[bcf653] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
| 4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
| 5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[fc3b67] | 8 | /*
|
---|
| 9 | * gslmatrix.cpp
|
---|
| 10 | *
|
---|
| 11 | * Created on: Jan 8, 2010
|
---|
| 12 | * Author: heber
|
---|
| 13 | */
|
---|
| 14 |
|
---|
[bf3817] | 15 | // include config.h
|
---|
| 16 | #ifdef HAVE_CONFIG_H
|
---|
| 17 | #include <config.h>
|
---|
| 18 | #endif
|
---|
| 19 |
|
---|
[112b09] | 20 | #include "Helpers/MemDebug.hpp"
|
---|
| 21 |
|
---|
[fc3b67] | 22 | using namespace std;
|
---|
| 23 |
|
---|
[57f243] | 24 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
[952f38] | 25 | #include "Helpers/helpers.hpp"
|
---|
[0a4f7f] | 26 | #include "Helpers/fast_functions.hpp"
|
---|
[fc3b67] | 27 |
|
---|
| 28 | #include <cassert>
|
---|
| 29 | #include <gsl/gsl_linalg.h>
|
---|
| 30 |
|
---|
| 31 | /** Constructor of class GSLMatrix.
|
---|
| 32 | * Allocates GSL structures
|
---|
| 33 | * \param m dimension of matrix
|
---|
| 34 | */
|
---|
| 35 | GSLMatrix::GSLMatrix(size_t m, size_t n) : rows(m), columns(n)
|
---|
| 36 | {
|
---|
| 37 | matrix = gsl_matrix_calloc(rows, columns);
|
---|
| 38 | };
|
---|
| 39 |
|
---|
| 40 | /** Copy constructor of class GSLMatrix.
|
---|
| 41 | * Allocates GSL structures and copies components from \a *src.
|
---|
| 42 | * \param *src source matrix
|
---|
| 43 | */
|
---|
| 44 | GSLMatrix::GSLMatrix(const GSLMatrix * const src) : rows(src->rows), columns(src->columns)
|
---|
| 45 | {
|
---|
| 46 | matrix = gsl_matrix_alloc(rows, columns);
|
---|
| 47 | gsl_matrix_memcpy (matrix, src->matrix);
|
---|
| 48 | };
|
---|
| 49 |
|
---|
| 50 | /** Destructor of class GSLMatrix.
|
---|
| 51 | * Frees GSL structures
|
---|
| 52 | */
|
---|
| 53 | GSLMatrix::~GSLMatrix()
|
---|
| 54 | {
|
---|
| 55 | gsl_matrix_free(matrix);
|
---|
| 56 | rows = 0;
|
---|
| 57 | columns = 0;
|
---|
| 58 | };
|
---|
| 59 |
|
---|
| 60 | /** Assignment operator.
|
---|
| 61 | * \param &rhs right hand side
|
---|
| 62 | * \return object itself
|
---|
| 63 | */
|
---|
| 64 | GSLMatrix& GSLMatrix::operator=(const GSLMatrix& rhs)
|
---|
| 65 | {
|
---|
| 66 | if (this == &rhs) // not necessary here, but identity assignment check is generally a good idea
|
---|
| 67 | return *this;
|
---|
| 68 | assert(rows == rhs.rows && columns == rhs.columns && "Number of rows and columns do not match!");
|
---|
| 69 |
|
---|
| 70 | gsl_matrix_memcpy (matrix, rhs.matrix);
|
---|
| 71 |
|
---|
| 72 | return *this;
|
---|
| 73 | };
|
---|
| 74 |
|
---|
| 75 | /* ============================ Accessing =============================== */
|
---|
| 76 | /** This function sets the matrix from a double array.
|
---|
| 77 | * Creates a matrix view of the array and performs a memcopy.
|
---|
| 78 | * \param *x array of values (no dimension check is performed)
|
---|
| 79 | */
|
---|
| 80 | void GSLMatrix::SetFromDoubleArray(double * x)
|
---|
| 81 | {
|
---|
| 82 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns);
|
---|
| 83 | gsl_matrix_memcpy (matrix, &m.matrix);
|
---|
| 84 | };
|
---|
| 85 |
|
---|
| 86 | /** This function returns the i-th element of a matrix.
|
---|
| 87 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and 0 is returned.
