source: src/Parser/PcpParser.cpp@ ff4fff9

CombiningParticlePotentialParsing
Last change on this file since ff4fff9 was 2affd1, checked in by Frederik Heber <heber@…>, 9 years ago

Removed molecules_deprecated from World and unnecessary includes of MoleculeListClass and all insert/erase.

  • this goes along the lines of removing "remove me when we don't need MoleculeCistClass anymore".
  • Property mode set to 100644
File size: 36.6 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 * Copyright (C) 2013 Frederik Heber. All rights reserved.
6 *
7 *
8 * This file is part of MoleCuilder.
9 *
10 * MoleCuilder is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * MoleCuilder is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24/*
25 * PcpParser.cpp
26 *
27 * Created on: 12.06.2010
28 * Author: heber
29 */
30
31// include config.h
32#ifdef HAVE_CONFIG_H
33#include <config.h>
34#endif
35
36#include "CodePatterns/MemDebug.hpp"
37
38#include <iostream>
39#include <iomanip>
40
41#include "Atom/atom.hpp"
42#include "Box.hpp"
43#include "CodePatterns/Assert.hpp"
44#include "CodePatterns/Log.hpp"
45#include "CodePatterns/Verbose.hpp"
46#include "Element/element.hpp"
47#include "Element/periodentafel.hpp"
48#include "LinearAlgebra/RealSpaceMatrix.hpp"
49#include "molecule.hpp"
50#include "PcpParser.hpp"
51#include "Parser/ConfigFileBuffer.hpp"
52#include "Parser/PcpParser_helper.hpp"
53#include "Thermostats/ThermoStatContainer.hpp"
54#include "World.hpp"
55
56
57// declare specialized static variables
58const std::string FormatParserTrait<pcp>::name = "pcp";
59const std::string FormatParserTrait<pcp>::suffix = "conf";
60const ParserTypes FormatParserTrait<pcp>::type = pcp;
61
62FormatParser< pcp >::StructParallelization::StructParallelization() :
63 ProcPEGamma(8),
64 ProcPEPsi(1)
65{}
66
67FormatParser< pcp >::StructParallelization::~StructParallelization()
68{}
69
70FormatParser< pcp >::StructPaths::StructPaths() :
71 databasepath(NULL),
72 configname(NULL),
73 mainname(NULL),
74 defaultpath(NULL),
75 pseudopotpath(NULL)
76{}
77
78FormatParser< pcp >::StructPaths::~StructPaths()
79{}
80
81FormatParser< pcp >::StructSwitches::StructSwitches() :
82 DoConstrainedMD(0),
83 DoOutVis(0),
84 DoOutMes(1),
85 DoOutNICS(0),
86 DoOutOrbitals(0),
87 DoOutCurrent(0),
88 DoFullCurrent(0),
89 DoPerturbation(0),
90 DoWannier(0)
91{}
92
93FormatParser< pcp >::StructSwitches::~StructSwitches()
94{}
95
96FormatParser< pcp >::StructLocalizedOrbitals::StructLocalizedOrbitals() :
97 CommonWannier(0),
98 SawtoothStart(0.01),
99 VectorPlane(0),
100 VectorCut(0),
101 UseAddGramSch(1),
102 Seed(1),
103 EpsWannier(1e-7)
104{}
105
106FormatParser< pcp >::StructLocalizedOrbitals::~StructLocalizedOrbitals()
107{}
108
109FormatParser< pcp >::StructStepCounts::StructStepCounts() :
110 MaxMinStopStep(1),
111 InitMaxMinStopStep(1),
112 OutVisStep(10),
113 OutSrcStep(5),
114 MaxPsiStep(0),
115 MaxOuterStep(0),
116 MaxMinStep(100),
117 RelEpsTotalEnergy(1e-07),
118 RelEpsKineticEnergy(1e-05),
119 MaxMinGapStopStep(0),
120 MaxInitMinStep(100),
121 InitRelEpsTotalEnergy(1e-05),
122 InitRelEpsKineticEnergy(0.0001),
123 InitMaxMinGapStopStep(0)
124{}
125
126FormatParser< pcp >::StructStepCounts::~StructStepCounts()
127{}
128
129FormatParser< pcp >::StructPlaneWaveSpecifics::StructPlaneWaveSpecifics() :
130 PsiType(0),
131 MaxPsiDouble(0),
132 PsiMaxNoUp(0),
133 PsiMaxNoDown(0),
134 ECut(128),
135 MaxLevel(5),
136 RiemannTensor(0),
137 LevRFactor(0),
138 RiemannLevel(0),
139 Lev0Factor(2),
140 RTActualUse(0),
141 AddPsis(0),
142 RCut(20)
143{}
144
145FormatParser< pcp >::StructPlaneWaveSpecifics::~StructPlaneWaveSpecifics()
146{}
147
148/** Constructor of PcpParser.
149 *
150 */
151FormatParser< pcp >::FormatParser() :
152 FormatParser_common(NULL),
153 FastParsing(false),
154 Deltat(0.01),
155 IsAngstroem(1),
156 RelativeCoord(0),
157 StructOpt(0),
158 MaxTypes(0)
159{}
160
161/** Destructor of PcpParser.
