1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * gslmatrix.cpp
|
---|
10 | *
|
---|
11 | * Created on: Jan 8, 2010
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "Helpers/MemDebug.hpp"
|
---|
21 |
|
---|
22 | using namespace std;
|
---|
23 |
|
---|
24 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
25 | #include "Helpers/helpers.hpp"
|
---|
26 | #include "Helpers/fast_functions.hpp"
|
---|
27 |
|
---|
28 | #include <cassert>
|
---|
29 | #include <iostream>
|
---|
30 | #include <gsl/gsl_linalg.h>
|
---|
31 | #include <gsl/gsl_blas.h>
|
---|
32 | #include <gsl/gsl_eigen.h>
|
---|
33 | #include <gsl/gsl_matrix.h>
|
---|
34 | #include <gsl/gsl_vector.h>
|
---|
35 |
|
---|
36 | /** Constructor of class GSLMatrix.
|
---|
37 | * Allocates GSL structures
|
---|
38 | * \param m dimension of matrix
|
---|
39 | */
|
---|
40 | GSLMatrix::GSLMatrix(size_t m, size_t n) : rows(m), columns(n)
|
---|
41 | {
|
---|
42 | matrix = gsl_matrix_calloc(rows, columns);
|
---|
43 | };
|
---|
44 |
|
---|
45 | /** Copy constructor of class GSLMatrix.
|
---|
46 | * Allocates GSL structures and copies components from \a *src.
|
---|
47 | * \param *src source matrix
|
---|
48 | */
|
---|
49 | GSLMatrix::GSLMatrix(const GSLMatrix * const src) : rows(src->rows), columns(src->columns)
|
---|
50 | {
|
---|
51 | matrix = gsl_matrix_alloc(rows, columns);
|
---|
52 | gsl_matrix_memcpy (matrix, src->matrix);
|
---|
53 | };
|
---|
54 |
|
---|
55 | /** Copy constructor of class GSLMatrix.
|
---|
56 | * We take over pointer to gsl_matrix and set the parameter pointer to NULL
|
---|
57 | * afterwards.
|
---|
58 | * \param m row count
|
---|
59 | * \param n column count
|
---|
60 | * \param *&src source gsl_matrix
|
---|
61 | */
|
---|
62 | GSLMatrix::GSLMatrix(size_t m, size_t n, gsl_matrix *&src) :
|
---|
63 | rows(m),
|
---|
64 | columns(n)
|
---|
65 | {
|
---|
66 | matrix = src;
|
---|
67 | src = NULL;
|
---|
68 | };
|
---|
69 |
|
---|
70 | /** Destructor of class GSLMatrix.
|
---|
71 | * Frees GSL structures
|
---|
72 | */
|
---|
73 | GSLMatrix::~GSLMatrix()
|
---|
74 | {
|
---|
75 | gsl_matrix_free(matrix);
|
---|
76 | rows = 0;
|
---|
77 | columns = 0;
|
---|
78 | };
|
---|
79 |
|
---|
80 | /** Assignment operator.
|
---|
81 | * \param &rhs right hand side
|
---|
82 | * \return object itself
|
---|
83 | */
|
---|
84 | GSLMatrix& GSLMatrix::operator=(const GSLMatrix& rhs)
|
---|
85 | {
|
---|
86 | if (this == &rhs) // not necessary here, but identity assignment check is generally a good idea
|
---|
87 | return *this;
|
---|
88 | assert(rows == rhs.rows && columns == rhs.columns && "Number of rows and columns do not match!");
|
---|
89 |
|
---|
90 | gsl_matrix_memcpy (matrix, rhs.matrix);
|
---|
91 |
|
---|
92 | return *this;
|
---|
93 | };
|
---|
94 |
|
---|
95 | /* ============================ Accessing =============================== */
|
---|
96 | /** This function sets the matrix from a double array.
|
---|
97 | * Creates a matrix view of the array and performs a memcopy.
