source: src/LinearAlgebra/Vector.cpp@ 06aedc

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 06aedc was 06aedc, checked in by Frederik Heber <heber@…>, 14 years ago

libMolecuilderLinearAlgebra is now a self-contained library fit for external use.

  • Property mode set to 100644
File size: 14.0 KB
RevLine 
[bcf653]1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
[6ac7ee]8/** \file vector.cpp
9 *
10 * Function implementations for the class vector.
11 *
12 */
13
[bf3817]14// include config.h
15#ifdef HAVE_CONFIG_H
16#include <config.h>
17#endif
18
[ad011c]19#include "CodePatterns/MemDebug.hpp"
[edb93c]20
[ad011c]21#include "CodePatterns/Assert.hpp"
[9b410d]22#include "CodePatterns/Verbose.hpp"
23#include "Exceptions/MathException.hpp"
24#include "LinearAlgebra/defs.hpp"
[06aedc]25#include "LinearAlgebra/fast_functions.hpp"
[9b410d]26#include "LinearAlgebra/Vector.hpp"
27#include "LinearAlgebra/VectorContent.hpp"
[6ac7ee]28
[1be8a5]29#include <cmath>
[1bd79e]30#include <iostream>
[06aedc]31#include <cmath>
[923b6c]32#include <gsl/gsl_blas.h>
[a439e5]33#include <gsl/gsl_vector.h>
[923b6c]34
[1bd79e]35
36using namespace std;
[6ac7ee]37
[97498a]38
[6ac7ee]39/************************************ Functions for class vector ************************************/
40
41/** Constructor of class vector.
42 */
[753f02]43Vector::Vector()
44{
[bbf1bd]45 content = new VectorContent((size_t) NDIM);
[753f02]46};
[6ac7ee]47
[bbf1bd]48/** Copy constructor.
49 * \param &src source Vector reference
[821907]50 */
[753f02]51Vector::Vector(const Vector& src)
[821907]52{
[bbf1bd]53 content = new VectorContent(*(src.content));
[1bd79e]54}
[821907]55
56/** Constructor of class vector.
[bbf1bd]57 * \param x1 first component
58 * \param x2 second component
59 * \param x3 third component
[821907]60 */
[753f02]61Vector::Vector(const double x1, const double x2, const double x3)
[821907]62{
[bbf1bd]63 content = new VectorContent((size_t) NDIM);
64 content->at(0) = x1;
65 content->at(1) = x2;
66 content->at(2) = x3;
[821907]67};
68
[d74077]69/** Constructor of class vector.
[bbf1bd]70 * \param x[3] three values to initialize Vector with
[d74077]71 */
72Vector::Vector(const double x[3])
73{
[bbf1bd]74 content = new VectorContent((size_t) NDIM);
75 for (size_t i = NDIM; i--; )
76 content->at(i) = x[i];
[d74077]77};
78
[bbf1bd]79/** Copy constructor of class vector from VectorContent.
80 * \note This is destructive, i.e. we take over _content.
81 */
82Vector::Vector(VectorContent *&_content) :
83 content(_content)
84{
85 _content = NULL;
86}
87
88/** Copy constructor of class vector from VectorContent.
89 * \note This is non-destructive, i.e. _content is copied.
90 */
91Vector::Vector(VectorContent &_content)
92{
93 content = new VectorContent(_content);
94}
[325390]95
[bbf1bd]96/** Assignment operator.
97 * \param &src source vector to assign \a *this to
98 * \return reference to \a *this
[6ac7ee]99 */
[0a4f7f]100Vector& Vector::operator=(const Vector& src){
101 // check for self assignment
102 if(&src!=this){
[bbf1bd]103 *content = *(src.content);
[0a4f7f]104 }
105 return *this;
106}
[6ac7ee]107
108/** Desctructor of class vector.
[bbf1bd]109 * Vector::content is deleted.
[6ac7ee]110 */
[d466f0]111Vector::~Vector() {
[ce3d2b]112 delete content;
[d466f0]113};
[6ac7ee]114
115/** Calculates square of distance between this and another vector.