162 *
163 */
164FormatParser< pcp >::~FormatParser()
165{}
166
167void FormatParser< pcp >::load(std::istream* file)
168{
169 if (file->fail()) {
170 ELOG(1, "could not access given file");
171 return;
172 }
173
174 // ParseParameterFile
175 class ConfigFileBuffer *FileBuffer = new ConfigFileBuffer();
176 FileBuffer->InitFileBuffer(file);
177
178 /* Oeffne Hauptparameterdatei */
179 int di = 0;
180 double BoxLength[9];
181 string zeile;
182 string dummy;
183 int verbose = 0;
184
185 ParseThermostats(FileBuffer);
186
187 /* Namen einlesen */
188
189 // 1. parse in options
190 if (!ParseForParameter(verbose,FileBuffer, "mainname", 0, 1, 1, string_type, (Paths.mainname), 1, critical)) {
191 ELOG(1, "mainname is missing, is file empty?");
192 } else {
193 ParseForParameter(verbose,FileBuffer, "defaultpath", 0, 1, 1, string_type, (Paths.defaultpath), 1, critical);
194 ParseForParameter(verbose,FileBuffer, "pseudopotpath", 0, 1, 1, string_type, (Paths.pseudopotpath), 1, critical);
195 ParseForParameter(verbose,FileBuffer,"ProcPEGamma", 0, 1, 1, int_type, &(Parallelization.ProcPEGamma), 1, critical);
196 ParseForParameter(verbose,FileBuffer,"ProcPEPsi", 0, 1, 1, int_type, &(Parallelization.ProcPEPsi), 1, critical);
197
198 if (!ParseForParameter(verbose,FileBuffer,"Seed", 0, 1, 1, int_type, &(LocalizedOrbitals.Seed), 1, optional))
199 LocalizedOrbitals.Seed = 1;
200
201 if(!ParseForParameter(verbose,FileBuffer,"DoOutOrbitals", 0, 1, 1, int_type, &(Switches.DoOutOrbitals), 1, optional)) {
202 Switches.DoOutOrbitals = 0;
203 } else {
204 if (Switches.DoOutOrbitals < 0) Switches.DoOutOrbitals = 0;
205 if (Switches.DoOutOrbitals > 1) Switches.DoOutOrbitals = 1;
206 }
207 ParseForParameter(verbose,FileBuffer,"DoOutVis", 0, 1, 1, int_type, &(Switches.DoOutVis), 1, critical);
208 if (Switches.DoOutVis < 0) Switches.DoOutVis = 0;
209 if (Switches.DoOutVis > 1) Switches.DoOutVis = 1;
210 if (!ParseForParameter(verbose,FileBuffer,"VectorPlane", 0, 1, 1, int_type, &(LocalizedOrbitals.VectorPlane), 1, optional))
211 LocalizedOrbitals.VectorPlane = -1;
212 if (!ParseForParameter(verbose,FileBuffer,"VectorCut", 0, 1, 1, double_type, &(LocalizedOrbitals.VectorCut), 1, optional))
213 LocalizedOrbitals.VectorCut = 0.;
214 ParseForParameter(verbose,FileBuffer,"DoOutMes", 0, 1, 1, int_type, &(Switches.DoOutMes), 1, critical);
215 if (Switches.DoOutMes < 0) Switches.DoOutMes = 0;
216 if (Switches.DoOutMes > 1) Switches.DoOutMes = 1;
217 if (!ParseForParameter(verbose,FileBuffer,"DoOutCurr", 0, 1, 1, int_type, &(Switches.DoOutCurrent), 1, optional))
218 Switches.DoOutCurrent = 0;
219 if (Switches.DoOutCurrent < 0) Switches.DoOutCurrent = 0;
220 if (Switches.DoOutCurrent > 1) Switches.DoOutCurrent = 1;
221 ParseForParameter(verbose,FileBuffer,"AddGramSch", 0, 1, 1, int_type, &(LocalizedOrbitals.UseAddGramSch), 1, critical);
222 if (LocalizedOrbitals.UseAddGramSch < 0) LocalizedOrbitals.UseAddGramSch = 0;
223 if (LocalizedOrbitals.UseAddGramSch > 2) LocalizedOrbitals.UseAddGramSch = 2;
224 if(!ParseForParameter(verbose,FileBuffer,"DoWannier", 0, 1, 1, int_type, &(Switches.DoWannier), 1, optional)) {
225 Switches.DoWannier = 0;
226 } else {
227 if (Switches.DoWannier < 0) Switches.DoWannier = 0;
228 if (Switches.DoWannier > 1) Switches.DoWannier = 1;
229 }
230 if(!ParseForParameter(verbose,FileBuffer,"CommonWannier", 0, 1, 1, int_type, &(LocalizedOrbitals.CommonWannier), 1, optional)) {
231 LocalizedOrbitals.CommonWannier = 0;
232 } else {
233 if (LocalizedOrbitals.CommonWannier < 0) LocalizedOrbitals.CommonWannier = 0;
234 if (LocalizedOrbitals.CommonWannier > 4) LocalizedOrbitals.CommonWannier = 4;
235 }
236 if(!ParseForParameter(verbose,FileBuffer,"SawtoothStart", 0, 1, 1, double_type, &(LocalizedOrbitals.SawtoothStart), 1, optional)) {
237 LocalizedOrbitals.SawtoothStart = 0.01;
238 } else {
239 if (LocalizedOrbitals.SawtoothStart < 0.) LocalizedOrbitals.SawtoothStart = 0.;
240 if (LocalizedOrbitals.SawtoothStart > 1.) LocalizedOrbitals.SawtoothStart = 1.;
241 }
242
243 if (ParseForParameter(verbose,FileBuffer,"DoConstrainedMD", 0, 1, 1, int_type, &(Switches.DoConstrainedMD), 1, optional))
244 if (Switches.DoConstrainedMD < 0)
245 Switches.DoConstrainedMD = 0;
246 ParseForParameter(verbose,FileBuffer,"MaxOuterStep", 0, 1, 1, int_type, &(StepCounts.MaxOuterStep), 1, critical);
247 if (!ParseForParameter(verbose,FileBuffer,"Deltat", 0, 1, 1, double_type, &(Deltat), 1, optional))
248 Deltat = 1;
249 ParseForParameter(verbose,FileBuffer,"OutVisStep", 0, 1, 1, int_type, &(StepCounts.OutVisStep), 1, optional);
250 ParseForParameter(verbose,FileBuffer,"OutSrcStep", 0, 1, 1, int_type, &(StepCounts.OutSrcStep), 1, optional);
251 ParseForParameter(verbose,FileBuffer,"TargetTemp", 0, 1, 1, double_type, &(World::getInstance().getThermostats()->TargetTemp), 1, optional);
252 //ParseForParameter(verbose,FileBuffer,"Thermostat", 0, 1, 1, int_type, &(ScaleTempStep), 1, optional);
253 if (!ParseForParameter(verbose,FileBuffer,"EpsWannier", 0, 1, 1, double_type, &(LocalizedOrbitals.EpsWannier), 1, optional))
254 LocalizedOrbitals.EpsWannier = 1e-8;