|
---|
98 | * \param *x array of values (no dimension check is performed)
|
---|
99 | */
|
---|
100 | void GSLMatrix::SetFromDoubleArray(double * x)
|
---|
101 | {
|
---|
102 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns);
|
---|
103 | gsl_matrix_memcpy (matrix, &m.matrix);
|
---|
104 | };
|
---|
105 |
|
---|
106 | /** This function returns the i-th element of a matrix.
|
---|
107 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and 0 is returned.
|
---|
108 | * \param m row index
|
---|
109 | * \param n colum index
|
---|
110 | * \return (m,n)-th element of matrix
|
---|
111 | */
|
---|
112 | double GSLMatrix::Get(size_t m, size_t n) const
|
---|
113 | {
|
---|
114 | return gsl_matrix_get (matrix, m, n);
|
---|
115 | };
|
---|
116 |
|
---|
117 | /** This function sets the value of the \a m -th element of a matrix to \a x.
|
---|
118 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked.
|
---|
119 | * \param m row index
|
---|
120 | * \param m column index
|
---|
121 | * \param x value to set element (m,n) to
|
---|
122 | */
|
---|
123 | void GSLMatrix::Set(size_t m, size_t n, double x)
|
---|
124 | {
|
---|
125 | gsl_matrix_set (matrix, m, n, x);
|
---|
126 | };
|
---|
127 |
|
---|
128 | /** These functions return a pointer to the \a m-th element of a matrix.
|
---|
129 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
130 | * \param m index
|
---|
131 | * \return pointer to \a m-th element
|
---|
132 | */
|
---|
133 | double *GSLMatrix::Pointer(size_t m, size_t n)
|
---|
134 | {
|
---|
135 | return gsl_matrix_ptr (matrix, m, n);
|
---|
136 | };
|
---|
137 |
|
---|
138 | /** These functions return a constant pointer to the \a m-th element of a matrix.
|
---|
139 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
140 | * \param m index
|
---|
141 | * \return const pointer to \a m-th element
|
---|
142 | */
|
---|
143 | const double *GSLMatrix::const_Pointer(size_t m, size_t n) const
|
---|
144 | {
|
---|
145 | return gsl_matrix_const_ptr (matrix, m, n);
|
---|
146 | };
|
---|
147 |
|
---|
148 | /** Returns the number of rows of the matrix.
|
---|
149 | * \return number of rows
|
---|
150 | */
|
---|
151 | size_t GSLMatrix::getRowCount() const
|
---|
152 | {
|
---|
153 | return rows;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /** Returns the number of columns of the matrix.
|
---|
157 | * \return number of columns
|
---|
158 | */
|
---|
159 | size_t GSLMatrix::getColumnCount() const
|
---|
160 | {
|
---|
161 | return columns;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /* ========================== Initializing =============================== */
|
---|
165 | /** This function sets all the elements of the matrix to the value \a x.
|
---|
166 | * \param *x
|
---|
167 | */
|
---|
168 | void GSLMatrix::SetAll(double x)
|
---|
169 | {
|
---|
170 | gsl_matrix_set_all (matrix, x);
|
---|
171 | };
|
---|
172 |
|
---|
173 | /** This function sets all the elements of the matrix to zero.
|
---|
174 | */
|
---|
175 | void GSLMatrix::SetZero()
|
---|
176 | {
|
---|
177 | gsl_matrix_set_zero (matrix);
|
---|
178 | };
|
---|
179 |
|
---|
180 | /** This function sets the elements of the matrix to the corresponding elements of the identity matrix, \f$m(i,j) = \delta(i,j)\f$, i.e. a unit diagonal with all off-diagonal elements zero.
|
---|
181 | * This applies to both square and rectangular matrices.
|
---|
182 | */
|
---|
183 | void GSLMatrix::SetIdentity()
|
---|
184 | {
|
---|
185 | gsl_matrix_set_identity (matrix);
|
---|
186 | };
|
---|
187 |
|
---|
188 | /* ====================== Exchanging elements ============================ */
|
---|
189 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place.
|
---|
190 | * \param i i-th row to swap with ...
