/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * PcpParser.cpp * * Created on: 12.06.2010 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include #include #include "Atom/atom.hpp" #include "Box.hpp" #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" #include "CodePatterns/Verbose.hpp" #include "Element/element.hpp" #include "Element/periodentafel.hpp" #include "LinearAlgebra/RealSpaceMatrix.hpp" #include "molecule.hpp" #include "MoleculeListClass.hpp" #include "PcpParser.hpp" #include "Parser/ConfigFileBuffer.hpp" #include "Parser/PcpParser_helper.hpp" #include "Thermostats/ThermoStatContainer.hpp" #include "World.hpp" // declare specialized static variables const std::string FormatParserTrait::name = "pcp"; const std::string FormatParserTrait::suffix = "conf"; const ParserTypes FormatParserTrait::type = pcp; FormatParser< pcp >::StructParallelization::StructParallelization() : ProcPEGamma(8), ProcPEPsi(1) {} FormatParser< pcp >::StructParallelization::~StructParallelization() {} FormatParser< pcp >::StructPaths::StructPaths() : databasepath(NULL), configname(NULL), mainname(NULL), defaultpath(NULL), pseudopotpath(NULL) {} FormatParser< pcp >::StructPaths::~StructPaths() {} FormatParser< pcp >::StructSwitches::StructSwitches() : DoConstrainedMD(0), DoOutVis(0), DoOutMes(1), DoOutNICS(0), DoOutOrbitals(0), DoOutCurrent(0), DoFullCurrent(0), DoPerturbation(0), DoWannier(0) {} FormatParser< pcp >::StructSwitches::~StructSwitches() {} FormatParser< pcp >::StructLocalizedOrbitals::StructLocalizedOrbitals() : CommonWannier(0), SawtoothStart(0.01), VectorPlane(0), VectorCut(0), UseAddGramSch(1), Seed(1), EpsWannier(1e-7) {} FormatParser< pcp >::StructLocalizedOrbitals::~StructLocalizedOrbitals() {} FormatParser< pcp >::StructStepCounts::StructStepCounts() : MaxMinStopStep(1), InitMaxMinStopStep(1), OutVisStep(10), OutSrcStep(5), MaxPsiStep(0), MaxOuterStep(0), MaxMinStep(100), RelEpsTotalEnergy(1e-07), RelEpsKineticEnergy(1e-05), MaxMinGapStopStep(0), MaxInitMinStep(100), InitRelEpsTotalEnergy(1e-05), InitRelEpsKineticEnergy(0.0001), InitMaxMinGapStopStep(0) {} FormatParser< pcp >::StructStepCounts::~StructStepCounts() {} FormatParser< pcp >::StructPlaneWaveSpecifics::StructPlaneWaveSpecifics() : PsiType(0), MaxPsiDouble(0), PsiMaxNoUp(0), PsiMaxNoDown(0), ECut(128), MaxLevel(5), RiemannTensor(0), LevRFactor(0), RiemannLevel(0), Lev0Factor(2), RTActualUse(0), AddPsis(0), RCut(20) {} FormatParser< pcp >::StructPlaneWaveSpecifics::~StructPlaneWaveSpecifics() {} /** Constructor of PcpParser. * */ FormatParser< pcp >::FormatParser() : FormatParser_common(NULL), FastParsing(false), Deltat(0.01), IsAngstroem(1), RelativeCoord(0), StructOpt(0), MaxTypes(0) {} /** Destructor of PcpParser. * */ FormatParser< pcp >::~FormatParser() {} void FormatParser< pcp >::load(std::istream* file) { if (file->fail()) { ELOG(1, "could not access given file"); return; } // ParseParameterFile class ConfigFileBuffer *FileBuffer = new ConfigFileBuffer(); FileBuffer->InitFileBuffer(file); /* Oeffne Hauptparameterdatei */ int di = 0; double BoxLength[9]; string zeile; string dummy; int verbose = 0; ParseThermostats(FileBuffer); /* Namen einlesen */ // 1. parse in options if (!ParseForParameter(verbose,FileBuffer, "mainname", 0, 1, 1, string_type, (Paths.mainname), 1, critical)) { ELOG(1, "mainname is missing, is file empty?"); } else { ParseForParameter(verbose,FileBuffer, "defaultpath", 0, 1, 1, string_type, (Paths.defaultpath), 1, critical); ParseForParameter(verbose,FileBuffer, "pseudopotpath", 0, 1, 1, string_type, (Paths.pseudopotpath), 1, critical); ParseForParameter(verbose,FileBuffer,"ProcPEGamma", 0, 1, 1, int_type, &(Parallelization.ProcPEGamma), 1, critical); ParseForParameter(verbose,FileBuffer,"ProcPEPsi", 0, 1, 1, int_type, &(Parallelization.ProcPEPsi), 1, critical); if (!ParseForParameter(verbose,FileBuffer,"Seed", 0, 1, 1, int_type, &(LocalizedOrbitals.Seed), 1, optional)) LocalizedOrbitals.Seed = 1; if(!ParseForParameter(verbose,FileBuffer,"DoOutOrbitals", 0, 1, 1, int_type, &(Switches.DoOutOrbitals), 1, optional)) { Switches.DoOutOrbitals = 0; } else { if (Switches.DoOutOrbitals < 0) Switches.DoOutOrbitals = 0; if (Switches.DoOutOrbitals > 1) Switches.DoOutOrbitals = 1; } ParseForParameter(verbose,FileBuffer,"DoOutVis", 0, 1, 1, int_type, &(Switches.DoOutVis), 1, critical); if (Switches.DoOutVis < 0) Switches.DoOutVis = 0; if (Switches.DoOutVis > 1) Switches.DoOutVis = 1; if (!ParseForParameter(verbose,FileBuffer,"VectorPlane", 0, 1, 1, int_type, &(LocalizedOrbitals.VectorPlane), 1, optional)) LocalizedOrbitals.VectorPlane = -1; if (!ParseForParameter(verbose,FileBuffer,"VectorCut", 0, 1, 1, double_type, &(LocalizedOrbitals.VectorCut), 1, optional)) LocalizedOrbitals.VectorCut = 0.; ParseForParameter(verbose,FileBuffer,"DoOutMes", 0, 1, 1, int_type, &(Switches.DoOutMes), 1, critical); if (Switches.DoOutMes < 0) Switches.DoOutMes = 0; if (Switches.DoOutMes > 1) Switches.DoOutMes = 1; if (!ParseForParameter(verbose,FileBuffer,"DoOutCurr", 0, 1, 1, int_type, &(Switches.DoOutCurrent), 1, optional)) Switches.DoOutCurrent = 0; if (Switches.DoOutCurrent < 0) Switches.DoOutCurrent = 0; if (Switches.DoOutCurrent > 1) Switches.DoOutCurrent = 1; ParseForParameter(verbose,FileBuffer,"AddGramSch", 0, 1, 1, int_type, &(LocalizedOrbitals.UseAddGramSch), 1, critical); if (LocalizedOrbitals.UseAddGramSch < 0) LocalizedOrbitals.UseAddGramSch = 0; if (LocalizedOrbitals.UseAddGramSch > 2) LocalizedOrbitals.UseAddGramSch = 2; if(!ParseForParameter(verbose,FileBuffer,"DoWannier", 0, 1, 1, int_type, &(Switches.DoWannier), 1, optional)) { Switches.DoWannier = 0; } else { if (Switches.DoWannier < 0) Switches.DoWannier = 0; if (Switches.DoWannier > 1) Switches.DoWannier = 1; } if(!ParseForParameter(verbose,FileBuffer,"CommonWannier", 0, 1, 1, int_type, &(LocalizedOrbitals.CommonWannier), 1, optional)) { LocalizedOrbitals.CommonWannier = 0; } else { if (LocalizedOrbitals.CommonWannier < 0) LocalizedOrbitals.CommonWannier = 0; if (LocalizedOrbitals.CommonWannier > 4) LocalizedOrbitals.CommonWannier = 4; } if(!ParseForParameter(verbose,FileBuffer,"SawtoothStart", 0, 1, 1, double_type, &(LocalizedOrbitals.SawtoothStart), 1, optional)) { LocalizedOrbitals.SawtoothStart = 0.01; } else { if (LocalizedOrbitals.SawtoothStart < 0.) LocalizedOrbitals.SawtoothStart = 0.; if (LocalizedOrbitals.SawtoothStart > 1.) LocalizedOrbitals.SawtoothStart = 1.; } if (ParseForParameter(verbose,FileBuffer,"DoConstrainedMD", 0, 1, 1, int_type, &(Switches.DoConstrainedMD), 1, optional)) if (Switches.DoConstrainedMD < 0) Switches.DoConstrainedMD = 0; ParseForParameter(verbose,FileBuffer,"MaxOuterStep", 0, 1, 1, int_type, &(StepCounts.MaxOuterStep), 1, critical); if (!ParseForParameter(verbose,FileBuffer,"Deltat", 0, 1, 1, double_type, &(Deltat), 1, optional)) Deltat = 1; ParseForParameter(verbose,FileBuffer,"OutVisStep", 0, 1, 1, int_type, &(StepCounts.OutVisStep), 1, optional); ParseForParameter(verbose,FileBuffer,"OutSrcStep", 0, 1, 1, int_type, &(StepCounts.OutSrcStep), 1, optional); ParseForParameter(verbose,FileBuffer,"TargetTemp", 0, 1, 1, double_type, &(World::getInstance().getThermostats()->TargetTemp), 1, optional); //ParseForParameter(verbose,FileBuffer,"Thermostat", 0, 1, 1, int_type, &(ScaleTempStep), 1, optional); if (!ParseForParameter(verbose,FileBuffer,"EpsWannier", 0, 1, 1, double_type, &(LocalizedOrbitals.EpsWannier), 1, optional)) LocalizedOrbitals.EpsWannier = 1e-8; // stop conditions //if (MaxOuterStep <= 0) MaxOuterStep = 1; ParseForParameter(verbose,FileBuffer,"MaxPsiStep", 0, 1, 1, int_type, &(StepCounts.MaxPsiStep), 1, critical); if (StepCounts.MaxPsiStep <= 0) StepCounts.MaxPsiStep = 3; ParseForParameter(verbose,FileBuffer,"MaxMinStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStep), 1, critical); ParseForParameter(verbose,FileBuffer,"RelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.RelEpsTotalEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"RelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.RelEpsKineticEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStopStep), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinGapStopStep), 1, critical); if (StepCounts.MaxMinStep <= 0) StepCounts.MaxMinStep = StepCounts.MaxPsiStep; if (StepCounts.MaxMinStopStep < 1) StepCounts.MaxMinStopStep = 1; if (StepCounts.MaxMinGapStopStep < 1) StepCounts.MaxMinGapStopStep = 1; ParseForParameter(verbose,FileBuffer,"MaxInitMinStep", 0, 1, 1, int_type, &(StepCounts.MaxInitMinStep), 1, critical); ParseForParameter(verbose,FileBuffer,"InitRelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsTotalEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"InitRelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsKineticEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"InitMaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinStopStep), 1, critical); ParseForParameter(verbose,FileBuffer,"InitMaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinGapStopStep), 1, critical); if (StepCounts.MaxInitMinStep <= 0) StepCounts.MaxInitMinStep = StepCounts.MaxPsiStep; if (StepCounts.InitMaxMinStopStep < 1) StepCounts.InitMaxMinStopStep = 1; if (StepCounts.InitMaxMinGapStopStep < 1) StepCounts.InitMaxMinGapStopStep = 1; // Unit cell and magnetic field ParseForParameter(verbose,FileBuffer, "BoxLength", 0, 3, 3, lower_trigrid, BoxLength, 1, critical); /* Lattice->RealBasis */ double *cell_size = new double[6]; cell_size[0] = BoxLength[0]; cell_size[1] = BoxLength[3]; cell_size[2] = BoxLength[4]; cell_size[3] = BoxLength[6]; cell_size[4] = BoxLength[7]; cell_size[5] = BoxLength[8]; World::getInstance().setDomain(cell_size); delete[] cell_size; //if (1) fprintf(stderr,"\n"); ParseForParameter(verbose,FileBuffer,"DoPerturbation", 0, 1, 1, int_type, &(Switches.DoPerturbation), 1, optional); ParseForParameter(verbose,FileBuffer,"DoOutNICS", 0, 1, 1, int_type, &(Switches.DoOutNICS), 1, optional); if (!ParseForParameter(verbose,FileBuffer,"DoFullCurrent", 0, 1, 1, int_type, &(Switches.DoFullCurrent), 1, optional)) Switches.DoFullCurrent = 0; if (Switches.DoFullCurrent < 0) Switches.DoFullCurrent = 0; if (Switches.DoFullCurrent > 2) Switches.DoFullCurrent = 2; if (Switches.DoOutNICS < 0) Switches.DoOutNICS = 0; if (Switches.DoOutNICS > 2) Switches.DoOutNICS = 2; if (Switches.DoPerturbation == 0) { Switches.DoFullCurrent = 0; Switches.DoOutNICS = 0; } ParseForParameter(verbose,FileBuffer,"ECut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.ECut), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxLevel), 1, critical); ParseForParameter(verbose,FileBuffer,"Level0Factor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.Lev0Factor), 1, critical); if (PlaneWaveSpecifics.Lev0Factor < 2) { PlaneWaveSpecifics.Lev0Factor = 2; } ParseForParameter(verbose,FileBuffer,"RiemannTensor", 0, 1, 1, int_type, &di, 1, critical); if (di >= 0 && di < 2) { PlaneWaveSpecifics.RiemannTensor = di; } else { cerr << "0 <= RiemanTensor < 2: 0 UseNotRT, 1 UseRT" << endl; exit(1); } switch (PlaneWaveSpecifics.RiemannTensor) { case 0: //UseNoRT if (PlaneWaveSpecifics.MaxLevel < 2) { PlaneWaveSpecifics.MaxLevel = 2; } PlaneWaveSpecifics.LevRFactor = 2; PlaneWaveSpecifics.RTActualUse = 0; break; case 1: // UseRT if (PlaneWaveSpecifics.MaxLevel < 3) { PlaneWaveSpecifics.MaxLevel = 3; } ParseForParameter(verbose,FileBuffer,"RiemannLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.RiemannLevel), 1, critical); if (PlaneWaveSpecifics.RiemannLevel < 2) { PlaneWaveSpecifics.RiemannLevel = 2; } if (PlaneWaveSpecifics.RiemannLevel > PlaneWaveSpecifics.MaxLevel-1) { PlaneWaveSpecifics.RiemannLevel = PlaneWaveSpecifics.MaxLevel-1; } ParseForParameter(verbose,FileBuffer,"LevRFactor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.LevRFactor), 1, critical); if (PlaneWaveSpecifics.LevRFactor < 2) { PlaneWaveSpecifics.LevRFactor = 2; } PlaneWaveSpecifics.Lev0Factor = 2; PlaneWaveSpecifics.RTActualUse = 2; break; } ParseForParameter(verbose,FileBuffer,"PsiType", 0, 1, 1, int_type, &di, 1, critical); if (di >= 0 && di < 2) { PlaneWaveSpecifics.PsiType = di; } else { cerr << "0 <= PsiType < 2: 0 UseSpinDouble, 1 UseSpinUpDown" << endl; exit(1); } switch (PlaneWaveSpecifics.PsiType) { case 0: // SpinDouble ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, critical); ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, optional); ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, optional); ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional); break; case 1: // SpinUpDown if (Parallelization.ProcPEGamma % 2) Parallelization.ProcPEGamma*=2; ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, optional); ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, critical); ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, critical); ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional); break; } // IonsInitRead ParseForParameter(verbose,FileBuffer,"RCut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.RCut), 1, critical); ParseForParameter(verbose,FileBuffer,"IsAngstroem", 0, 1, 1, int_type, &(IsAngstroem), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxTypes", 0, 1, 1, int_type, &(MaxTypes), 1, critical); if (!ParseForParameter(verbose,FileBuffer,"RelativeCoord", 0, 1, 1, int_type, &(RelativeCoord) , 1, optional)) RelativeCoord = 0; if (!ParseForParameter(verbose,FileBuffer,"StructOpt", 0, 1, 1, int_type, &(StructOpt), 1, optional)) StructOpt = 0; } // 3. parse the molecule in molecule *mol = World::getInstance().createMolecule(); mol->ActiveFlag = true; // TODO: Remove the insertion into molecule when saving does not depend on them anymore. Also, remove molecule.hpp include World::getInstance().getMolecules()->insert(mol); LoadMolecule(mol, FileBuffer, World::getInstance().getPeriode(), FastParsing); // refresh atom::nr and atom::name mol->getAtomCount(); // 4. dissect the molecule into connected subgraphs // don't do this here ... //FragmentationSubgraphDissection(); //delete(mol); delete(FileBuffer); } /** * Saves the \a atoms into as a PCP file. * * \param file where to save the state * \param atoms atoms to store */ void FormatParser< pcp >::save(std::ostream* file, const std::vector &atoms) { LOG(0, "Saving changes to pcp."); const RealSpaceMatrix &domain = World::getInstance().getDomain().getM(); ThermoStatContainer *Thermostats = World::getInstance().getThermostats(); if (!file->fail()) { // calculate number of Psis CalculateOrbitals(atoms); *file << "# ParallelCarParinello - main configuration file - created with molecuilder" << endl; *file << endl; if (Paths.mainname != NULL) *file << "mainname\t" << Paths.mainname << "\t# programm name (for runtime files)" << endl; else *file << "mainname\tpcp\t# programm name (for runtime files)" << endl; if (Paths.defaultpath != NULL) *file << "defaultpath\t" << Paths.defaultpath << "\t# where to put files during runtime" << endl; else *file << "defaultpath\tnot specified\t# where to put files during runtime" << endl; if (Paths.pseudopotpath != NULL) *file << "pseudopotpath\t" << Paths.pseudopotpath << "\t# where to find pseudopotentials" << endl; else *file << "pseudopotpath\tnot specified\t# where to find pseudopotentials" << endl; *file << endl; *file << "ProcPEGamma\t" << Parallelization.ProcPEGamma << "\t# for parallel computing: share constants" << endl; *file << "ProcPEPsi\t" << Parallelization.ProcPEPsi << "\t# for parallel computing: share wave functions" << endl; *file << "DoOutVis\t" << Switches.DoOutVis << "\t# Output data for OpenDX" << endl; *file << "DoOutMes\t" << Switches.DoOutMes << "\t# Output data for measurements" << endl; *file << "DoOutOrbitals\t" << Switches.DoOutOrbitals << "\t# Output all Orbitals" << endl; *file << "DoOutCurr\t" << Switches.DoOutCurrent << "\t# Ouput current density for OpenDx" << endl; *file << "DoOutNICS\t" << Switches.DoOutNICS << "\t# Output Nucleus independent current shieldings" << endl; *file << "DoPerturbation\t" << Switches.DoPerturbation << "\t# Do perturbation calculate and determine susceptibility and shielding" << endl; *file << "DoFullCurrent\t" << Switches.DoFullCurrent << "\t# Do full perturbation" << endl; *file << "DoConstrainedMD\t" << Switches.DoConstrainedMD << "\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD" << endl; ASSERT(Thermostats != NULL, "FormatParser< pcp >::save() - Thermostats not initialized!"); *file << "Thermostat\t" << Thermostats->activeThermostat->name() << "\t"; *file << Thermostats->activeThermostat->writeParams(); *file << "\t# Which Thermostat and its parameters to use in MD case." << endl; *file << "CommonWannier\t" << LocalizedOrbitals.CommonWannier << "\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center" << endl; *file << "SawtoothStart\t" << LocalizedOrbitals.SawtoothStart << "\t# Absolute value for smooth transition at cell border " << endl; *file << "VectorPlane\t" << LocalizedOrbitals.VectorPlane << "\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot" << endl; *file << "VectorCut\t" << LocalizedOrbitals.VectorCut << "\t# Cut plane axis value" << endl; *file << "AddGramSch\t" << LocalizedOrbitals.UseAddGramSch << "\t# Additional GramSchmidtOrtogonalization to be safe" << endl; *file << "Seed\t\t" << LocalizedOrbitals.Seed << "\t# initial value for random seed for Psi coefficients" << endl; *file << endl; *file << "MaxOuterStep\t" << StepCounts.MaxOuterStep << "\t# number of MolecularDynamics/Structure optimization steps" << endl; *file << "Deltat\t" << Deltat << "\t# time per MD step" << endl; *file << "OutVisStep\t" << StepCounts.OutVisStep << "\t# Output visual data every ...th step" << endl; *file << "OutSrcStep\t" << StepCounts.OutSrcStep << "\t# Output \"restart\" data every ..th step" << endl; *file << "TargetTemp\t" << Thermostats->TargetTemp << "\t# Target temperature" << endl; *file << "MaxPsiStep\t" << StepCounts.MaxPsiStep << "\t# number of Minimisation steps per state (0 - default)" << endl; *file << "EpsWannier\t" << LocalizedOrbitals.EpsWannier << "\t# tolerance value for spread minimisation of orbitals" << endl; *file << endl; *file << "# Values specifying when to stop" << endl; *file << "MaxMinStep\t" << StepCounts.MaxMinStep << "\t# Maximum number of steps" << endl; *file << "RelEpsTotalE\t" << StepCounts.RelEpsTotalEnergy << "\t# relative change in total energy" << endl; *file << "RelEpsKineticE\t" << StepCounts.RelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl; *file << "MaxMinStopStep\t" << StepCounts.MaxMinStopStep << "\t# check every ..th steps" << endl; *file << "MaxMinGapStopStep\t" << StepCounts.MaxMinGapStopStep << "\t# check every ..th steps" << endl; *file << endl; *file << "# Values specifying when to stop for INIT, otherwise same as above" << endl; *file << "MaxInitMinStep\t" << StepCounts.MaxInitMinStep << "\t# Maximum number of steps" << endl; *file << "InitRelEpsTotalE\t" << StepCounts.InitRelEpsTotalEnergy << "\t# relative change in total energy" << endl; *file << "InitRelEpsKineticE\t" << StepCounts.InitRelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl; *file << "InitMaxMinStopStep\t" << StepCounts.InitMaxMinStopStep << "\t# check every ..th steps" << endl; *file << "InitMaxMinGapStopStep\t" << StepCounts.InitMaxMinGapStopStep << "\t# check every ..th steps" << endl; *file << endl; *file << "BoxLength\t\t\t# (Length of a unit cell)" << endl; *file << domain.at(0,0) << "\t" << endl; *file << domain.at(1,0) << "\t" << domain.at(1,1) << "\t" << endl; *file << domain.at(2,0) << "\t" << domain.at(2,1) << "\t" << domain.at(2,2) << "\t" << endl; // FIXME *file << endl; *file << "ECut\t\t" << PlaneWaveSpecifics.ECut << "\t# energy cutoff for discretization in Hartrees" << endl; *file << "MaxLevel\t" << PlaneWaveSpecifics.MaxLevel << "\t# number of different levels in the code, >=2" << endl; *file << "Level0Factor\t" << PlaneWaveSpecifics.Lev0Factor << "\t# factor by which node number increases from S to 0 level" << endl; *file << "RiemannTensor\t" << PlaneWaveSpecifics.RiemannTensor << "\t# (Use metric)" << endl; switch (PlaneWaveSpecifics.RiemannTensor) { case 0: //UseNoRT break; case 1: // UseRT *file << "RiemannLevel\t" << PlaneWaveSpecifics.RiemannLevel << "\t# Number of Riemann Levels" << endl; *file << "LevRFactor\t" << PlaneWaveSpecifics.LevRFactor << "\t# factor by which node number increases from 0 to R level from" << endl; break; } *file << "PsiType\t\t" << PlaneWaveSpecifics.PsiType << "\t# 0 - doubly occupied, 1 - SpinUp,SpinDown" << endl; *file << "MaxPsiDouble\t" << PlaneWaveSpecifics.MaxPsiDouble << "\t# here: specifying both maximum number of SpinUp- and -Down-states" << endl; *file << "PsiMaxNoUp\t" << PlaneWaveSpecifics.PsiMaxNoUp << "\t# here: specifying maximum number of SpinUp-states" << endl; *file << "PsiMaxNoDown\t" << PlaneWaveSpecifics.PsiMaxNoDown << "\t# here: specifying maximum number of SpinDown-states" << endl; *file << "AddPsis\t\t" << PlaneWaveSpecifics.AddPsis << "\t# Additional unoccupied Psis for bandgap determination" << endl; *file << endl; *file << "RCut\t\t" << PlaneWaveSpecifics.RCut << "\t# R-cut for the ewald summation" << endl; *file << "StructOpt\t" << StructOpt << "\t# Do structure optimization beforehand" << endl; *file << "IsAngstroem\t" << IsAngstroem << "\t# 0 - Bohr, 1 - Angstroem" << endl; *file << "RelativeCoord\t" << RelativeCoord << "\t# whether ion coordinates are relative (1) or absolute (0)" << endl; map ZtoIndexMap; OutputElements(file, atoms, ZtoIndexMap); OutputAtoms(file, atoms, ZtoIndexMap); } else { ELOG(1, "Cannot open output file."); } } /** Counts necessary number of valence electrons and returns number and SpinType. * \param &allatoms all atoms to store away */ void FormatParser< pcp >::CalculateOrbitals(const std::vector &allatoms) { PlaneWaveSpecifics.MaxPsiDouble = PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.PsiType = 0; for (vector::const_iterator runner = allatoms.begin(); runner != allatoms.end(); ++runner) { PlaneWaveSpecifics.MaxPsiDouble += (*runner)->getType()->getNoValenceOrbitals(); } cout << PlaneWaveSpecifics.MaxPsiDouble << endl; PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.MaxPsiDouble/2 + (PlaneWaveSpecifics.MaxPsiDouble % 2); PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.MaxPsiDouble/2; PlaneWaveSpecifics.MaxPsiDouble /= 2; PlaneWaveSpecifics.PsiType = (PlaneWaveSpecifics.PsiMaxNoDown == PlaneWaveSpecifics.PsiMaxNoUp) ? 0 : 1; if ((PlaneWaveSpecifics.PsiType == 1) && (Parallelization.ProcPEPsi < 2) && ((PlaneWaveSpecifics.PsiMaxNoDown != 1) || (PlaneWaveSpecifics.PsiMaxNoUp != 0))) { Parallelization.ProcPEGamma /= 2; Parallelization.ProcPEPsi *= 2; } else { Parallelization.ProcPEGamma *= Parallelization.ProcPEPsi; Parallelization.ProcPEPsi = 1; } cout << PlaneWaveSpecifics.PsiMaxNoDown << ">" << PlaneWaveSpecifics.PsiMaxNoUp << endl; if (PlaneWaveSpecifics.PsiMaxNoDown > PlaneWaveSpecifics.PsiMaxNoUp) { StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoDown; cout << PlaneWaveSpecifics.PsiMaxNoDown << " " << StepCounts.InitMaxMinStopStep << endl; } else { StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoUp; cout << PlaneWaveSpecifics.PsiMaxNoUp << " " << StepCounts.InitMaxMinStopStep << endl; } }; /** Prints MaxTypes and list of elements to strea, * \param *file output stream * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms() * \param &ZtoIndexMap map of which atoms belong to which ion number */ void FormatParser< pcp >::OutputElements(ostream *file, const std::vector &allatoms, map &ZtoIndexMap) { map PresentElements; pair < map::iterator, bool > Inserter; // insert all found elements into the map for (vector::const_iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) { Inserter = PresentElements.insert(pair((*AtomRunner)->getType()->getAtomicNumber(), 1)); if (!Inserter.second) // increase if present Inserter.first->second += 1; } // print total element count *file << "MaxTypes\t" << PresentElements.size() << "\t# maximum number of different ion types" << endl; *file << endl; // print element list *file << "# Ion type data (PP = PseudoPotential, Z = atomic number)" << endl; *file << "#Ion_TypeNr.\tAmount\tZ\tRGauss\tL_Max(PP)L_Loc(PP)IonMass\t# chemical name, symbol" << endl; // elements are due to map sorted by Z value automatically, hence just count through them int counter = 1; for(map::const_iterator iter=PresentElements.begin(); iter!