|
---|
| 88 | * \param m row index
|
---|
| 89 | * \param n colum index
|
---|
| 90 | * \return (m,n)-th element of matrix
|
---|
| 91 | */
|
---|
| 92 | double GSLMatrix::Get(size_t m, size_t n)
|
---|
| 93 | {
|
---|
| 94 | return gsl_matrix_get (matrix, m, n);
|
---|
| 95 | };
|
---|
| 96 |
|
---|
| 97 | /** This function sets the value of the \a m -th element of a matrix to \a x.
|
---|
| 98 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked.
|
---|
| 99 | * \param m row index
|
---|
| 100 | * \param m column index
|
---|
| 101 | * \param x value to set element (m,n) to
|
---|
| 102 | */
|
---|
| 103 | void GSLMatrix::Set(size_t m, size_t n, double x)
|
---|
| 104 | {
|
---|
| 105 | gsl_matrix_set (matrix, m, n, x);
|
---|
| 106 | };
|
---|
| 107 |
|
---|
| 108 | /** These functions return a pointer to the \a m-th element of a matrix.
|
---|
| 109 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
| 110 | * \param m index
|
---|
| 111 | * \return pointer to \a m-th element
|
---|
| 112 | */
|
---|
| 113 | double *GSLMatrix::Pointer(size_t m, size_t n)
|
---|
| 114 | {
|
---|
| 115 | return gsl_matrix_ptr (matrix, m, n);
|
---|
| 116 | };
|
---|
| 117 |
|
---|
| 118 | /** These functions return a constant pointer to the \a m-th element of a matrix.
|
---|
| 119 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
| 120 | * \param m index
|
---|
| 121 | * \return const pointer to \a m-th element
|
---|
| 122 | */
|
---|
| 123 | const double *GSLMatrix::const_Pointer(size_t m, size_t n)
|
---|
| 124 | {
|
---|
| 125 | return gsl_matrix_const_ptr (matrix, m, n);
|
---|
| 126 | };
|
---|
| 127 |
|
---|
| 128 | /* ========================== Initializing =============================== */
|
---|
| 129 | /** This function sets all the elements of the matrix to the value \a x.
|
---|
| 130 | * \param *x
|
---|
| 131 | */
|
---|
| 132 | void GSLMatrix::SetAll(double x)
|
---|
| 133 | {
|
---|
| 134 | gsl_matrix_set_all (matrix, x);
|
---|
| 135 | };
|
---|
| 136 |
|
---|
| 137 | /** This function sets all the elements of the matrix to zero.
|
---|
| 138 | */
|
---|
| 139 | void GSLMatrix::SetZero()
|
---|
| 140 | {
|
---|
| 141 | gsl_matrix_set_zero (matrix);
|
---|
| 142 | };
|
---|
| 143 |
|
---|
| 144 | /** This function sets the elements of the matrix to the corresponding elements of the identity matrix, \f$m(i,j) = \delta(i,j)\f$, i.e. a unit diagonal with all off-diagonal elements zero.
|
---|
| 145 | * This applies to both square and rectangular matrices.
|
---|
| 146 | */
|
---|
| 147 | void GSLMatrix::SetIdentity()
|
---|
| 148 | {
|
---|
| 149 | gsl_matrix_set_identity (matrix);
|
---|
| 150 | };
|
---|
| 151 |
|
---|
| 152 | /* ====================== Exchanging elements ============================ */
|
---|
| 153 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place.
|
---|
| 154 | * \param i i-th row to swap with ...
|
---|
| 155 | * \param j ... j-th row to swap against
|
---|
| 156 | */
|
---|
| 157 | bool GSLMatrix::SwapRows(size_t i, size_t j)
|
---|
| 158 | {
|
---|
| 159 | return (gsl_matrix_swap_rows (matrix, i, j) == GSL_SUCCESS);
|
---|
| 160 | };
|
---|
| 161 |
|
---|
| 162 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place.
|
---|
| 163 | * \param i i-th column to swap with ...
|
---|
| 164 | * \param j ... j-th column to swap against
|
---|
| 165 | */
|
---|
| 166 | bool GSLMatrix::SwapColumns(size_t i, size_t j)
|
---|
| 167 | {
|
---|
| 168 | return (gsl_matrix_swap_columns (matrix, i, j) == GSL_SUCCESS);
|
---|
| 169 | };
|
---|
| 170 |
|
---|
| 171 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place.
|
---|
| 172 | * The matrix must be square for this operation to be possible.
|
---|
| 173 | * \param i i-th row to swap with ...
