/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/** \file linkedcell.cpp
*
* Function implementations for the class LinkedCell_deprecated.
*
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "linkedcell.hpp"
#include "Atom/atom.hpp"
#include "CodePatterns/Verbose.hpp"
#include "CodePatterns/Range.hpp"
#include "CodePatterns/Log.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinkedCell/IPointCloud.hpp"
#include "molecule.hpp"
#include "Tesselation/tesselation.hpp"
// ========================================================= class LinkedCell_deprecated ===========================================
/** Constructor for class LinkedCell_deprecated.
*/
LinkedCell_deprecated::LinkedCell_deprecated() :
LC(NULL),
RADIUS(0.),
index(-1)
{
for(int i=0;iat(i);
min[i] = Walker->at(i);
}
set.GoToFirst();
while (!set.IsEnd()) {
Walker = set.GetPoint();
for (int i=0;iat(i))
max[i] = Walker->at(i);
if (min[i] > Walker->at(i))
min[i] = Walker->at(i);
}
set.GoToNext();
}
LOG(2, "Bounding box is " << min << " and " << max << ".");
// 2. find then number of cells per axis
for (int i=0;i(floor((max[i] - min[i])/RADIUS)+1);
}
LOG(2, "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << ".");
// 3. allocate the lists
LOG(2, "INFO: Allocating cells ... ");
if (LC != NULL) {
ELOG(1, "Linked Cell list is already allocated, I do nothing.");
return;
}
ASSERT(N[0]*N[1]*N[2] < MAX_LINKEDCELLNODES, "Number linked of linked cell nodes exceded hard-coded limit, use greater edge length!");
LC = new TesselPointSTLList[N[0]*N[1]*N[2]];
for (index=0;index(floor((Walker->at(i) - min[i])/RADIUS));
}
index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
LC[index].push_back(Walker);
//LOG(2, *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << ".");
set.GoToNext();
}
LOG(0, "done.");
LOG(1, "End of LinkedCell");
};
/** Destructor for class LinkedCell_deprecated.
*/
LinkedCell_deprecated::~LinkedCell_deprecated()
{
if (LC != NULL) {
for (index=0;index=0) && (n[i] < N[i]));
// if (!status)
// ELOG(1, "indices are out of bounds!");
return status;
};
/** Checks whether LinkedCell_deprecated::n[] plus relative offset is each within [0,N[]].
* Note that for this check we don't admonish if out of bounds.
* \param relative[NDIM] relative offset to current cell
* \return if all in intervals - true, else -false
*/
bool LinkedCell_deprecated::CheckBounds(const int relative[NDIM]) const
{
bool status = true;
for(int i=0;i=0) && (n[i]+relative[i] < N[i]));
return status;
};
/** Returns a pointer to the current cell.
* \return LinkedAtoms pointer to current cell, NULL if LinkedCell_deprecated::n[] are out of bounds.
*/
const TesselPointSTLList* LinkedCell_deprecated::GetCurrentCell() const
{
if (CheckBounds()) {
index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
return (&(LC[index]));
} else {
return NULL;
}
};
/** Returns a pointer to the current cell.
* \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell_deprecated::n[NDIM]
* \return LinkedAtoms pointer to current cell, NULL if LinkedCell_deprecated::n[]+relative[] are out of bounds.
*/
const TesselPointSTLList* LinkedCell_deprecated::GetRelativeToCurrentCell(const int relative[NDIM]) const
{
if (CheckBounds(relative)) {
index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
return (&(LC[index]));
} else {
return NULL;
}
};
/** Set the index to the cell containing a given Vector *x.
* \param *x Vector with coordinates
* \return Vector is inside bounding box - true, else - false
*/
bool LinkedCell_deprecated::SetIndexToVector(const Vector & x) const
{
for (int i=0;i(floor((Walker->at(i) - min[i])/RADIUS));
}
index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
if (CheckBounds()) {
for (TesselPointSTLList::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
status = status || ((*Runner) == Walker);
return status;
} else {
ELOG(1, "Node at " << *Walker << " is out of bounds.");
return false;
}
};
/** Calculates the interval bounds of the linked cell grid.
* \param lower lower bounds
* \param upper upper bounds
* \param step how deep to check the neighbouring cells (i.e. number of layers to check)
*/
void LinkedCell_deprecated::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
{
for (int i=0;i= N[i])
lower[i] = N[i]-1;
upper[i] = n[i]+step;
if (upper[i] >= N[i])
upper[i] = N[i]-1;
if (upper[i] < 0)
upper[i] = 0;
//LOG(0, "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]");
}
};
/** Returns a list with all neighbours from the current LinkedCell_deprecated::index.
* \param distance (if no distance, then adjacent cells are taken)
* \return list of tesselpoints
*/
TesselPointSTLList* LinkedCell_deprecated::GetallNeighbours(const double distance) const
{
int Nlower[NDIM], Nupper[NDIM];
TesselPoint *Walker = NULL;
TesselPointSTLList *TesselList = new TesselPointSTLList;
// then go through the current and all neighbouring cells and check the contained points for possible candidates
const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
GetNeighbourBounds(Nlower, Nupper, step);
for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
const TesselPointSTLList *List = GetCurrentCell();
//LOG(1, "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << ".");
if (List != NULL) {
for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
Walker = *Runner;
TesselList->push_back(Walker);
}
}
}
return TesselList;
};
/** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell_deprecated's domain
* Note that as we have to check distance from every corner of the closest cell, this function is faw more
* expensive and if Vector is known to be inside LinkedCell_deprecated's domain, then SetIndexToVector() should be used.
* \param *x Vector with coordinates
* \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
*/
double LinkedCell_deprecated::SetClosestIndexToOutsideVector(const Vector * const x) const
{
for (int i=0;iat(i) - min[i])/RADIUS);
if (n[i] < 0)
n[i] = 0;
if (n[i] >= N[i])
n[i] = N[i]-1;
}
// calculate distance of cell to vector
double distanceSquared = 0.;
bool outside = true; // flag whether x is found in- or outside of LinkedCell_deprecated's domain/closest cell
Vector corner; // current corner of closest cell
Vector tester; // Vector pointing from corner to center of closest cell
Vector Distance; // Vector from corner of closest cell to x
Vector center; // center of the closest cell
for (int i=0;i 2.*radius) {
ELOG(1, "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box.");
return TesselList;
} else
LOG(3, "DEBUG: Distance of closest cell to center of sphere with radius " << radius << " is " << dist << ".");
// gather all neighbours first, then look who fulfills distance criteria
NeighbourList = GetallNeighbours(2.*radius-dist);
//LOG(1, "I found " << NeighbourList->size() << " neighbours to check.");
if (NeighbourList != NULL) {
for (TesselPointSTLList::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
Walker = *Runner;
//LOG(1, "Current neighbour is at " << *Walker->node << ".");
if ((Walker->DistanceSquared(*center) - radiusSquared) < MYEPSILON) {
TesselList->push_back(Walker);
}
}
delete NeighbourList;
} else
ELOG(2, "Around vector " << *center << " there are no atoms.");
return TesselList;
};