=PresentElements.end();++iter) { const element * const elemental = World::getInstance().getPeriode()->FindElement(iter->first); ZtoIndexMap.insert( pair (iter->first, counter) ); *file << "Ion_Type" << counter++ << "\t" << iter->second << "\t" << elemental->getAtomicNumber() << "\t1.0\t3\t3\t" << fixed << setprecision(11) << showpoint << elemental->getMass() << "\t" << elemental->getName() << "\t" << elemental->getSymbol() <::OutputAtoms(ostream *file, const std::vector &allatoms, map &ZtoIndexMap) { *file << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl; map ZtoCountMap; map AtomtoCountMap; pair < map::iterator, bool > Inserter; bool ContinueStatus = true; bool AddNewLine = false; size_t step = 0; do { int nr = 0; ContinueStatus = false; for (vector::const_iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) { if ((*AtomRunner)->getTrajectorySize() > step) { if (step == 0) { // fill list only on first step Inserter = ZtoCountMap.insert( pair((*AtomRunner)->getType()->getAtomicNumber(), 1) ); if (!Inserter.second) Inserter.first->second += 1; AtomtoCountMap.insert( make_pair((*AtomRunner), Inserter.first->second) ); } if (AddNewLine) { AddNewLine = false; *file << endl; } const int Z = (*AtomRunner)->getType()->getAtomicNumber(); *file << "Ion_Type" << ZtoIndexMap[Z] << "_" << AtomtoCountMap[(*AtomRunner)] << "\t" << fixed << setprecision(9) << showpoint; *file << (*AtomRunner)->atStep(0, step) << "\t" << (*AtomRunner)->atStep(1,step) << "\t" << (*AtomRunner)->atStep(2,step); *file << "\t" << (int)((*AtomRunner)->getFixedIon()); if ((*AtomRunner)->getAtomicVelocityAtStep(step).Norm() > MYEPSILON) *file << "\t" << scientific << setprecision(6) << (*AtomRunner)->getAtomicVelocityAtStep(step)[0] << "\t" << (*AtomRunner)->getAtomicVelocityAtStep(step)[1] << "\t" << (*AtomRunner)->getAtomicVelocityAtStep(step)[2] << "\t"; *file << " # molecule nr " << nr++ << endl; ContinueStatus = true; // as long as a single atom still has trajectory points, continue } } ++step; if (ContinueStatus) AddNewLine = true; } while (ContinueStatus); } /** Reading of Thermostat related values from parameter file. * \param *fb file buffer containing the config file */ void FormatParser< pcp >::ParseThermostats(class ConfigFileBuffer * const fb) { char * const thermo = new char[12]; const int verbose = 0; class ThermoStatContainer *Thermostats = World::getInstance().getThermostats(); // read desired Thermostat from file along with needed additional parameters if (ParseForParameter(verbose,fb,"Thermostat", 0, 1, 1, string_type, thermo, 1, optional)) { Thermostats->makeActive(thermo,fb); } else { if ((Thermostats->TargetTemp != 0)) LOG(2, "No thermostat chosen despite finite temperature MD, falling back to None."); Thermostats->chooseNone(); } delete[](thermo); }; bool FormatParser< pcp >::operator==(const FormatParser< pcp >& b) const { ASSERT(Parallelization.ProcPEGamma == b.Parallelization.ProcPEGamma, "PcpParser ==: ProcPEGamma not"); ASSERT(Parallelization.ProcPEPsi == b.Parallelization.ProcPEPsi, "PcpParser ==: ProcPEPsi not"); if ((Paths.databasepath != NULL) && (b.Paths.databasepath != NULL)) ASSERT(strcmp(Paths.databasepath, b.Paths.databasepath), "PcpParser ==: databasepath not"); if ((Paths.configname != NULL) && (b.Paths.configname != NULL)) ASSERT(strcmp(Paths.configname, b.Paths.configname), "PcpParser ==: configname not"); if ((Paths.mainname != NULL) && (b.Paths.mainname != NULL)) ASSERT(strcmp(Paths.mainname, b.Paths.mainname), "PcpParser ==: mainname not"); if ((Paths.defaultpath != NULL) && (b.Paths.defaultpath != NULL)) ASSERT(strcmp(Paths.defaultpath, b.Paths.defaultpath), "PcpParser ==: defaultpath not"); if ((Paths.pseudopotpath != NULL) && (b.Paths.pseudopotpath != NULL)) ASSERT(strcmp(Paths.pseudopotpath, b.Paths.pseudopotpath), "PcpParser ==: pseudopotpath not"); ASSERT(Switches.DoConstrainedMD == b.Switches.DoConstrainedMD, "PcpParser ==: DoConstrainedMD not"); ASSERT(Switches.DoOutVis == b.Switches.DoOutVis, "PcpParser ==: DoOutVis not"); ASSERT(Switches.DoOutMes == b.Switches.DoOutMes, "PcpParser ==: DoOutMes not"); ASSERT(Switches.DoOutNICS == b.Switches.DoOutNICS, "PcpParser ==: DoOutNICS not"); ASSERT(Switches.DoOutOrbitals == b.Switches.DoOutOrbitals, "PcpParser ==: DoOutOrbitals not"); ASSERT(Switches.DoOutCurrent == b.Switches.DoOutCurrent, "PcpParser ==: DoOutCurrent not"); ASSERT(Switches.DoFullCurrent == b.Switches.DoFullCurrent, "PcpParser ==: DoFullCurrent