255
256 // stop conditions
257 //if (MaxOuterStep <= 0) MaxOuterStep = 1;
258 ParseForParameter(verbose,FileBuffer,"MaxPsiStep", 0, 1, 1, int_type, &(StepCounts.MaxPsiStep), 1, critical);
259 if (StepCounts.MaxPsiStep <= 0) StepCounts.MaxPsiStep = 3;
260
261 ParseForParameter(verbose,FileBuffer,"MaxMinStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStep), 1, critical);
262 ParseForParameter(verbose,FileBuffer,"RelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.RelEpsTotalEnergy), 1, critical);
263 ParseForParameter(verbose,FileBuffer,"RelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.RelEpsKineticEnergy), 1, critical);
264 ParseForParameter(verbose,FileBuffer,"MaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStopStep), 1, critical);
265 ParseForParameter(verbose,FileBuffer,"MaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinGapStopStep), 1, critical);
266 if (StepCounts.MaxMinStep <= 0) StepCounts.MaxMinStep = StepCounts.MaxPsiStep;
267 if (StepCounts.MaxMinStopStep < 1) StepCounts.MaxMinStopStep = 1;
268 if (StepCounts.MaxMinGapStopStep < 1) StepCounts.MaxMinGapStopStep = 1;
269
270 ParseForParameter(verbose,FileBuffer,"MaxInitMinStep", 0, 1, 1, int_type, &(StepCounts.MaxInitMinStep), 1, critical);
271 ParseForParameter(verbose,FileBuffer,"InitRelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsTotalEnergy), 1, critical);
272 ParseForParameter(verbose,FileBuffer,"InitRelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsKineticEnergy), 1, critical);
273 ParseForParameter(verbose,FileBuffer,"InitMaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinStopStep), 1, critical);
274 ParseForParameter(verbose,FileBuffer,"InitMaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinGapStopStep), 1, critical);
275 if (StepCounts.MaxInitMinStep <= 0) StepCounts.MaxInitMinStep = StepCounts.MaxPsiStep;
276 if (StepCounts.InitMaxMinStopStep < 1) StepCounts.InitMaxMinStopStep = 1;
277 if (StepCounts.InitMaxMinGapStopStep < 1) StepCounts.InitMaxMinGapStopStep = 1;
278
279 // Unit cell and magnetic field
280 ParseForParameter(verbose,FileBuffer, "BoxLength", 0, 3, 3, lower_trigrid, BoxLength, 1, critical); /* Lattice->RealBasis */
281 double *cell_size = new double[6];
282 cell_size[0] = BoxLength[0];
283 cell_size[1] = BoxLength[3];
284 cell_size[2] = BoxLength[4];
285 cell_size[3] = BoxLength[6];
286 cell_size[4] = BoxLength[7];
287 cell_size[5] = BoxLength[8];
288 World::getInstance().setDomain(cell_size);
289 delete[] cell_size;
290 //if (1) fprintf(stderr,"\n");
291
292 ParseForParameter(verbose,FileBuffer,"DoPerturbation", 0, 1, 1, int_type, &(Switches.DoPerturbation), 1, optional);
293 ParseForParameter(verbose,FileBuffer,"DoOutNICS", 0, 1, 1, int_type, &(Switches.DoOutNICS), 1, optional);
294 if (!ParseForParameter(verbose,FileBuffer,"DoFullCurrent", 0, 1, 1, int_type, &(Switches.DoFullCurrent), 1, optional))
295 Switches.DoFullCurrent = 0;
296 if (Switches.DoFullCurrent < 0) Switches.DoFullCurrent = 0;
297 if (Switches.DoFullCurrent > 2) Switches.DoFullCurrent = 2;
298 if (Switches.DoOutNICS < 0) Switches.DoOutNICS = 0;
299 if (Switches.DoOutNICS > 2) Switches.DoOutNICS = 2;
300 if (Switches.DoPerturbation == 0) {
301 Switches.DoFullCurrent = 0;
302 Switches.DoOutNICS = 0;
303 }
304
305 ParseForParameter(verbose,FileBuffer,"ECut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.ECut), 1, critical);
306 ParseForParameter(verbose,FileBuffer,"MaxLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxLevel), 1, critical);
307 ParseForParameter(verbose,FileBuffer,"Level0Factor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.Lev0Factor), 1, critical);
308 if (PlaneWaveSpecifics.Lev0Factor < 2) {
309 PlaneWaveSpecifics.Lev0Factor = 2;
310 }
311 ParseForParameter(verbose,FileBuffer,"RiemannTensor", 0, 1, 1, int_type, &di, 1, critical);
312 if (di >= 0 && di < 2) {
313 PlaneWaveSpecifics.RiemannTensor = di;
314 } else {
315 cerr << "0 <= RiemanTensor < 2: 0 UseNotRT, 1 UseRT" << endl;
316 exit(1);
317 }
318 switch (PlaneWaveSpecifics.RiemannTensor) {
319 case 0: //UseNoRT
320 if (PlaneWaveSpecifics.MaxLevel < 2) {
321 PlaneWaveSpecifics.MaxLevel = 2;
322 }
323 PlaneWaveSpecifics.LevRFactor = 2;
324 PlaneWaveSpecifics.RTActualUse = 0;
325 break;
326 case 1: // UseRT
327 if (PlaneWaveSpecifics.MaxLevel < 3) {
328 PlaneWaveSpecifics.MaxLevel = 3;
329 }
330 ParseForParameter(verbose,FileBuffer,"RiemannLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.RiemannLevel), 1, critical);
331 if (PlaneWaveSpecifics.RiemannLevel < 2) {
332 PlaneWaveSpecifics.RiemannLevel = 2;
333 }
334 if (PlaneWaveSpecifics.RiemannLevel > PlaneWaveSpecifics.MaxLevel-1) {
335 PlaneWaveSpecifics.RiemannLevel = PlaneWaveSpecifics.MaxLevel-1;
336 }
337 ParseForParameter(verbose,FileBuffer,"LevRFactor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.LevRFactor), 1, critical);
338 if (PlaneWaveSpecifics.LevRFactor < 2) {
339 PlaneWaveSpecifics.LevRFactor = 2;
340 }
341 PlaneWaveSpecifics.Lev0Factor = 2;
342 PlaneWaveSpecifics.RTActualUse = 2;
343 break;
344 }