116 * \param *y array to second vector
117 * \return \f$| x - y |^2\f$
118 */
[273382]119double Vector::DistanceSquared(const Vector &y) const
[6ac7ee]120{
[042f82]121 double res = 0.;
122 for (int i=NDIM;i--;)
[d466f0]123 res += (at(i)-y[i])*(at(i)-y[i]);
[042f82]124 return (res);
[6ac7ee]125};
126
127/** Calculates distance between this and another vector.
128 * \param *y array to second vector
129 * \return \f$| x - y |\f$
130 */
[1513a74]131double Vector::distance(const Vector &y) const
[6ac7ee]132{
[273382]133 return (sqrt(DistanceSquared(y)));
[6ac7ee]134};
135
[a439e5]136size_t Vector::GreatestComponent() const
137{
138 int greatest = 0;
139 for (int i=1;i<NDIM;i++) {
140 if (at(i) > at(greatest))
141 greatest = i;
142 }
143 return greatest;
144}
145
146size_t Vector::SmallestComponent() const
147{
148 int smallest = 0;
149 for (int i=1;i<NDIM;i++) {
150 if (at(i) < at(smallest))
151 smallest = i;
152 }
153 return smallest;
154}
155
156
[1513a74]157Vector Vector::getClosestPoint(const Vector &point) const{
158 // the closest point to a single point space is always the single point itself
159 return *this;
160}
161
[6ac7ee]162/** Calculates scalar product between this and another vector.
163 * \param *y array to second vector
164 * \return \f$\langle x, y \rangle\f$
165 */
[273382]166double Vector::ScalarProduct(const Vector &y) const
[6ac7ee]167{
[042f82]168 double res = 0.;
[ce3d2b]169 gsl_blas_ddot(content->content, y.content->content, &res);
[042f82]170 return (res);
[6ac7ee]171};
172
173
174/** Calculates VectorProduct between this and another vector.
[042f82]175 * -# returns the Product in place of vector from which it was initiated
176 * -# ATTENTION: Only three dim.
177 * \param *y array to vector with which to calculate crossproduct
178 * \return \f$ x \times y \f&
[6ac7ee]179 */
[273382]180void Vector::VectorProduct(const Vector &y)
[6ac7ee]181{
[042f82]182 Vector tmp;
[d466f0]183 for(int i=NDIM;i--;)
184 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
[753f02]185 (*this) = tmp;
[6ac7ee]186};
187
188
189/** projects this vector onto plane defined by \a *y.
190 * \param *y normal vector of plane
191 * \return \f$\langle x, y \rangle\f$
192 */
[273382]193void Vector::ProjectOntoPlane(const Vector &y)
[6ac7ee]194{
[042f82]195 Vector tmp;
[753f02]196 tmp = y;
[042f82]197 tmp.Normalize();
[753f02]198 tmp.Scale(ScalarProduct(tmp));
199 *this -= tmp;
[2319ed]200};
201
[821907]202/** Calculates the minimum distance of this vector to the plane.
203 * \sa Vector::GetDistanceVectorToPlane()
204 * \param *out output stream for debugging
205 * \param *PlaneNormal normal of plane
206 * \param *PlaneOffset offset of plane
207 * \return distance to plane
208 */
[d4c9ae]209double Vector::DistanceToSpace(const Space &space) const
[821907]210{
[d4c9ae]211 return space.distance(*this);
[c4d4df]212};
213
[6ac7ee]214/** Calculates the projection of a vector onto another \a *y.
215 * \param *y array to second vector
216 */
[273382]217void Vector::ProjectIt(const Vector &y)
[6ac7ee]218{
[753f02]219 (*this) += (-ScalarProduct(y))*y;
[ef9df36]220};
221
222/** Calculates the projection of a vector onto another \a *y.
223 * \param *y array to second vector
224 * \return Vector
225 */
[273382]226Vector Vector::Projection(const Vector &y) const
[ef9df36]227{
[753f02]228 Vector helper = y;
229 helper.Scale((ScalarProduct(y)/y.NormSquared()));
[ef9df36]230
231 return helper;
[6ac7ee]232};
233
234/** Calculates norm of this vector.