not"); ASSERT(Switches.DoPerturbation == b.Switches.DoPerturbation, "PcpParser ==: DoPerturbation not"); ASSERT(Switches.DoWannier == b.Switches.DoWannier, "PcpParser ==: DoWannier not"); ASSERT(LocalizedOrbitals.CommonWannier == b.LocalizedOrbitals.CommonWannier, "PcpParser ==: CommonWannier not"); ASSERT(LocalizedOrbitals.SawtoothStart == b.LocalizedOrbitals.SawtoothStart, "PcpParser ==: SawtoothStart not"); ASSERT(LocalizedOrbitals.VectorPlane == b.LocalizedOrbitals.VectorPlane, "PcpParser ==: VectorPlane not"); ASSERT(LocalizedOrbitals.VectorCut == b.LocalizedOrbitals.VectorCut, "PcpParser ==: VectorCut not"); ASSERT(LocalizedOrbitals.UseAddGramSch == b.LocalizedOrbitals.UseAddGramSch, "PcpParser ==: UseAddGramSch not"); ASSERT(LocalizedOrbitals.Seed == b.LocalizedOrbitals.Seed, "PcpParser ==: Seed not"); ASSERT(LocalizedOrbitals.EpsWannier == b.LocalizedOrbitals.EpsWannier, "PcpParser ==: EpsWannier not"); ASSERT(StepCounts.MaxMinStopStep == b.StepCounts.MaxMinStopStep, "PcpParser ==: MaxMinStopStep not"); ASSERT(StepCounts.InitMaxMinStopStep == b.StepCounts.InitMaxMinStopStep, "PcpParser ==: InitMaxMinStopStep not"); ASSERT(StepCounts.OutVisStep == b.StepCounts.OutVisStep, "PcpParser ==: OutVisStep not"); ASSERT(StepCounts.OutSrcStep == b.StepCounts.OutSrcStep, "PcpParser ==: OutSrcStep not"); ASSERT(StepCounts.MaxPsiStep == b.StepCounts.MaxPsiStep, "PcpParser ==: MaxPsiStep not"); ASSERT(StepCounts.MaxOuterStep == b.StepCounts.MaxOuterStep, "PcpParser ==: MaxOuterStep not"); ASSERT(StepCounts.MaxMinStep == b.StepCounts.MaxMinStep, "PcpParser ==: MaxMinStep not"); ASSERT(StepCounts.RelEpsTotalEnergy == b.StepCounts.RelEpsTotalEnergy, "PcpParser ==: RelEpsTotalEnergy not"); ASSERT(StepCounts.MaxMinGapStopStep == b.StepCounts.MaxMinGapStopStep, "PcpParser ==: MaxMinGapStopStep not"); ASSERT(StepCounts.MaxInitMinStep == b.StepCounts.MaxInitMinStep, "PcpParser ==: MaxInitMinStep not"); ASSERT(StepCounts.InitRelEpsTotalEnergy == b.StepCounts.InitRelEpsTotalEnergy, "PcpParser ==: InitRelEpsTotalEnergy not"); ASSERT(StepCounts.InitRelEpsKineticEnergy == b.StepCounts.InitRelEpsKineticEnergy, "PcpParser ==: InitRelEpsKineticEnergy not"); ASSERT(StepCounts.InitMaxMinGapStopStep == b.StepCounts.InitMaxMinGapStopStep, "PcpParser ==: InitMaxMinGapStopStep not"); ASSERT(PlaneWaveSpecifics.PsiType == b.PlaneWaveSpecifics.PsiType, "PcpParser ==: PsiType not"); ASSERT(PlaneWaveSpecifics.MaxPsiDouble == b.PlaneWaveSpecifics.MaxPsiDouble, "PcpParser ==: MaxPsiDouble not"); ASSERT(PlaneWaveSpecifics.PsiMaxNoUp == b.PlaneWaveSpecifics.PsiMaxNoUp, "PcpParser ==: PsiMaxNoUp not"); ASSERT(PlaneWaveSpecifics.PsiMaxNoDown == b.PlaneWaveSpecifics.PsiMaxNoDown, "PcpParser ==: PsiMaxNoDown not"); ASSERT(PlaneWaveSpecifics.ECut == b.PlaneWaveSpecifics.ECut, "PcpParser ==: ECut not"); ASSERT(PlaneWaveSpecifics.MaxLevel == b.PlaneWaveSpecifics.MaxLevel, "PcpParser ==: MaxLevel not"); ASSERT(PlaneWaveSpecifics.RiemannTensor == b.PlaneWaveSpecifics.RiemannTensor, "PcpParser ==: RiemannTensor not"); ASSERT(PlaneWaveSpecifics.LevRFactor == b.PlaneWaveSpecifics.LevRFactor, "PcpParser ==: LevRFactor not"); ASSERT(PlaneWaveSpecifics.RiemannLevel == b.PlaneWaveSpecifics.RiemannLevel, "PcpParser ==: RiemannLevel not"); ASSERT(PlaneWaveSpecifics.Lev0Factor == b.PlaneWaveSpecifics.Lev0Factor, "PcpParser ==: Lev0Factor not"); ASSERT(PlaneWaveSpecifics.RTActualUse == b.PlaneWaveSpecifics.RTActualUse, "PcpParser ==: RTActualUse not"); ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not"); ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not"); ASSERT(PlaneWaveSpecifics.RCut == b.PlaneWaveSpecifics.RCut, "PcpParser ==: RCut not"); ASSERT(FastParsing == b.FastParsing, "PcpParser ==: FastParsing not"); ASSERT(Deltat == b.Deltat, "PcpParser ==: Deltat not"); ASSERT(IsAngstroem == b.IsAngstroem, "PcpParser ==: IsAngstroem not"); ASSERT(RelativeCoord == b.RelativeCoord, "PcpParser ==: RelativeCoord not"); ASSERT(StructOpt == b.StructOpt, "PcpParser ==: StructOpt not"); ASSERT(MaxTypes == b.MaxTypes, "PcpParser ==: MaxTypes not"); ASSERT(basis == b.basis, "PcpParser ==: basis not"); return true; }