345 ParseForParameter(verbose,FileBuffer,"PsiType", 0, 1, 1, int_type, &di, 1, critical);
346 if (di >= 0 && di < 2) {
347 PlaneWaveSpecifics.PsiType = di;
348 } else {
349 cerr << "0 <= PsiType < 2: 0 UseSpinDouble, 1 UseSpinUpDown" << endl;
350 exit(1);
351 }
352 switch (PlaneWaveSpecifics.PsiType) {
353 case 0: // SpinDouble
354 ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, critical);
355 ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, optional);
356 ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, optional);
357 ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional);
358 break;
359 case 1: // SpinUpDown
360 if (Parallelization.ProcPEGamma % 2) Parallelization.ProcPEGamma*=2;
361 ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, optional);
362 ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, critical);
363 ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, critical);
364 ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional);
365 break;
366 }
367
368 // IonsInitRead
369
370 ParseForParameter(verbose,FileBuffer,"RCut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.RCut), 1, critical);
371 ParseForParameter(verbose,FileBuffer,"IsAngstroem", 0, 1, 1, int_type, &(IsAngstroem), 1, critical);
372 ParseForParameter(verbose,FileBuffer,"MaxTypes", 0, 1, 1, int_type, &(MaxTypes), 1, critical);
373 if (!ParseForParameter(verbose,FileBuffer,"RelativeCoord", 0, 1, 1, int_type, &(RelativeCoord) , 1, optional))
374 RelativeCoord = 0;
375 if (!ParseForParameter(verbose,FileBuffer,"StructOpt", 0, 1, 1, int_type, &(StructOpt), 1, optional))
376 StructOpt = 0;
377 }
378
379 // 3. parse the molecule in
380 molecule *mol = World::getInstance().createMolecule();
381 mol->ActiveFlag = true;
382 LoadMolecule(mol, FileBuffer, World::getInstance().getPeriode(), FastParsing);
383
384 // refresh atom::nr and atom::name
385 mol->getAtomCount();
386
387 // 4. dissect the molecule into connected subgraphs
388 // don't do this here ...
389 //FragmentationSubgraphDissection();
390 //delete(mol);
391
392 delete(FileBuffer);
393}
394
395/**
396 * Saves the \a atoms into as a PCP file.
397 *
398 * \param file where to save the state
399 * \param atoms atoms to store
400 */
401void FormatParser< pcp >::save(std::ostream* file, const std::vector<const atom *> &atoms)
402{
403 LOG(2, "DEBUG: Saving changes to pcp.");
404
405 const RealSpaceMatrix &domain = World::getInstance().getDomain().getM();
406 ThermoStatContainer *Thermostats = World::getInstance().getThermostats();
407 if (!file->fail()) {
408 // calculate number of Psis
409 CalculateOrbitals(atoms);
410 *file << "# ParallelCarParinello - main configuration file - created with molecuilder" << endl;
411 *file << endl;
412 if (Paths.mainname != NULL)
413 *file << "mainname\t" << Paths.mainname << "\t# programm name (for runtime files)" << endl;
414 else
415 *file << "mainname\tpcp\t# programm name (for runtime files)" << endl;
416 if (Paths.defaultpath != NULL)
417 *file << "defaultpath\t" << Paths.defaultpath << "\t# where to put files during runtime" << endl;
418 else
419 *file << "defaultpath\tnot specified\t# where to put files during runtime" << endl;
420 if (Paths.pseudopotpath != NULL)
421 *file << "pseudopotpath\t" << Paths.pseudopotpath << "\t# where to find pseudopotentials" << endl;
422 else
423 *file << "pseudopotpath\tnot specified\t# where to find pseudopotentials" << endl;
424 *file << endl;
425 *file << "ProcPEGamma\t" << Parallelization.ProcPEGamma << "\t# for parallel computing: share constants" << endl;
426 *file << "ProcPEPsi\t" << Parallelization.ProcPEPsi << "\t# for parallel computing: share wave functions" << endl;
427 *file << "DoOutVis\t" << Switches.DoOutVis << "\t# Output data for OpenDX" << endl;
428 *file << "DoOutMes\t" << Switches.DoOutMes << "\t# Output data for measurements" << endl;
429 *file << "DoOutOrbitals\t" << Switches.DoOutOrbitals << "\t# Output all Orbitals" << endl;
430 *file << "DoOutCurr\t" << Switches.DoOutCurrent << "\t# Ouput current density for OpenDx" << endl;
431 *file << "DoOutNICS\t" << Switches.DoOutNICS << "\t# Output Nucleus independent current shieldings" << endl;
432 *file << "DoPerturbation\t" << Switches.DoPerturbation << "\t# Do perturbation calculate and determine susceptibility and shielding" << endl;
433 *file << "DoFullCurrent\t" << Switches.DoFullCurrent << "\t# Do full perturbation" << endl;
434 *file << "DoConstrainedMD\t" << Switches.DoConstrainedMD << "\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD" << endl;
435 ASSERT(Thermostats != NULL, "FormatParser< pcp >::save() - Thermostats not initialized!");
436 *file << "Thermostat\t" << Thermostats->activeThermostat->name() << "\t";
437 *file << Thermostats->activeThermostat->writeParams();
438 *file << "\t# Which Thermostat and its parameters to use in MD case." << endl;
439 *file << "CommonWannier\t" << LocalizedOrbitals.CommonWannier << "\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center" << endl;
440 *file << "SawtoothStart\t" << LocalizedOrbitals.SawtoothStart << "\t# Absolute value for smooth transition at cell border " << endl;
