1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * gslmatrix.cpp
|
---|
10 | *
|
---|
11 | * Created on: Jan 8, 2010
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "Helpers/MemDebug.hpp"
|
---|
21 |
|
---|
22 | using namespace std;
|
---|
23 |
|
---|
24 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
25 | #include "Helpers/helpers.hpp"
|
---|
26 | #include "Helpers/fast_functions.hpp"
|
---|
27 |
|
---|
28 | #include <cassert>
|
---|
29 | #include <gsl/gsl_linalg.h>
|
---|
30 |
|
---|
31 | /** Constructor of class GSLMatrix.
|
---|
32 | * Allocates GSL structures
|
---|
33 | * \param m dimension of matrix
|
---|
34 | */
|
---|
35 | GSLMatrix::GSLMatrix(size_t m, size_t n) : rows(m), columns(n)
|
---|
36 | {
|
---|
37 | matrix = gsl_matrix_calloc(rows, columns);
|
---|
38 | };
|
---|
39 |
|
---|
40 | /** Copy constructor of class GSLMatrix.
|
---|
41 | * Allocates GSL structures and copies components from \a *src.
|
---|
42 | * \param *src source matrix
|
---|
43 | */
|
---|
44 | GSLMatrix::GSLMatrix(const GSLMatrix * const src) : rows(src->rows), columns(src->columns)
|
---|
45 | {
|
---|
46 | matrix = gsl_matrix_alloc(rows, columns);
|
---|
47 | gsl_matrix_memcpy (matrix, src->matrix);
|
---|
48 | };
|
---|
49 |
|
---|
50 | /** Destructor of class GSLMatrix.
|
---|
51 | * Frees GSL structures
|
---|
52 | */
|
---|
53 | GSLMatrix::~GSLMatrix()
|
---|
54 | {
|
---|
55 | gsl_matrix_free(matrix);
|
---|
56 | rows = 0;
|
---|
57 | columns = 0;
|
---|
58 | };
|
---|
59 |
|
---|
60 | /** Assignment operator.
|
---|
61 | * \param &rhs right hand side
|
---|
62 | * \return object itself
|
---|
63 | */
|
---|
64 | GSLMatrix& GSLMatrix::operator=(const GSLMatrix& rhs)
|
---|
65 | {
|
---|
66 | if (this == &rhs) // not necessary here, but identity assignment check is generally a good idea
|
---|
67 | return *this;
|
---|
68 | assert(rows == rhs.rows && columns == rhs.columns && "Number of rows and columns do not match!");
|
---|
69 |
|
---|
70 | gsl_matrix_memcpy (matrix, rhs.matrix);
|
---|
71 |
|
---|
72 | return *this;
|
---|
73 | };
|
---|
74 |
|
---|
75 | /* ============================ Accessing =============================== */
|
---|
76 | /** This function sets the matrix from a double array.
|
---|
77 | * Creates a matrix view of the array and performs a memcopy.
|
---|
78 | * \param *x array of values (no dimension check is performed)
|
---|
79 | */
|
---|
80 | void GSLMatrix::SetFromDoubleArray(double * x)
|
---|
81 | {
|
---|
82 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns);
|
---|
83 | gsl_matrix_memcpy (matrix, &m.matrix);
|
---|
84 | };
|
---|
85 |
|
---|
86 | /** This function returns the i-th element of a matrix.
|
---|
87 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and 0 is returned.
|
---|
88 | * \param m row index
|
---|
89 | * \param n colum index
|
---|
90 | * \return (m,n)-th element of matrix
|
---|
91 | */
|
---|
92 | double GSLMatrix::Get(size_t m, size_t n)
|
---|
93 | {
|
---|
94 | return gsl_matrix_get (matrix, m, n);
|
---|
95 | };
|
---|
96 |
|
---|
97 | /** This function sets the value of the \a m -th element of a matrix to \a x.
|
---|
98 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked.
