/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * ParserPcpUnitTest.cpp * * Created on: Mar 3, 2010 * Author: metzler */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "ParserPcpUnitTest.hpp" #include #include #include #include "Atom/atom.hpp" #include "Atom/AtomObserver.hpp" #include "CodePatterns/Log.hpp" #include "Descriptors/AtomTypeDescriptor.hpp" #include "Element/element.hpp" #include "Element/periodentafel.hpp" #include "Parser/ChangeTracker.hpp" #include "Parser/PcpParser.hpp" #include "World.hpp" #ifdef HAVE_TESTRUNNER #include "UnitTestMain.hpp" #endif /*HAVE_TESTRUNNER*/ using namespace std; // Registers the fixture into the 'registry' CPPUNIT_TEST_SUITE_REGISTRATION( ParserPcpUnitTest ); static string waterPcp = "# ParallelCarParinello - main configuration file - created with molecuilder\n\ \n\ mainname\tpcp\t# programm name (for runtime files)\n\ defaultpath\not specified\t# where to put files during runtime\n\ pseudopotpath\not specified\t# where to find pseudopotentials\n\ \n\ ProcPEGamma\t8\t# for parallel computing: share constants\n\ ProcPEPsi\t1\t# for parallel computing: share wave functions\n\ DoOutVis\t0\t# Output data for OpenDX\n\ DoOutMes\t1\t# Output data for measurements\n\ DoOutOrbitals\t0\t# Output all Orbitals\n\ DoOutCurr\t0\t# Ouput current density for OpenDx\n\ DoOutNICS\t0\t# Output Nucleus independent current shieldings\n\ DoPerturbation\t0\t# Do perturbation calculate and determine susceptibility and shielding\n\ DoFullCurrent\t0\t# Do full perturbation\n\ DoConstrainedMD\t0\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD\n\ Thermostat\tBerendsen\t2.5\t# Which Thermostat and its parameters to use in MD case.\n\ PcpWannier\t0\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center\n\ SawtoothStart\t0.01\t# Absolute value for smooth transition at cell border \n\ VectorPlane\t0\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot\n\ VectorCut\t0\t# Cut plane axis value\n\ AddGramSch\t1\t# Additional GramSchmidtOrtogonalization to be safe\n\ Seed\t1\t# initial value for random seed for Psi coefficients\n\ \n\ MaxOuterStep\t0\t# number of MolecularDynamics/Structure optimization steps\n\ Deltat\t0.01\t# time per MD step\n\ OutVisStep\t10\t# Output visual data every ...th step\n\ OutSrcStep\t5\t# Output \"restart\" data every ..th step\n\ TargetTemp\t0.000950045\t# Target temperature\n\ MaxPsiStep\t3\t# number of Minimisation steps per state (0 - default)\n\ EpsWannier\t1e-07\t# tolerance value for spread minimisation of orbitals\n\ # Values specifying when to stop\n\ MaxMinStep\t100\t# Maximum number of steps\n\ RelEpsTotalE\t1e-07\t# relative change in total energy\n\ RelEpsKineticE\t1e-05\t# relative change in kinetic energy\n\ MaxMinStopStep\t2\t# check every ..th steps\n\ MaxMinGapStopStep\t1\t# check every ..th steps\n\ \n\ # Values specifying when to stop for INIT, otherwise same as above\n\ MaxInitMinStep\t100\t# Maximum number of steps\n\ InitRelEpsTotalE\t1e-05\t# relative change in total energy\n\ InitRelEpsKineticE\t0.0001\t# relative change in kinetic energy\n\ InitMaxMinStopStep\t2\t# check every ..th steps\n\ InitMaxMinGapStopStep\t1\t# check every ..th steps\n\ \n\ BoxLength\t# (Length of a unit cell)\n\ 20\n\ 0\t20\n\ 0\t0\t20\n\ \n\ ECut\t128\t# energy cutoff for discretization in Hartrees\n\ MaxLevel\t5\t# number of different levels in the code, >=2\n\ Level0Factor\t2\t# factor by which node number increases from S to 0 level\n\ RiemannTensor\t0\t# (Use metric)\n\ PsiType\t0\t# 0 - doubly occupied, 1 - SpinUp,SpinDown\n\ MaxPsiDouble\t2\t# here: specifying both maximum number of SpinUp- and -Down-states\n\ PsiMaxNoUp\t2\t# here: specifying maximum number of SpinUp-states\n\ PsiMaxNoDown\t2\t# here: specifying maximum number of SpinDown-states\n\ AddPsis\t0\t# Additional unoccupied Psis for bandgap determination\n\ \n\ RCut\t20\t# R-cut for the ewald summation\n\ StructOpt\t0\t# Do structure optimization beforehand\n\ IsAngstroem\t1\t# 0 - Bohr, 1 - Angstroem\n\ RelativeCoord\t0\t# whether ion coordinates are relative (1) or absolute (0)\n\ MaxTypes\t2\t# maximum number of different ion types\n\ \n\ # Ion type data (PP = PseudoPotential, Z = atomic number)\n\ #Ion_TypeNr.\tAmount\tZ\tRGauss\tL_Max(PP)L_Loc(PP)IonMass\t# chemical name, symbol\n\ Ion_Type1\t2\t1\t1.0\t3\t3\t1.008\tHydrogen\tH\n\ Ion_Type2\t1\t8\t1.0\t3\t3\t15.999\tOxygen\tO\n\ #Ion_TypeNr._Nr.R[0]\tR[1]\tR[2]\tMoveType (0 MoveIon, 1 FixedIon)\n\ Ion_Type2_1\t1.000000000\t0.000000000\t0.000000000\t0 # molecule nr 0\n\ Ion_Type1_1\t0.758602\t0.000000000\t0.504284\t0 # molecule nr 1\n\ Ion_Type1_2\t0.758602\t0.000000000\t-0.504284\t0 # molecule nr 2\n"; void ParserPcpUnitTest::setUp() { World::getInstance(); parser = new FormatParser(); setVerbosity(2); // we need hydrogens and oxygens in the following tests CPPUNIT_ASSERT(World::getInstance().getPeriode()->FindElement(1) != NULL); CPPUNIT_ASSERT(World::getInstance().getPeriode()->FindElement(8) != NULL); } void ParserPcpUnitTest::tearDown() { delete parser; ChangeTracker::purgeInstance(); AtomObserver::purgeInstance(); World::purgeInstance(); } /************************************ tests ***********************************/ void ParserPcpUnitTest::readwritePcpTest() { stringstream input(waterPcp); parser->load(&input); input.clear(); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); // check that equality function is ok CPPUNIT_ASSERT(*parser == *parser); stringstream output; std::vector atoms = World::getInstance().getAllAtoms(); parser->save(&output, atoms); input << output.str(); FormatParser* parser2 = new FormatParser(); parser2->load(&input); CPPUNIT_ASSERT_EQUAL(6, World::getInstance().numAtoms()); CPPUNIT_ASSERT(*parser == *parser2); delete parser2; }