235 * \return \f$|x|\f$
236 */
237double Vector::Norm() const
238{
[694eae]239 return (content->Norm());
[6ac7ee]240};
241
[d4d0dd]242/** Calculates squared norm of this vector.
243 * \return \f$|x|^2\f$
244 */
245double Vector::NormSquared() const
246{
[694eae]247 return (content->NormSquared());
[d4d0dd]248};
249
[6ac7ee]250/** Normalizes this vector.
251 */
252void Vector::Normalize()
253{
[694eae]254 content->Normalize();
[6ac7ee]255};
256
[421a1f]257Vector Vector::getNormalized() const{
258 Vector res= *this;
259 res.Normalize();
260 return res;
261}
262
[6ac7ee]263/** Zeros all components of this vector.
264 */
265void Vector::Zero()
266{
[753f02]267 at(0)=at(1)=at(2)=0;
[6ac7ee]268};
269
270/** Zeros all components of this vector.
271 */
[776b64]272void Vector::One(const double one)
[6ac7ee]273{
[753f02]274 at(0)=at(1)=at(2)=one;
[6ac7ee]275};
276
[9c20aa]277/** Checks whether vector has all components zero.
278 * @return true - vector is zero, false - vector is not
279 */
[54a746]280bool Vector::IsZero() const
[9c20aa]281{
[d466f0]282 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
[54a746]283};
284
285/** Checks whether vector has length of 1.
286 * @return true - vector is normalized, false - vector is not
287 */
288bool Vector::IsOne() const
289{
290 return (fabs(Norm() - 1.) < MYEPSILON);
[9c20aa]291};
292
[ef9df36]293/** Checks whether vector is normal to \a *normal.
294 * @return true - vector is normalized, false - vector is not
295 */
[273382]296bool Vector::IsNormalTo(const Vector &normal) const
[ef9df36]297{
298 if (ScalarProduct(normal) < MYEPSILON)
299 return true;
300 else
301 return false;
302};
303
[b998c3]304/** Checks whether vector is normal to \a *normal.
305 * @return true - vector is normalized, false - vector is not
306 */
[273382]307bool Vector::IsEqualTo(const Vector &a) const
[b998c3]308{
309 bool status = true;
310 for (int i=0;i<NDIM;i++) {
[d466f0]311 if (fabs(at(i) - a[i]) > MYEPSILON)
[b998c3]312 status = false;
313 }
314 return status;
315};
316
[6ac7ee]317/** Calculates the angle between this and another vector.
318 * \param *y array to second vector
319 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
320 */
[273382]321double Vector::Angle(const Vector &y) const
[6ac7ee]322{
[753f02]323 double norm1 = Norm(), norm2 = y.Norm();
[ef9df36]324 double angle = -1;
[d4d0dd]325 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
326 angle = this->ScalarProduct(y)/norm1/norm2;
[02da9e]327 // -1-MYEPSILON occured due to numerical imprecision, catch ...
[e138de]328 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
[02da9e]329 if (angle < -1)
330 angle = -1;
331 if (angle > 1)
332 angle = 1;
[042f82]333 return acos(angle);
[6ac7ee]334};
335
[0a4f7f]336
337double& Vector::operator[](size_t i){
[753f02]338 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
[ce3d2b]339 return *gsl_vector_ptr (content->content, i);
[0a4f7f]340}
341
342const double& Vector::operator[](size_t i) const{
[753f02]343 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
[ce3d2b]344 return *gsl_vector_ptr (content->content, i);
[0a4f7f]345}
346
347double& Vector::at(size_t i){
348 return (*this)[i];
349}
350
351const double& Vector::at(size_t i) const{
352 return (*this)[i];
353}
354
[ae21cbd]355VectorContent* Vector::get() const
356{
[0c7ed8]357 return content;
[0a4f7f]358}
[6ac7ee]359
[ef9df36]360/** Compares vector \a to vector \a b component-wise.
361 * \param a base vector
362 * \param b vector components to add
363 * \return a == b
364 */
[72e7fa]365bool Vector::operator==(const Vector& b) const
[ef9df36]366{
[1bd79e]367 return IsEqualTo(b);
[ef9df36]368};
369
[fa5a6a]370bool Vector::operator!=(const Vector& b) const
371{
372 return !IsEqualTo(b);
373}
374
[6ac7ee]375/** Sums vector \a to this lhs component-wise.