441 *file << "VectorPlane\t" << LocalizedOrbitals.VectorPlane << "\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot" << endl;
442 *file << "VectorCut\t" << LocalizedOrbitals.VectorCut << "\t# Cut plane axis value" << endl;
443 *file << "AddGramSch\t" << LocalizedOrbitals.UseAddGramSch << "\t# Additional GramSchmidtOrtogonalization to be safe" << endl;
444 *file << "Seed\t\t" << LocalizedOrbitals.Seed << "\t# initial value for random seed for Psi coefficients" << endl;
445 *file << endl;
446 *file << "MaxOuterStep\t" << StepCounts.MaxOuterStep << "\t# number of MolecularDynamics/Structure optimization steps" << endl;
447 *file << "Deltat\t" << Deltat << "\t# time per MD step" << endl;
448 *file << "OutVisStep\t" << StepCounts.OutVisStep << "\t# Output visual data every ...th step" << endl;
449 *file << "OutSrcStep\t" << StepCounts.OutSrcStep << "\t# Output \"restart\" data every ..th step" << endl;
450 *file << "TargetTemp\t" << Thermostats->TargetTemp << "\t# Target temperature" << endl;
451 *file << "MaxPsiStep\t" << StepCounts.MaxPsiStep << "\t# number of Minimisation steps per state (0 - default)" << endl;
452 *file << "EpsWannier\t" << LocalizedOrbitals.EpsWannier << "\t# tolerance value for spread minimisation of orbitals" << endl;
453 *file << endl;
454 *file << "# Values specifying when to stop" << endl;
455 *file << "MaxMinStep\t" << StepCounts.MaxMinStep << "\t# Maximum number of steps" << endl;
456 *file << "RelEpsTotalE\t" << StepCounts.RelEpsTotalEnergy << "\t# relative change in total energy" << endl;
457 *file << "RelEpsKineticE\t" << StepCounts.RelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl;
458 *file << "MaxMinStopStep\t" << StepCounts.MaxMinStopStep << "\t# check every ..th steps" << endl;
459 *file << "MaxMinGapStopStep\t" << StepCounts.MaxMinGapStopStep << "\t# check every ..th steps" << endl;
460 *file << endl;
461 *file << "# Values specifying when to stop for INIT, otherwise same as above" << endl;
462 *file << "MaxInitMinStep\t" << StepCounts.MaxInitMinStep << "\t# Maximum number of steps" << endl;
463 *file << "InitRelEpsTotalE\t" << StepCounts.InitRelEpsTotalEnergy << "\t# relative change in total energy" << endl;
464 *file << "InitRelEpsKineticE\t" << StepCounts.InitRelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl;
465 *file << "InitMaxMinStopStep\t" << StepCounts.InitMaxMinStopStep << "\t# check every ..th steps" << endl;
466 *file << "InitMaxMinGapStopStep\t" << StepCounts.InitMaxMinGapStopStep << "\t# check every ..th steps" << endl;
467 *file << endl;
468 *file << "BoxLength\t\t\t# (Length of a unit cell)" << endl;
469 *file << domain.at(0,0) << "\t" << endl;
470 *file << domain.at(1,0) << "\t" << domain.at(1,1) << "\t" << endl;
471 *file << domain.at(2,0) << "\t" << domain.at(2,1) << "\t" << domain.at(2,2) << "\t" << endl;
472 // FIXME
473 *file << endl;
474 *file << "ECut\t\t" << PlaneWaveSpecifics.ECut << "\t# energy cutoff for discretization in Hartrees" << endl;
475 *file << "MaxLevel\t" << PlaneWaveSpecifics.MaxLevel << "\t# number of different levels in the code, >=2" << endl;
476 *file << "Level0Factor\t" << PlaneWaveSpecifics.Lev0Factor << "\t# factor by which node number increases from S to 0 level" << endl;
477 *file << "RiemannTensor\t" << PlaneWaveSpecifics.RiemannTensor << "\t# (Use metric)" << endl;
478 switch (PlaneWaveSpecifics.RiemannTensor) {
479 case 0: //UseNoRT
480 break;
481 case 1: // UseRT
482 *file << "RiemannLevel\t" << PlaneWaveSpecifics.RiemannLevel << "\t# Number of Riemann Levels" << endl;
483 *file << "LevRFactor\t" << PlaneWaveSpecifics.LevRFactor << "\t# factor by which node number increases from 0 to R level from" << endl;
484 break;
485 }
486 *file << "PsiType\t\t" << PlaneWaveSpecifics.PsiType << "\t# 0 - doubly occupied, 1 - SpinUp,SpinDown" << endl;
487 *file << "MaxPsiDouble\t" << PlaneWaveSpecifics.MaxPsiDouble << "\t# here: specifying both maximum number of SpinUp- and -Down-states" << endl;
488 *file << "PsiMaxNoUp\t" << PlaneWaveSpecifics.PsiMaxNoUp << "\t# here: specifying maximum number of SpinUp-states" << endl;
489 *file << "PsiMaxNoDown\t" << PlaneWaveSpecifics.PsiMaxNoDown << "\t# here: specifying maximum number of SpinDown-states" << endl;
490 *file << "AddPsis\t\t" << PlaneWaveSpecifics.AddPsis << "\t# Additional unoccupied Psis for bandgap determination" << endl;
491 *file << endl;
492 *file << "RCut\t\t" << PlaneWaveSpecifics.RCut << "\t# R-cut for the ewald summation" << endl;
493 *file << "StructOpt\t" << StructOpt << "\t# Do structure optimization beforehand" << endl;
494 *file << "IsAngstroem\t" << IsAngstroem << "\t# 0 - Bohr, 1 - Angstroem" << endl;
495 *file << "RelativeCoord\t" << RelativeCoord << "\t# whether ion coordinates are relative (1) or absolute (0)" << endl;
496 map<int, int> ZtoIndexMap;
497 OutputElements(file, atoms, ZtoIndexMap);
498 OutputAtoms(file, atoms, ZtoIndexMap);
499 } else {
500 ELOG(1, "Cannot open output file.");
501 }
502}
503
504
505/** Counts necessary number of valence electrons and returns number and SpinType.
