| [0a4f7f] | 1 | /*
 | 
|---|
 | 2 |  * Plane.cpp
 | 
|---|
 | 3 |  *
 | 
|---|
 | 4 |  *  Created on: Apr 7, 2010
 | 
|---|
 | 5 |  *      Author: crueger
 | 
|---|
 | 6 |  */
 | 
|---|
 | 7 | 
 | 
|---|
 | 8 | #include "Plane.hpp"
 | 
|---|
 | 9 | #include "vector.hpp"
 | 
|---|
| [2247a9] | 10 | #include "defs.hpp"
 | 
|---|
| [0a4f7f] | 11 | #include "info.hpp"
 | 
|---|
 | 12 | #include "log.hpp"
 | 
|---|
 | 13 | #include "verbose.hpp"
 | 
|---|
 | 14 | #include "Helpers/Assert.hpp"
 | 
|---|
| [2247a9] | 15 | #include <cmath>
 | 
|---|
| [0a4f7f] | 16 | 
 | 
|---|
 | 17 | /**
 | 
|---|
 | 18 |  * generates a plane from three given vectors defining three points in space
 | 
|---|
 | 19 |  */
 | 
|---|
| [2cbe97] | 20 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
 | 
|---|
| [0a4f7f] | 21 |   normalVector(new Vector())
 | 
|---|
 | 22 | {
 | 
|---|
| [273382] | 23 |   Vector x1 = y1 -y2;
 | 
|---|
 | 24 |   Vector x2 = y3 -y2;
 | 
|---|
 | 25 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| [0a4f7f] | 26 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 27 |   }
 | 
|---|
 | 28 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 29 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 30 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 31 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 32 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 33 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
 | 36 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
 | 37 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
 | 38 |   normalVector->Normalize();
 | 
|---|
 | 39 | 
 | 
|---|
| [273382] | 40 |   offset=normalVector->ScalarProduct(y1);
 | 
|---|
| [0a4f7f] | 41 | }
 | 
|---|
 | 42 | /**
 | 
|---|
| [2cbe97] | 43 |  * Constructs a plane from two direction vectors and a offset.
 | 
|---|
| [0a4f7f] | 44 |  * If no offset is given a plane through origin is assumed
 | 
|---|
 | 45 |  */
 | 
|---|
| [fa5a6a] | 46 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
 | 
|---|
| [0a4f7f] | 47 |     normalVector(new Vector()),
 | 
|---|
 | 48 |     offset(_offset)
 | 
|---|
 | 49 | {
 | 
|---|
| [273382] | 50 |   Vector x1 = y1;
 | 
|---|
 | 51 |   Vector x2 = y2;
 | 
|---|
| [fa5a6a] | 52 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
 | 
|---|
 | 53 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
 | 54 |   }
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 |   if((fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| [0a4f7f] | 57 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 58 |   }
 | 
|---|
 | 59 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 60 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 61 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 62 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 63 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 64 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 65 | 
 | 
|---|
 | 66 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
 | 67 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
 | 68 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
 | 69 |   normalVector->Normalize();
 | 
|---|
 | 70 | }
 | 
|---|
 | 71 | 
 | 
|---|
| [2cbe97] | 72 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
 | 
|---|
| [0a4f7f] | 73 |   normalVector(new Vector(_normalVector)),
 | 
|---|
 | 74 |   offset(_offset)
 | 
|---|
| [72e7fa] | 75 | {
 | 
|---|
| [2cbe97] | 76 |   if(normalVector->IsZero())
 | 
|---|
 | 77 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
| [72e7fa] | 78 |   double factor = 1/normalVector->Norm();
 | 
|---|
 | 79 |   // normalize the plane parameters
 | 
|---|
 | 80 |   (*normalVector)*=factor;
 | 
|---|
 | 81 |   offset*=factor;
 | 
|---|
 | 82 | }
 | 
|---|
| [0a4f7f] | 83 | 
 | 
|---|
| [2cbe97] | 84 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
 | 
|---|
| [0a4f7f] | 85 |     normalVector(new Vector(_normalVector))
 | 
|---|
 | 86 | {
 | 
|---|
| [2cbe97] | 87 |   if(normalVector->IsZero()){
 | 
|---|
 | 88 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
 | 89 |   }
 | 
|---|
| [3cdd16] | 90 |   normalVector->Normalize();
 | 
|---|
| [273382] | 91 |   offset = normalVector->ScalarProduct(_offsetVector);
 | 
|---|
| [0a4f7f] | 92 | }
 | 
|---|
 | 93 | 
 | 
|---|
 | 94 | Plane::~Plane()
 | 
|---|
 | 95 | {}
 | 
|---|
 | 96 | 
 | 
|---|
 | 97 | 
 | 
|---|
| [fa5a6a] | 98 | Vector Plane::getNormal() const{
 | 
|---|
| [0a4f7f] | 99 |   return *normalVector;
 | 
|---|
 | 100 | }
 | 
|---|
 | 101 | 
 | 
|---|
| [fa5a6a] | 102 | double Plane::getOffset() const{
 | 
|---|
| [0a4f7f] | 103 |   return offset;
 | 
|---|
 | 104 | }
 | 
|---|
 | 105 | 
 | 
|---|
| [72e7fa] | 106 | Vector Plane::getOffsetVector() {
 | 
|---|
 | 107 |   return getOffset()*getNormal();
 | 
|---|
 | 108 | }
 | 
|---|
| [c61c87] | 109 | 
 | 
|---|
 | 110 | vector<Vector> Plane::getPointsOnPlane(){
 | 
|---|
| [1829c4] | 111 |   std::vector<Vector> res;
 | 
|---|
| [fa5a6a] | 112 |   res.reserve(3);
 | 
|---|
| [1829c4] | 113 |   // first point on the plane
 | 
|---|
| [fa5a6a] | 114 |   res.push_back(getOffsetVector());
 | 
|---|
 | 115 |   // get a vector that has direction of plane
 | 
|---|
| [c61c87] | 116 |   Vector direction;
 | 
|---|
| [fa5a6a] | 117 |   direction.GetOneNormalVector(getNormal());
 | 
|---|
 | 118 |   res.push_back(res[0]+direction);
 | 
|---|
 | 119 |   // get an orthogonal vector to direction and normal (has direction of plane)
 | 
|---|
 | 120 |   direction.VectorProduct(getNormal());
 | 
|---|
| [c61c87] | 121 |   direction.Normalize();
 | 
|---|
| [fa5a6a] | 122 |   res.push_back(res[0] +direction);
 | 
|---|
| [c61c87] | 123 |   return res;
 | 
|---|
| [1829c4] | 124 | }
 | 
|---|
| [c61c87] | 125 | 
 | 
|---|
| [72e7fa] | 126 | 
 | 
|---|
| [0a4f7f] | 127 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
 | 
|---|
 | 128 |  * According to [Bronstein] the vectorial plane equation is:
 | 
|---|
 | 129 |  *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
 | 
|---|
 | 130 |  * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
 | 
|---|
 | 131 |  * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
 | 
|---|
 | 132 |  * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
 | 
|---|
 | 133 |  * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
 | 
|---|
 | 134 |  * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
 | 
|---|
 | 135 |  * of the line yields the intersection point on the plane.