376 * \param a base vector
377 * \param b vector components to add
378 * \return lhs + a
379 */
[72e7fa]380const Vector& Vector::operator+=(const Vector& b)
[6ac7ee]381{
[273382]382 this->AddVector(b);
[72e7fa]383 return *this;
[6ac7ee]384};
[54a746]385
386/** Subtracts vector \a from this lhs component-wise.
387 * \param a base vector
388 * \param b vector components to add
389 * \return lhs - a
390 */
[72e7fa]391const Vector& Vector::operator-=(const Vector& b)
[54a746]392{
[273382]393 this->SubtractVector(b);
[72e7fa]394 return *this;
[54a746]395};
396
[694eae]397/** factor each component of \a *this times \a m.
[6ac7ee]398 * \param m factor
[694eae]399 * \return \f$(\text{*this} \cdot m\f$
[6ac7ee]400 */
[694eae]401const Vector& Vector::operator*=(const double m)
[6ac7ee]402{
[694eae]403 Scale(m);
404 return *this;
[6ac7ee]405};
406
[042f82]407/** Sums two vectors \a and \b component-wise.
[6ac7ee]408 * \param a first vector
409 * \param b second vector
410 * \return a + b
411 */
[72e7fa]412Vector const Vector::operator+(const Vector& b) const
[6ac7ee]413{
[72e7fa]414 Vector x = *this;
[273382]415 x.AddVector(b);
[b84d5d]416 return x;
[6ac7ee]417};
418
[54a746]419/** Subtracts vector \a from \b component-wise.
420 * \param a first vector
421 * \param b second vector
422 * \return a - b
423 */
[72e7fa]424Vector const Vector::operator-(const Vector& b) const
[54a746]425{
[72e7fa]426 Vector x = *this;
[273382]427 x.SubtractVector(b);
[b84d5d]428 return x;
[54a746]429};
430
[694eae]431/** Factors given vector \a *this times \a m.
[6ac7ee]432 * \param m factor
[694eae]433 * \return \f$(\text{*this} \cdot m)\f$
[6ac7ee]434 */
[694eae]435const Vector Vector::operator*(const double m) const
[6ac7ee]436{
[694eae]437 Vector x(*this);
[b84d5d]438 x.Scale(m);
439 return x;
[6ac7ee]440};
441
[54a746]442/** Factors given vector \a a times \a m.
443 * \param m factor
444 * \param a vector
445 * \return m * a
446 */
[b84d5d]447Vector const operator*(const double m, const Vector& a )
[54a746]448{
[b84d5d]449 Vector x(a);
450 x.Scale(m);
451 return x;
[54a746]452};
453
[9c20aa]454ostream& operator<<(ostream& ost, const Vector& m)
[6ac7ee]455{
[042f82]456 ost << "(";
457 for (int i=0;i<NDIM;i++) {
[0a4f7f]458 ost << m[i];
[042f82]459 if (i != 2)
460 ost << ",";
461 }
462 ost << ")";
463 return ost;
[6ac7ee]464};
465
466
[1bd79e]467void Vector::ScaleAll(const double *factor)
[6ac7ee]468{
[042f82]469 for (int i=NDIM;i--;)
[d466f0]470 at(i) *= factor[i];
[6ac7ee]471};
472
[b5bf84]473void Vector::ScaleAll(const Vector &factor){
[ce3d2b]474 gsl_vector_mul(content->content, factor.content->content);
[b5bf84]475}
[6ac7ee]476
[1bd79e]477
[776b64]478void Vector::Scale(const double factor)
[6ac7ee]479{
[ce3d2b]480 gsl_vector_scale(content->content,factor);
[6ac7ee]481};
482
[45ef76]483std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
484 double factor = ScalarProduct(rhs)/rhs.NormSquared();
485 Vector res= factor * rhs;
486 return make_pair(res,(*this)-res);
487}
488
489std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
490 Vector helper = *this;
491 pointset res;
492 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
493 pair<Vector,Vector> currPart = helper.partition(*iter);
494 res.push_back(currPart.first);
495 helper = currPart.second;
496 }
497 return make_pair(res,helper);
498}
499
[6ac7ee]500/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
501 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
502 * \param *x1 first vector
503 * \param *x2 second vector
504 * \param *x3 third vector
505 * \param *factors three-component vector with the factor for each given vector
506 */
[273382]507void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
[6ac7ee]508{
[273382]509 (*this) = (factors[0]*x1) +
510 (factors[1]*x2) +
511 (factors[2]*x3);
[6ac7ee]512};
513
514/** Calculates orthonormal vector to one given vectors.