506 * \param &allatoms all atoms to store away
507 */
508void FormatParser< pcp >::CalculateOrbitals(const std::vector<const atom *> &allatoms)
509{
510 PlaneWaveSpecifics.MaxPsiDouble = PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.PsiType = 0;
511 for (vector<const atom *>::const_iterator runner = allatoms.begin(); runner != allatoms.end(); ++runner) {
512 PlaneWaveSpecifics.MaxPsiDouble += (*runner)->getType()->getNoValenceOrbitals();
513 }
514 cout << PlaneWaveSpecifics.MaxPsiDouble << endl;
515 PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.MaxPsiDouble/2 + (PlaneWaveSpecifics.MaxPsiDouble % 2);
516 PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.MaxPsiDouble/2;
517 PlaneWaveSpecifics.MaxPsiDouble /= 2;
518 PlaneWaveSpecifics.PsiType = (PlaneWaveSpecifics.PsiMaxNoDown == PlaneWaveSpecifics.PsiMaxNoUp) ? 0 : 1;
519 if ((PlaneWaveSpecifics.PsiType == 1) && (Parallelization.ProcPEPsi < 2) && ((PlaneWaveSpecifics.PsiMaxNoDown != 1) || (PlaneWaveSpecifics.PsiMaxNoUp != 0))) {
520 Parallelization.ProcPEGamma /= 2;
521 Parallelization.ProcPEPsi *= 2;
522 } else {
523 Parallelization.ProcPEGamma *= Parallelization.ProcPEPsi;
524 Parallelization.ProcPEPsi = 1;
525 }
526 cout << PlaneWaveSpecifics.PsiMaxNoDown << ">" << PlaneWaveSpecifics.PsiMaxNoUp << endl;
527 if (PlaneWaveSpecifics.PsiMaxNoDown > PlaneWaveSpecifics.PsiMaxNoUp) {
528 StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoDown;
529 cout << PlaneWaveSpecifics.PsiMaxNoDown << " " << StepCounts.InitMaxMinStopStep << endl;
530 } else {
531 StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoUp;
532 cout << PlaneWaveSpecifics.PsiMaxNoUp << " " << StepCounts.InitMaxMinStopStep << endl;
533 }
534};
535
536/** Prints MaxTypes and list of elements to strea,
537 * \param *file output stream
538 * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms()
539 * \param &ZtoIndexMap map of which atoms belong to which ion number
540 */
541void FormatParser< pcp >::OutputElements(
542 ostream *file,
543 const std::vector<const atom *> &allatoms,
544 map<int, int> &ZtoIndexMap)
545{
546 map<int, int> PresentElements;
547 pair < map<int, int>::iterator, bool > Inserter;
548 // insert all found elements into the map
549 for (vector<const atom *>::const_iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) {
550 Inserter = PresentElements.insert(pair<int, int>((*AtomRunner)->getType()->getAtomicNumber(), 1));
551 if (!Inserter.second) // increase if present
552 Inserter.first->second += 1;
553 }
554 // print total element count
555 *file << "MaxTypes\t" << PresentElements.size() << "\t# maximum number of different ion types" << endl;
556 *file << endl;
557 // print element list
558 *file << "# Ion type data (PP = PseudoPotential, Z = atomic number)" << endl;
559 *file << "#Ion_TypeNr.\tAmount\tZ\tRGauss\tL_Max(PP)L_Loc(PP)IonMass\t# chemical name, symbol" << endl;
560 // elements are due to map sorted by Z value automatically, hence just count through them
561 int counter = 1;
562 for(map<int, int>::const_iterator iter=PresentElements.begin(); iter!=PresentElements.end();++iter) {
563 const element * const elemental = World::getInstance().getPeriode()->FindElement(iter->first);
564 ZtoIndexMap.insert( pair<int,int> (iter->first, counter) );
565 *file << "Ion_Type" << counter++ << "\t" << iter->second << "\t" << elemental->getAtomicNumber() << "\t1.0\t3\t3\t" << fixed << setprecision(11) << showpoint << elemental->getMass() << "\t" << elemental->getName() << "\t" << elemental->getSymbol() <<endl;
566 }
567}
568
569/** Output all atoms one per line.