|
---|
191 | * \param j ... j-th row to swap against
|
---|
192 | */
|
---|
193 | bool GSLMatrix::SwapRows(size_t i, size_t j)
|
---|
194 | {
|
---|
195 | return (gsl_matrix_swap_rows (matrix, i, j) == GSL_SUCCESS);
|
---|
196 | };
|
---|
197 |
|
---|
198 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place.
|
---|
199 | * \param i i-th column to swap with ...
|
---|
200 | * \param j ... j-th column to swap against
|
---|
201 | */
|
---|
202 | bool GSLMatrix::SwapColumns(size_t i, size_t j)
|
---|
203 | {
|
---|
204 | return (gsl_matrix_swap_columns (matrix, i, j) == GSL_SUCCESS);
|
---|
205 | };
|
---|
206 |
|
---|
207 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place.
|
---|
208 | * The matrix must be square for this operation to be possible.
|
---|
209 | * \param i i-th row to swap with ...
|
---|
210 | * \param j ... j-th column to swap against
|
---|
211 | */
|
---|
212 | bool GSLMatrix::SwapRowColumn(size_t i, size_t j)
|
---|
213 | {
|
---|
214 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible.");
|
---|
215 | return (gsl_matrix_swap_rowcol (matrix, i, j) == GSL_SUCCESS);
|
---|
216 | };
|
---|
217 |
|
---|
218 | /** This function transposes the matrix.
|
---|
219 | * Note that the function is extended to the non-square case, where the matrix is re-allocated and copied.
|
---|
220 | */
|
---|
221 | bool GSLMatrix::Transpose()
|
---|
222 | {
|
---|
223 | if (rows == columns)// if square, use GSL
|
---|
224 | return (gsl_matrix_transpose (matrix) == GSL_SUCCESS);
|
---|
225 | else { // otherwise we have to copy a bit
|
---|
226 | gsl_matrix *dest = gsl_matrix_alloc(columns, rows);
|
---|
227 | for (size_t i=0;i<rows; i++)
|
---|
228 | for (size_t j=0;j<columns;j++) {
|
---|
229 | gsl_matrix_set(dest, j,i, gsl_matrix_get(matrix, i,j) );
|
---|
230 | }
|
---|
231 | gsl_matrix_free(matrix);
|
---|
232 | matrix = dest;
|
---|
233 | flip(rows, columns);
|
---|
234 | return true;
|
---|
235 | }
|
---|
236 | };
|
---|
237 |
|
---|
238 | /* ============================ Properties ============================== */
|
---|
239 | /** Checks whether matrix' elements are strictly null.
|
---|
240 | * \return true - is null, false - else
|
---|
241 | */
|
---|
242 | bool GSLMatrix::IsNull() const
|
---|
243 | {
|
---|
244 | return gsl_matrix_isnull (matrix);
|
---|
245 | };
|
---|
246 |
|
---|
247 | /** Checks whether matrix' elements are strictly positive.
|
---|
248 | * \return true - is positive, false - else
|
---|
249 | */
|
---|
250 | bool GSLMatrix::IsPositive() const
|
---|
251 | {
|
---|
252 | return gsl_matrix_ispos (matrix);
|
---|
253 | };
|
---|
254 |
|
---|
255 | /** Checks whether matrix' elements are strictly negative.
|
---|
256 | * \return true - is negative, false - else
|
---|
257 | */
|
---|
258 | bool GSLMatrix::IsNegative() const
|
---|
259 | {
|
---|
260 | return gsl_matrix_isneg (matrix);
|
---|
261 | };
|
---|
262 |
|
---|
263 | /** Checks whether matrix' elements are strictly non-negative.
|
---|
264 | * \return true - is non-negative, false - else
|
---|
265 | */
|
---|
266 | bool GSLMatrix::IsNonNegative() const
|
---|
267 | {
|
---|
268 | return gsl_matrix_isnonneg (matrix);
|
---|
269 | };
|
---|
270 |
|
---|
271 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite.
|
---|
272 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite.
|
---|
273 | * \return true - matrix is positive-definite, false - else
|
---|
274 | */
|
---|
275 | bool GSLMatrix::IsPositiveDefinite() const
|
---|
276 | {
|
---|
277 | if (rows != columns) // only possible for square matrices.