|
---|
99 | * \param m row index
|
---|
100 | * \param m column index
|
---|
101 | * \param x value to set element (m,n) to
|
---|
102 | */
|
---|
103 | void GSLMatrix::Set(size_t m, size_t n, double x)
|
---|
104 | {
|
---|
105 | gsl_matrix_set (matrix, m, n, x);
|
---|
106 | };
|
---|
107 |
|
---|
108 | /** These functions return a pointer to the \a m-th element of a matrix.
|
---|
109 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
110 | * \param m index
|
---|
111 | * \return pointer to \a m-th element
|
---|
112 | */
|
---|
113 | double *GSLMatrix::Pointer(size_t m, size_t n)
|
---|
114 | {
|
---|
115 | return gsl_matrix_ptr (matrix, m, n);
|
---|
116 | };
|
---|
117 |
|
---|
118 | /** These functions return a constant pointer to the \a m-th element of a matrix.
|
---|
119 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
120 | * \param m index
|
---|
121 | * \return const pointer to \a m-th element
|
---|
122 | */
|
---|
123 | const double *GSLMatrix::const_Pointer(size_t m, size_t n)
|
---|
124 | {
|
---|
125 | return gsl_matrix_const_ptr (matrix, m, n);
|
---|
126 | };
|
---|
127 |
|
---|
128 | /* ========================== Initializing =============================== */
|
---|
129 | /** This function sets all the elements of the matrix to the value \a x.
|
---|
130 | * \param *x
|
---|
131 | */
|
---|
132 | void GSLMatrix::SetAll(double x)
|
---|
133 | {
|
---|
134 | gsl_matrix_set_all (matrix, x);
|
---|
135 | };
|
---|
136 |
|
---|
137 | /** This function sets all the elements of the matrix to zero.
|
---|
138 | */
|
---|
139 | void GSLMatrix::SetZero()
|
---|
140 | {
|
---|
141 | gsl_matrix_set_zero (matrix);
|
---|
142 | };
|
---|
143 |
|
---|
144 | /** This function sets the elements of the matrix to the corresponding elements of the identity matrix, \f$m(i,j) = \delta(i,j)\f$, i.e. a unit diagonal with all off-diagonal elements zero.
|
---|
145 | * This applies to both square and rectangular matrices.
|
---|
146 | */
|
---|
147 | void GSLMatrix::SetIdentity()
|
---|
148 | {
|
---|
149 | gsl_matrix_set_identity (matrix);
|
---|
150 | };
|
---|
151 |
|
---|
152 | /* ====================== Exchanging elements ============================ */
|
---|
153 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place.
|
---|
154 | * \param i i-th row to swap with ...
|
---|
155 | * \param j ... j-th row to swap against
|
---|
156 | */
|
---|
157 | bool GSLMatrix::SwapRows(size_t i, size_t j)
|
---|
158 | {
|
---|
159 | return (gsl_matrix_swap_rows (matrix, i, j) == GSL_SUCCESS);
|
---|
160 | };
|
---|
161 |
|
---|
162 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place.
|
---|
163 | * \param i i-th column to swap with ...
|
---|
164 | * \param j ... j-th column to swap against
|
---|
165 | */
|
---|
166 | bool GSLMatrix::SwapColumns(size_t i, size_t j)
|
---|
167 | {
|
---|
168 | return (gsl_matrix_swap_columns (matrix, i, j) == GSL_SUCCESS);
|
---|
169 | };
|
---|
170 |
|
---|
171 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place.
|
---|
172 | * The matrix must be square for this operation to be possible.
|
---|
173 | * \param i i-th row to swap with ...
|
---|
174 | * \param j ... j-th column to swap against
|
---|
175 | */
|
---|
176 | bool GSLMatrix::SwapRowColumn(size_t i, size_t j)
|
---|
177 | {
|
---|
178 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible.");
|
---|
179 | return (gsl_matrix_swap_rowcol (matrix, i, j) == GSL_SUCCESS);
|
---|
180 | };
|
---|
181 |
|
---|
182 | /** This function transposes the matrix.