570 * \param *file output stream
571 * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms()
572 * \param &ZtoIndexMap map of which atoms belong to which ion number
573 */
574void FormatParser< pcp >::OutputAtoms(
575 ostream *file,
576 const std::vector<const atom *> &allatoms,
577 map<int, int> &ZtoIndexMap)
578{
579 *file << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
580 map<int, int> ZtoCountMap;
581 map<const atom *, int> AtomtoCountMap;
582 pair < map<int, int>::iterator, bool > Inserter;
583 bool ContinueStatus = true;
584 bool AddNewLine = false;
585 size_t step = 0;
586 do {
587 int nr = 0;
588 ContinueStatus = false;
589 for (vector<const atom *>::const_iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) {
590 if ((*AtomRunner)->getTrajectorySize() > step) {
591 if (step == 0) { // fill list only on first step
592 Inserter = ZtoCountMap.insert( pair<int, int>((*AtomRunner)->getType()->getAtomicNumber(), 1) );
593 if (!Inserter.second)
594 Inserter.first->second += 1;
595 AtomtoCountMap.insert( make_pair((*AtomRunner), Inserter.first->second) );
596 }
597 if (AddNewLine) {
598 AddNewLine = false;
599 *file << endl;
600 }
601 const int Z = (*AtomRunner)->getType()->getAtomicNumber();
602 *file << "Ion_Type" << ZtoIndexMap[Z] << "_" << AtomtoCountMap[(*AtomRunner)] << "\t" << fixed << setprecision(9) << showpoint;
603 *file << (*AtomRunner)->atStep(0, step)
604 << "\t" << (*AtomRunner)->atStep(1,step)
605 << "\t" << (*AtomRunner)->atStep(2,step);
606 *file << "\t" << (int)((*AtomRunner)->getFixedIon());
607 if ((*AtomRunner)->getAtomicVelocityAtStep(step).Norm() > MYEPSILON)
608 *file << "\t" << scientific << setprecision(6)
609 << (*AtomRunner)->getAtomicVelocityAtStep(step)[0] << "\t"
610 << (*AtomRunner)->getAtomicVelocityAtStep(step)[1] << "\t"
611 << (*AtomRunner)->getAtomicVelocityAtStep(step)[2] << "\t";
612 *file << " # molecule nr " << nr++ << endl;
613 ContinueStatus = true; // as long as a single atom still has trajectory points, continue
614 }
615 }
616 ++step;
617 if (ContinueStatus)
618 AddNewLine = true;
619 } while (ContinueStatus);
620}
621
622/** Reading of Thermostat related values from parameter file.
623 * \param *fb file buffer containing the config file
624 */
625void FormatParser< pcp >::ParseThermostats(class ConfigFileBuffer * const fb)
626{
627 char * const thermo = new char[12];
628 const int verbose = 0;
629 class ThermoStatContainer *Thermostats = World::getInstance().getThermostats();
630
631 // read desired Thermostat from file along with needed additional parameters
632 if (ParseForParameter(verbose,fb,"Thermostat", 0, 1, 1, string_type, thermo, 1, optional)) {
633 Thermostats->makeActive(thermo,fb);
634 } else {
635 if ((Thermostats->TargetTemp != 0))
636 LOG(2, "No thermostat chosen despite finite temperature MD, falling back to None.");
637 Thermostats->chooseNone();
638 }
639 delete[](thermo);
640};
641
642bool FormatParser< pcp >::operator==(const FormatParser< pcp >& b) const
643{
644 ASSERT(Parallelization.ProcPEGamma == b.Parallelization.ProcPEGamma, "PcpParser ==: ProcPEGamma not");
645 ASSERT(Parallelization.ProcPEPsi == b.Parallelization.ProcPEPsi, "PcpParser ==: ProcPEPsi not");
646
647 if ((Paths.databasepath != NULL) && (b.Paths.databasepath != NULL))
648 ASSERT(strcmp(Paths.databasepath, b.Paths.databasepath), "PcpParser ==: databasepath not");
649 if ((Paths.configname != NULL) && (b.Paths.configname != NULL))
650 ASSERT(strcmp(Paths.configname, b.Paths.configname), "PcpParser ==: configname not");
651 if ((Paths.mainname != NULL) && (b.Paths.mainname != NULL))
652 ASSERT(strcmp(Paths.mainname, b.Paths.mainname), "PcpParser ==: mainname not");
653 if ((Paths.defaultpath != NULL) && (b.Paths.defaultpath != NULL))
654 ASSERT(strcmp(Paths.defaultpath, b.Paths.defaultpath), "PcpParser ==: defaultpath not");
655 if ((Paths.pseudopotpath != NULL) && (b.Paths.pseudopotpath != NULL))
656 ASSERT(strcmp(Paths.pseudopotpath, b.Paths.pseudopotpath), "PcpParser ==: pseudopotpath not");
657
658 ASSERT(Switches.DoConstrainedMD == b.Switches.DoConstrainedMD, "PcpParser ==: DoConstrainedMD not");
659 ASSERT(Switches.DoOutVis == b.Switches.DoOutVis, "PcpParser ==: DoOutVis not");
660 ASSERT(Switches.DoOutMes == b.Switches.DoOutMes, "PcpParser ==: DoOutMes not");
661 ASSERT(Switches.DoOutNICS == b.Switches.DoOutNICS, "PcpParser ==: DoOutNICS not");
662 ASSERT(Switches.DoOutOrbitals == b.Switches.DoOutOrbitals, "PcpParser ==: DoOutOrbitals not");
663 ASSERT(Switches.DoOutCurrent == b.Switches.DoOutCurrent, "PcpParser ==: DoOutCurrent not");
