|
---|
| 307 | // solve for x
|
---|
| 308 | *PartialCharges =
|
---|
| 309 | PotentialFromCharges->solveOverdeterminedLinearEquation(
|
---|
| 310 | SampledPotential);
|
---|
| 311 |
|
---|
[f60d95] | 312 | // LOG(4, "DEBUG: Solution vector is " << (*PotentialFromCharges) * (*PartialCharges) << ".");
|
---|
[58fcbe5] | 313 |
|
---|
| 314 | // calculate residual vector
|
---|
| 315 | VectorContent residuum = (*PotentialFromCharges) * (*PartialCharges) - SampledPotential;
|
---|
[f60d95] | 316 |
|
---|
| 317 | #ifndef NDEBUG
|
---|
| 318 | // write solution to file
|
---|
| 319 | writeMatrix();
|
---|
| 320 |
|
---|
| 321 | // write vector as paraview csv file file
|
---|
| 322 | {
|
---|
| 323 | size_t N[3];
|
---|
| 324 | size_t index = 0;
|
---|
| 325 | std::ofstream paraview_output("residuum.csv");
|
---|
| 326 | paraview_output << "x coord,y coord,z coord,scalar" << std::endl;
|
---|
| 327 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
| 328 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
| 329 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 330 | paraview_output
|
---|
| 331 | << (double)N[0]/(double)total[0] << ","
|
---|
| 332 | << (double)N[1]/(double)total[1] << ","
|
---|
| 333 | << (double)N[2]/(double)total[2] << ","
|
---|
| 334 | << residuum.at(index++) << std::endl;
|
---|
| 335 | }
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 | paraview_output.close();
|
---|
| 339 | }
|
---|
| 340 | #endif
|
---|
| 341 |
|
---|
| 342 | // calculate L1 and L2 errors
|
---|
| 343 | double residuum_l1 = 0.;
|
---|
| 344 | for (size_t i=0; i< residuum.getDimension(); ++i)
|
---|
| 345 | if (residuum_l1 < residuum[i])
|
---|
| 346 | residuum_l1 = residuum[i];
|
---|
| 347 | LOG(1, "INFO: L2-Norm of residuum is " << residuum.Norm() << ".");
|
---|
| 348 | LOG(1, "INFO: L1-Norm of residuum is " << residuum_l1 << ".");
|
---|
| 349 |
|
---|
[58fcbe5] | 350 | return residuum.Norm();
|
---|
| 351 | }
|
---|
| 352 |
|
---|
[f60d95] | 353 | void PartialNucleiChargeFitter::writeMatrix()
|
---|
| 354 | {
|
---|
| 355 | constructMatrix();
|
---|
| 356 |
|
---|
| 357 | // write matrix as paraview csv file file
|
---|
| 358 | size_t N[3];
|
---|
| 359 | size_t index=0;
|
---|
| 360 | std::string filename = std::string("potential.csv");
|
---|
| 361 | std::ofstream paraview_output(filename.c_str());
|
---|
| 362 | paraview_output << "x coord,y coord,z coord,scalar" << std::endl;
|
---|
| 363 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
| 364 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
| 365 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
| 366 | double sum = 0.;
|
---|
| 367 | for (size_t nuclei_index = 0; nuclei_index < positions.size(); ++nuclei_index) {
|
---|
| 368 | sum+= PotentialFromCharges->at(index, nuclei_index)*PartialCharges->at(nuclei_index);
|
---|
| 369 | }
|
---|
| 370 | paraview_output
|
---|
| 371 | << (double)N[0]/(double)total[0] << ","
|
---|
| 372 | << (double)N[1]/(double)total[1] << ","
|
---|
| 373 | << (double)N[2]/(double)total[2] << ","
|
---|
| 374 | << sum << std::endl;
|
---|
| 375 | index++;
|
---|
| 376 | }
|
---|
| 377 | }
|
---|
| 378 | }
|
---|
| 379 | paraview_output.close();
|
---|
| 380 | }
|
---|
| 381 |
|
---|
[58fcbe5] | 382 | PartialNucleiChargeFitter::charges_t
|
---|
| 383 | PartialNucleiChargeFitter::getSolutionAsCharges_t() const
|
---|
| 384 | {
|
---|
| 385 | ASSERT( PartialCharges != NULL,
|
---|
| 386 | "PartialNucleiChargeFitter::getSolutionAsCharges_t() - PartialCharges requested prior to calculation.");
|
---|
| 387 | charges_t return_charges(positions.size(), 0.);
|
---|
| 388 | for (size_t i = 0; i < return_charges.size(); ++i)
|
---|
| 389 | return_charges[i] = PartialCharges->at(i);
|
---|
| 390 | return return_charges;
|
---|
| 391 | }
|
---|