|
---|
183 | * Note that the function is extended to the non-square case, where the matrix is re-allocated and copied.
|
---|
184 | */
|
---|
185 | bool GSLMatrix::Transpose()
|
---|
186 | {
|
---|
187 | if (rows == columns)// if square, use GSL
|
---|
188 | return (gsl_matrix_transpose (matrix) == GSL_SUCCESS);
|
---|
189 | else { // otherwise we have to copy a bit
|
---|
190 | gsl_matrix *dest = gsl_matrix_alloc(columns, rows);
|
---|
191 | for (size_t i=0;i<rows; i++)
|
---|
192 | for (size_t j=0;j<columns;j++) {
|
---|
193 | gsl_matrix_set(dest, j,i, gsl_matrix_get(matrix, i,j) );
|
---|
194 | }
|
---|
195 | gsl_matrix_free(matrix);
|
---|
196 | matrix = dest;
|
---|
197 | flip(rows, columns);
|
---|
198 | return true;
|
---|
199 | }
|
---|
200 | };
|
---|
201 |
|
---|
202 | /* ============================ Properties ============================== */
|
---|
203 | /** Checks whether matrix' elements are strictly null.
|
---|
204 | * \return true - is null, false - else
|
---|
205 | */
|
---|
206 | bool GSLMatrix::IsNull()
|
---|
207 | {
|
---|
208 | return gsl_matrix_isnull (matrix);
|
---|
209 | };
|
---|
210 |
|
---|
211 | /** Checks whether matrix' elements are strictly positive.
|
---|
212 | * \return true - is positive, false - else
|
---|
213 | */
|
---|
214 | bool GSLMatrix::IsPositive()
|
---|
215 | {
|
---|
216 | return gsl_matrix_ispos (matrix);
|
---|
217 | };
|
---|
218 |
|
---|
219 | /** Checks whether matrix' elements are strictly negative.
|
---|
220 | * \return true - is negative, false - else
|
---|
221 | */
|
---|
222 | bool GSLMatrix::IsNegative()
|
---|
223 | {
|
---|
224 | return gsl_matrix_isneg (matrix);
|
---|
225 | };
|
---|
226 |
|
---|
227 | /** Checks whether matrix' elements are strictly non-negative.
|
---|
228 | * \return true - is non-negative, false - else
|
---|
229 | */
|
---|
230 | bool GSLMatrix::IsNonNegative()
|
---|
231 | {
|
---|
232 | return gsl_matrix_isnonneg (matrix);
|
---|
233 | };
|
---|
234 |
|
---|
235 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite.
|
---|
236 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite.
|
---|
237 | * \return true - matrix is positive-definite, false - else
|
---|
238 | */
|
---|
239 | bool GSLMatrix::IsPositiveDefinite()
|
---|
240 | {
|
---|
241 | if (rows != columns) // only possible for square matrices.
|
---|
242 | return false;
|
---|
243 | else
|
---|
244 | return (gsl_linalg_cholesky_decomp (matrix) != GSL_EDOM);
|
---|
245 | };
|
---|
246 |
|
---|
247 |
|
---|
248 | /** Calculates the determinant of the matrix.
|
---|
249 | * if matrix is square, uses LU decomposition.
|
---|
250 | */
|
---|
251 | double GSLMatrix::Determinant()
|
---|
252 | {
|
---|
253 | int signum = 0;
|
---|
254 | assert (rows == columns && "Determinant can only be calculated for square matrices.");
|
---|
255 | gsl_permutation *p = gsl_permutation_alloc(rows);
|
---|
256 | gsl_linalg_LU_decomp(matrix, p, &signum);
|
---|
257 | gsl_permutation_free(p);
|
---|
258 | return gsl_linalg_LU_det(matrix, signum);
|
---|
259 | };
|
---|
260 |
|
---|