664 ASSERT(Switches.DoFullCurrent == b.Switches.DoFullCurrent, "PcpParser ==: DoFullCurrent not");
665 ASSERT(Switches.DoPerturbation == b.Switches.DoPerturbation, "PcpParser ==: DoPerturbation not");
666 ASSERT(Switches.DoWannier == b.Switches.DoWannier, "PcpParser ==: DoWannier not");
667
668 ASSERT(LocalizedOrbitals.CommonWannier == b.LocalizedOrbitals.CommonWannier, "PcpParser ==: CommonWannier not");
669 ASSERT(LocalizedOrbitals.SawtoothStart == b.LocalizedOrbitals.SawtoothStart, "PcpParser ==: SawtoothStart not");
670 ASSERT(LocalizedOrbitals.VectorPlane == b.LocalizedOrbitals.VectorPlane, "PcpParser ==: VectorPlane not");
671 ASSERT(LocalizedOrbitals.VectorCut == b.LocalizedOrbitals.VectorCut, "PcpParser ==: VectorCut not");
672 ASSERT(LocalizedOrbitals.UseAddGramSch == b.LocalizedOrbitals.UseAddGramSch, "PcpParser ==: UseAddGramSch not");
673 ASSERT(LocalizedOrbitals.Seed == b.LocalizedOrbitals.Seed, "PcpParser ==: Seed not");
674 ASSERT(LocalizedOrbitals.EpsWannier == b.LocalizedOrbitals.EpsWannier, "PcpParser ==: EpsWannier not");
675
676 ASSERT(StepCounts.MaxMinStopStep == b.StepCounts.MaxMinStopStep, "PcpParser ==: MaxMinStopStep not");
677 ASSERT(StepCounts.InitMaxMinStopStep == b.StepCounts.InitMaxMinStopStep, "PcpParser ==: InitMaxMinStopStep not");
678 ASSERT(StepCounts.OutVisStep == b.StepCounts.OutVisStep, "PcpParser ==: OutVisStep not");
679 ASSERT(StepCounts.OutSrcStep == b.StepCounts.OutSrcStep, "PcpParser ==: OutSrcStep not");
680 ASSERT(StepCounts.MaxPsiStep == b.StepCounts.MaxPsiStep, "PcpParser ==: MaxPsiStep not");
681 ASSERT(StepCounts.MaxOuterStep == b.StepCounts.MaxOuterStep, "PcpParser ==: MaxOuterStep not");
682 ASSERT(StepCounts.MaxMinStep == b.StepCounts.MaxMinStep, "PcpParser ==: MaxMinStep not");
683 ASSERT(StepCounts.RelEpsTotalEnergy == b.StepCounts.RelEpsTotalEnergy, "PcpParser ==: RelEpsTotalEnergy not");
684 ASSERT(StepCounts.MaxMinGapStopStep == b.StepCounts.MaxMinGapStopStep, "PcpParser ==: MaxMinGapStopStep not");
685 ASSERT(StepCounts.MaxInitMinStep == b.StepCounts.MaxInitMinStep, "PcpParser ==: MaxInitMinStep not");
686 ASSERT(StepCounts.InitRelEpsTotalEnergy == b.StepCounts.InitRelEpsTotalEnergy, "PcpParser ==: InitRelEpsTotalEnergy not");
687 ASSERT(StepCounts.InitRelEpsKineticEnergy == b.StepCounts.InitRelEpsKineticEnergy, "PcpParser ==: InitRelEpsKineticEnergy not");
688 ASSERT(StepCounts.InitMaxMinGapStopStep == b.StepCounts.InitMaxMinGapStopStep, "PcpParser ==: InitMaxMinGapStopStep not");
689
690 ASSERT(PlaneWaveSpecifics.PsiType == b.PlaneWaveSpecifics.PsiType, "PcpParser ==: PsiType not");
691 ASSERT(PlaneWaveSpecifics.MaxPsiDouble == b.PlaneWaveSpecifics.MaxPsiDouble, "PcpParser ==: MaxPsiDouble not");
692 ASSERT(PlaneWaveSpecifics.PsiMaxNoUp == b.PlaneWaveSpecifics.PsiMaxNoUp, "PcpParser ==: PsiMaxNoUp not");
693 ASSERT(PlaneWaveSpecifics.PsiMaxNoDown == b.PlaneWaveSpecifics.PsiMaxNoDown, "PcpParser ==: PsiMaxNoDown not");
694 ASSERT(PlaneWaveSpecifics.ECut == b.PlaneWaveSpecifics.ECut, "PcpParser ==: ECut not");
695 ASSERT(PlaneWaveSpecifics.MaxLevel == b.PlaneWaveSpecifics.MaxLevel, "PcpParser ==: MaxLevel not");
696 ASSERT(PlaneWaveSpecifics.RiemannTensor == b.PlaneWaveSpecifics.RiemannTensor, "PcpParser ==: RiemannTensor not");
697 ASSERT(PlaneWaveSpecifics.LevRFactor == b.PlaneWaveSpecifics.LevRFactor, "PcpParser ==: LevRFactor not");
698 ASSERT(PlaneWaveSpecifics.RiemannLevel == b.PlaneWaveSpecifics.RiemannLevel, "PcpParser ==: RiemannLevel not");
699 ASSERT(PlaneWaveSpecifics.Lev0Factor == b.PlaneWaveSpecifics.Lev0Factor, "PcpParser ==: Lev0Factor not");
700 ASSERT(PlaneWaveSpecifics.RTActualUse == b.PlaneWaveSpecifics.RTActualUse, "PcpParser ==: RTActualUse not");
701 ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not");
702 ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not");
703 ASSERT(PlaneWaveSpecifics.RCut == b.PlaneWaveSpecifics.RCut, "PcpParser ==: RCut not");
704
705 ASSERT(FastParsing == b.FastParsing, "PcpParser ==: FastParsing not");
706
707 ASSERT(Deltat == b.Deltat, "PcpParser ==: Deltat not");
708 ASSERT(IsAngstroem == b.IsAngstroem, "PcpParser ==: IsAngstroem not");
709 ASSERT(RelativeCoord == b.RelativeCoord, "PcpParser ==: RelativeCoord not");
710 ASSERT(StructOpt == b.StructOpt, "PcpParser ==: StructOpt not");
711 ASSERT(MaxTypes == b.MaxTypes, "PcpParser ==: MaxTypes not");
712 ASSERT(basis == b.basis, "PcpParser ==: basis not");
713
714 return true;
715}
Note: See TracBrowser for help on using the repository browser.