|
---|
| 174 | * \param j ... j-th column to swap against
|
---|
| 175 | */
|
---|
| 176 | bool GSLMatrix::SwapRowColumn(size_t i, size_t j)
|
---|
| 177 | {
|
---|
| 178 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible.");
|
---|
| 179 | return (gsl_matrix_swap_rowcol (matrix, i, j) == GSL_SUCCESS);
|
---|
| 180 | };
|
---|
| 181 |
|
---|
| 182 | /** This function transposes the matrix.
|
---|
| 183 | * Note that the function is extended to the non-square case, where the matrix is re-allocated and copied.
|
---|
| 184 | */
|
---|
| 185 | bool GSLMatrix::Transpose()
|
---|
| 186 | {
|
---|
| 187 | if (rows == columns)// if square, use GSL
|
---|
| 188 | return (gsl_matrix_transpose (matrix) == GSL_SUCCESS);
|
---|
| 189 | else { // otherwise we have to copy a bit
|
---|
| 190 | gsl_matrix *dest = gsl_matrix_alloc(columns, rows);
|
---|
| 191 | for (size_t i=0;i<rows; i++)
|
---|
| 192 | for (size_t j=0;j<columns;j++) {
|
---|
| 193 | gsl_matrix_set(dest, j,i, gsl_matrix_get(matrix, i,j) );
|
---|
| 194 | }
|
---|
[93c8ed] | 195 | gsl_matrix_free(matrix);
|
---|
[fc3b67] | 196 | matrix = dest;
|
---|
| 197 | flip(rows, columns);
|
---|
| 198 | return true;
|
---|
| 199 | }
|
---|
| 200 | };
|
---|
| 201 |
|
---|
| 202 | /* ============================ Properties ============================== */
|
---|
| 203 | /** Checks whether matrix' elements are strictly null.
|
---|
| 204 | * \return true - is null, false - else
|
---|
| 205 | */
|
---|
| 206 | bool GSLMatrix::IsNull()
|
---|
| 207 | {
|
---|
| 208 | return gsl_matrix_isnull (matrix);
|
---|
| 209 | };
|
---|
| 210 |
|
---|
| 211 | /** Checks whether matrix' elements are strictly positive.
|
---|
| 212 | * \return true - is positive, false - else
|
---|
| 213 | */
|
---|
| 214 | bool GSLMatrix::IsPositive()
|
---|
| 215 | {
|
---|
| 216 | return gsl_matrix_ispos (matrix);
|
---|
| 217 | };
|
---|
| 218 |
|
---|
| 219 | /** Checks whether matrix' elements are strictly negative.
|
---|
| 220 | * \return true - is negative, false - else
|
---|
| 221 | */
|
---|
| 222 | bool GSLMatrix::IsNegative()
|
---|
| 223 | {
|
---|
| 224 | return gsl_matrix_isneg (matrix);
|
---|
| 225 | };
|
---|
| 226 |
|
---|
| 227 | /** Checks whether matrix' elements are strictly non-negative.
|
---|
| 228 | * \return true - is non-negative, false - else
|
---|
| 229 | */
|
---|
| 230 | bool GSLMatrix::IsNonNegative()
|
---|
| 231 | {
|
---|
| 232 | return gsl_matrix_isnonneg (matrix);
|
---|
| 233 | };
|
---|
| 234 |
|
---|
| 235 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite.
|
---|
| 236 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite.
|
---|
| 237 | * \return true - matrix is positive-definite, false - else
|
---|
| 238 | */
|
---|
| 239 | bool GSLMatrix::IsPositiveDefinite()
|
---|
| 240 | {
|
---|
| 241 | if (rows != columns) // only possible for square matrices.
|
---|
| 242 | return false;
|
---|
| 243 | else
|
---|
| 244 | return (gsl_linalg_cholesky_decomp (matrix) != GSL_EDOM);
|
---|
| 245 | };
|
---|
[865272f] | 246 |
|
---|
| 247 |
|
---|
| 248 | /** Calculates the determinant of the matrix.
|
---|
| 249 | * if matrix is square, uses LU decomposition.
|
---|
| 250 | */
|
---|
| 251 | double GSLMatrix::Determinant()
|
---|
| 252 | {
|
---|
| 253 | int signum = 0;
|
---|
| 254 | assert (rows == columns && "Determinant can only be calculated for square matrices.");
|
---|
| 255 | gsl_permutation *p = gsl_permutation_alloc(rows);
|
---|
| 256 | gsl_linalg_LU_decomp(matrix, p, &signum);
|
---|
| 257 | gsl_permutation_free(p);
|
---|
| 258 | return gsl_linalg_LU_det(matrix, signum);
|
---|
| 259 | };
|
---|
| 260 |
|
---|