 | 
|---|
 | 136 |  * \param *Origin first vector of line
 | 
|---|
 | 137 |  * \param *LineVector second vector of line
 | 
|---|
 | 138 |  * \return true -  \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
 | 
|---|
 | 139 |  */
 | 
|---|
 | 140 | Vector Plane::GetIntersection(const Vector &Origin, const Vector &LineVector)
 | 
|---|
 | 141 | {
 | 
|---|
 | 142 |   Info FunctionInfo(__func__);
 | 
|---|
 | 143 |   Vector res;
 | 
|---|
 | 144 | 
 | 
|---|
 | 145 |   // find intersection of a line defined by Offset and Direction with a  plane defined by triangle
 | 
|---|
 | 146 |   Vector Direction = LineVector - Origin;
 | 
|---|
 | 147 |   Direction.Normalize();
 | 
|---|
 | 148 |   Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
 | 
|---|
 | 149 |   //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
 | 
|---|
| [273382] | 150 |   double factor1 = Direction.ScalarProduct(*normalVector.get());
 | 
|---|
| [0a4f7f] | 151 |   if (fabs(factor1) < MYEPSILON) { // Uniqueness: line parallel to plane?
 | 
|---|
 | 152 |     Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
 | 
|---|
 | 153 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 154 |   }
 | 
|---|
 | 155 | 
 | 
|---|
| [273382] | 156 |   double factor2 = Origin.ScalarProduct(*normalVector.get());
 | 
|---|
| [0a4f7f] | 157 |   if (fabs(factor2-offset) < MYEPSILON) { // Origin is in-plane
 | 
|---|
 | 158 |     Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
 | 
|---|
 | 159 |     res = Origin;
 | 
|---|
 | 160 |     return res;
 | 
|---|
 | 161 |   }
 | 
|---|
 | 162 | 
 | 
|---|
 | 163 |   double scaleFactor = (offset-factor2)/factor1;
 | 
|---|
 | 164 | 
 | 
|---|
 | 165 |   //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
 | 
|---|
 | 166 |   Direction.Scale(scaleFactor);
 | 
|---|
 | 167 |   res = Origin + Direction;
 | 
|---|
 | 168 |   Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
 | 
|---|
 | 169 | 
 | 
|---|
 | 170 |   // test whether resulting vector really is on plane
 | 
|---|
| [0e01b4] | 171 |   ASSERT(fabs(res.ScalarProduct(*normalVector) - offset) < MYEPSILON,
 | 
|---|
| [0a4f7f] | 172 |          "Calculated line-Plane intersection does not lie on plane.");
 | 
|---|
 | 173 |   return res;
 | 
|---|
 | 174 | };
 | 
|---|
| [2247a9] | 175 | 
 | 
|---|
 | 176 | /************ Methods inherited from Space ****************/
 | 
|---|
 | 177 | 
 | 
|---|
| [005e18] | 178 | double Plane::distance(const Vector &point) const{
 | 
|---|
| [2247a9] | 179 |   double res = point.ScalarProduct(*normalVector)-offset;
 | 
|---|
 | 180 |   return fabs(res);
 | 
|---|
 | 181 | }
 | 
|---|
 | 182 | 
 | 
|---|
| [005e18] | 183 | Vector Plane::getClosestPoint(const Vector &point) const{
 | 
|---|
| [fa5a6a] | 184 |   double factor = point.ScalarProduct(*normalVector)-offset;
 | 
|---|
 | 185 |   if(fabs(factor) < MYEPSILON){
 | 
|---|
| [2247a9] | 186 |     // the point itself lies on the plane
 | 
|---|
 | 187 |     return point;
 | 
|---|
 | 188 |   }
 | 
|---|
| [fa5a6a] | 189 |   Vector difference = factor * (*normalVector);
 | 
|---|
 | 190 |   return (point - difference);
 | 
|---|
 | 191 | }
 | 
|---|
 | 192 | 
 | 
|---|
 | 193 | // Operators
 | 
|---|
 | 194 | 
 | 
|---|
 | 195 | ostream &operator << (ostream &ost,const Plane &p){
 | 
|---|
 | 196 |   ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
 | 
|---|
 | 197 |   return ost;
 | 
|---|
| [2247a9] | 198 | }
 | 
|---|