|
---|
278 | return false;
|
---|
279 | else
|
---|
280 | return (gsl_linalg_cholesky_decomp (matrix) != GSL_EDOM);
|
---|
281 | };
|
---|
282 |
|
---|
283 |
|
---|
284 | /** Calculates the determinant of the matrix.
|
---|
285 | * if matrix is square, uses LU decomposition.
|
---|
286 | */
|
---|
287 | double GSLMatrix::Determinant() const
|
---|
288 | {
|
---|
289 | int signum = 0;
|
---|
290 | assert (rows == columns && "Determinant can only be calculated for square matrices.");
|
---|
291 | gsl_permutation *p = gsl_permutation_alloc(rows);
|
---|
292 | gsl_linalg_LU_decomp(matrix, p, &signum);
|
---|
293 | gsl_permutation_free(p);
|
---|
294 | return gsl_linalg_LU_det(matrix, signum);
|
---|
295 | };
|
---|
296 |
|
---|
297 |
|
---|
298 | /* ============================ Properties ============================== */
|
---|
299 |
|
---|
300 | const GSLMatrix &GSLMatrix::operator+=(const GSLMatrix &rhs)
|
---|
301 | {
|
---|
302 | gsl_matrix_add(matrix, rhs.matrix);
|
---|
303 | return *this;
|
---|
304 | }
|
---|
305 |
|
---|
306 | const GSLMatrix &GSLMatrix::operator-=(const GSLMatrix &rhs)
|
---|
307 | {
|
---|
308 | gsl_matrix_sub(matrix, rhs.matrix);
|
---|
309 | return *this;
|
---|
310 | }
|
---|
311 |
|
---|
312 | const GSLMatrix &GSLMatrix::operator*=(const GSLMatrix &rhs)
|
---|
313 | {
|
---|
314 | (*this) = (*this)*rhs;
|
---|
315 | return *this;
|
---|
316 | }
|
---|
317 |
|
---|
318 | const GSLMatrix GSLMatrix::operator+(const GSLMatrix &rhs) const
|
---|
319 | {
|
---|
320 | GSLMatrix tmp = *this;
|
---|
321 | tmp+=rhs;
|
---|
322 | return tmp;
|
---|
323 | }
|
---|
324 |
|
---|
325 | const GSLMatrix GSLMatrix::operator-(const GSLMatrix &rhs) const
|
---|
326 | {
|
---|
327 | GSLMatrix tmp = *this;
|
---|
328 | tmp-=rhs;
|
---|
329 | return tmp;
|
---|
330 | }
|
---|
331 |
|
---|
332 | const GSLMatrix GSLMatrix::operator*(const GSLMatrix &rhs) const
|
---|
333 | {
|
---|
334 | gsl_matrix *res = gsl_matrix_alloc(rhs.rows, rhs.columns);
|
---|
335 | gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, matrix, rhs.matrix, 0.0, res);
|
---|
336 | return GSLMatrix(rhs.rows, rhs.columns, res);
|
---|
337 | }
|
---|
338 |
|
---|
339 | /** Print matrix in a matlab style manner.
|
---|
340 | * \param &ost reference to output stream
|
---|
341 | * \param &mat reference to matrix to print
|
---|
342 | * \return reference to obtained output stream for concatenation
|
---|
343 | */
|
---|
344 | ostream &operator<<(ostream &ost,const GSLMatrix &mat)
|
---|
345 | {
|
---|
346 | ost << "[";
|
---|
347 | for(size_t i = 0;i<mat.rows;++i){
|
---|
348 | for(size_t j = 0; j<mat.columns;++j){
|
---|
349 | ost << mat.Get(i,j);
|
---|
350 | if(j!=mat.columns-1)
|
---|
351 | ost << " ";
|
---|
352 | }
|
---|
353 | if(i!=mat.rows-1)
|
---|
354 | ost << "; ";
|
---|
355 | }
|
---|
356 | ost << "]";
|
---|
357 | return ost;
|
---|
358 | }
|
---|
359 |
|
---|