515 * Just subtracts the projection onto the given vector from this vector.
[ef9df36]516 * The removed part of the vector is Vector::Projection()
[6ac7ee]517 * \param *x1 vector
518 * \return true - success, false - vector is zero
519 */
[0a4f7f]520bool Vector::MakeNormalTo(const Vector &y1)
[6ac7ee]521{
[042f82]522 bool result = false;
[753f02]523 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
[45ef76]524 Vector x1 = factor * y1;
[753f02]525 SubtractVector(x1);
[042f82]526 for (int i=NDIM;i--;)
[d466f0]527 result = result || (fabs(at(i)) > MYEPSILON);
[6ac7ee]528
[042f82]529 return result;
[6ac7ee]530};
531
532/** Creates this vector as one of the possible orthonormal ones to the given one.
533 * Just scan how many components of given *vector are unequal to zero and
534 * try to get the skp of both to be zero accordingly.
535 * \param *vector given vector
536 * \return true - success, false - failure (null vector given)
537 */
[273382]538bool Vector::GetOneNormalVector(const Vector &GivenVector)
[6ac7ee]539{
[042f82]540 int Components[NDIM]; // contains indices of non-zero components
541 int Last = 0; // count the number of non-zero entries in vector
542 int j; // loop variables
543 double norm;
544
545 for (j=NDIM;j--;)
546 Components[j] = -1;
[1829c4]547
548 // in two component-systems we need to find the one position that is zero
549 int zeroPos = -1;
[042f82]550 // find two components != 0
[1829c4]551 for (j=0;j<NDIM;j++){
[753f02]552 if (fabs(GivenVector[j]) > MYEPSILON)
[042f82]553 Components[Last++] = j;
[1829c4]554 else
555 // this our zero Position
556 zeroPos = j;
557 }
[042f82]558
559 switch(Last) {
560 case 3: // threecomponent system
[1829c4]561 // the position of the zero is arbitrary in three component systems
562 zeroPos = Components[2];
[042f82]563 case 2: // two component system
[753f02]564 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
[1829c4]565 at(zeroPos) = 0.;
[042f82]566 // in skp both remaining parts shall become zero but with opposite sign and third is zero
[1829c4]567 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
568 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
[042f82]569 return true;
570 break;
571 case 1: // one component system
572 // set sole non-zero component to 0, and one of the other zero component pendants to 1
[1829c4]573 at((Components[0]+2)%NDIM) = 0.;
574 at((Components[0]+1)%NDIM) = 1.;
575 at(Components[0]) = 0.;
[042f82]576 return true;
577 break;
578 default:
579 return false;
580 }
[6ac7ee]581};
582
583/** Adds vector \a *y componentwise.
584 * \param *y vector
585 */
[273382]586void Vector::AddVector(const Vector &y)
[6ac7ee]587{
[ce3d2b]588 gsl_vector_add(content->content, y.content->content);
[6ac7ee]589}
590
591/** Adds vector \a *y componentwise.
592 * \param *y vector
593 */
[273382]594void Vector::SubtractVector(const Vector &y)
[6ac7ee]595{
[ce3d2b]596 gsl_vector_sub(content->content, y.content->content);
[ef9df36]597}
598
[005e18]599
600// some comonly used vectors
601const Vector zeroVec(0,0,0);
[407782]602const Vector unitVec[NDIM]={Vector(1,0,0),Vector(0,1,0),Vector(0,0,1)};
Note: See TracBrowser for help on using the repository browser.