1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * Plane.cpp
|
---|
10 | *
|
---|
11 | * Created on: Apr 7, 2010
|
---|
12 | * Author: crueger
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "Helpers/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include "LinearAlgebra/Plane.hpp"
|
---|
23 | #include "LinearAlgebra/Vector.hpp"
|
---|
24 | #include "defs.hpp"
|
---|
25 | #include "Helpers/Info.hpp"
|
---|
26 | #include "Helpers/Log.hpp"
|
---|
27 | #include "Helpers/Verbose.hpp"
|
---|
28 | #include "Helpers/Assert.hpp"
|
---|
29 | #include "Helpers/helpers.hpp"
|
---|
30 | #include <cmath>
|
---|
31 | #include "LinearAlgebra/Line.hpp"
|
---|
32 | #include "Exceptions/MultipleSolutionsException.hpp"
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * generates a plane from three given vectors defining three points in space
|
---|
36 | */
|
---|
37 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
|
---|
38 | normalVector(new Vector())
|
---|
39 | {
|
---|
40 | Vector x1 = y1 -y2;
|
---|
41 | Vector x2 = y3 -y2;
|
---|
42 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
43 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
44 | }
|
---|
45 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
46 | // x1.Output((ofstream *)&cout);
|
---|
47 | // Log() << Verbose(0) << endl;
|
---|
48 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
49 | // x2.Output((ofstream *)&cout);
|
---|
50 | // Log() << Verbose(0) << endl;
|
---|
51 |
|
---|
52 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
53 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
54 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
55 | normalVector->Normalize();
|
---|
56 |
|
---|
57 | offset=normalVector->ScalarProduct(y1);
|
---|
58 | }
|
---|
59 | /**
|
---|
60 | * Constructs a plane from two direction vectors and a offset.
|
---|
61 | */
|
---|
62 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
|
---|
63 | normalVector(new Vector()),
|
---|
64 | offset(_offset)
|
---|
65 | {
|
---|
66 | Vector x1 = y1;
|
---|
67 | Vector x2 = y2;
|
---|
68 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
|
---|
69 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
70 | }
|
---|
71 |
|
---|
72 | if((fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
73 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
74 | }
|
---|
75 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
76 | // x1.Output((ofstream *)&cout);
|
---|
77 | // Log() << Verbose(0) << endl;
|
---|
78 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
79 | // x2.Output((ofstream *)&cout);
|
---|
80 | // Log() << Verbose(0) << endl;
|
---|
81 |
|
---|
82 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
83 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
84 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
85 | normalVector->Normalize();
|
---|
86 | }
|
---|
87 |
|
---|
88 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
|
---|
89 | normalVector(new Vector(_normalVector)),
|
---|
90 | offset(_offset)
|
---|
91 | {
|
---|
92 | if(normalVector->IsZero())
|
---|
93 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
94 | double factor = 1/normalVector->Norm();
|
---|
95 | // normalize the plane parameters
|
---|
96 | (*normalVector)*=factor;
|
---|
97 | offset*=factor;
|
---|
98 | }
|
---|
99 |
|
---|
100 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
|
---|
101 | normalVector(new Vector(_normalVector))
|
---|
102 | {
|
---|
103 | if(normalVector->IsZero()){
|
---|
104 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
105 | }
|
---|
106 | normalVector->Normalize();
|
---|
107 | offset = normalVector->ScalarProduct(_offsetVector);
|
---|
108 | }
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * copy constructor
|
---|
112 | */
|
---|
113 | Plane::Plane(const Plane& plane) :
|
---|
114 | normalVector(new Vector(*plane.normalVector)),
|
---|
115 | offset(plane.offset)
|
---|
116 | {}
|
---|
117 |
|
---|
118 |
|
---|
119 | Plane::~Plane()
|
---|
120 | {}
|
---|
121 |
|
---|
122 | Plane &Plane::operator=(const Plane &rhs){
|
---|
123 | if(&rhs!=this){
|
---|
124 | normalVector.reset(new Vector(*rhs.normalVector));
|
---|
125 | offset = rhs.offset;
|
---|
126 | }
|
---|
127 | return *this;
|
---|
128 | }
|
---|
129 |
|
---|
130 |
|
---|
131 | Vector Plane::getNormal() const{
|
---|
132 | return *normalVector;
|
---|
133 | }
|
---|
134 |
|
---|
135 | double Plane::getOffset() const{
|
---|
136 | return offset;
|
---|
137 | }
|
---|
138 |
|
---|
139 | Vector Plane::getOffsetVector() const {
|
---|
140 | return getOffset()*getNormal();
|
---|
141 | }
|
---|
142 |
|
---|
143 | vector<Vector> Plane::getPointsOnPlane() const{
|
---|
144 | std::vector<Vector> res;
|
---|
145 | res.reserve(3);
|
---|
146 | // first point on the plane
|
---|
147 | res.push_back(getOffsetVector());
|
---|
148 | // get a vector that has direction of plane
|
---|
149 | Vector direction;
|
---|
150 | direction.GetOneNormalVector(getNormal());
|
---|
151 | res.push_back(res[0]+direction);
|
---|
152 | // get an orthogonal vector to direction and normal (has direction of plane)
|
---|
153 | direction.VectorProduct(getNormal());
|
---|
154 | direction.Normalize();
|
---|
155 | res.push_back(res[0] +direction);
|
---|
156 | return res;
|
---|
157 | }
|
---|
158 |
|
---|
159 |
|
---|
160 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
---|
161 | * According to [Bronstein] the vectorial plane equation is:
|
---|
162 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
---|
163 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
---|
164 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
---|
165 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
---|
166 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
---|
167 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
---|
168 | * of the line yields the intersection point on the plane.
|
---|
169 | * \param *Origin first vector of line
|
---|
170 | * \param *LineVector second vector of line
|
---|
171 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
---|
172 | */
|
---|
173 | Vector Plane::GetIntersection(const Line& line) const
|
---|
174 | {
|
---|
175 | Info FunctionInfo(__func__);
|
---|
176 | Vector res;
|
---|
177 |
|
---|
178 | double factor1 = getNormal().ScalarProduct(line.getDirection());
|
---|
179 | if(fabs(factor1)<MYEPSILON){
|
---|
180 | // the plane is parallel... under all circumstances this is bad luck
|
---|
181 | // we no have either no or infinite solutions
|
---|
182 | if(isContained(line.getOrigin())){
|
---|
183 | throw MultipleSolutionsException<Vector>(__FILE__,__LINE__,line.getOrigin());
|
---|
184 | }
|
---|
185 | else{
|
---|
186 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 | double factor2 = getNormal().ScalarProduct(line.getOrigin());
|
---|
191 | double scaleFactor = (offset-factor2)/factor1;
|
---|
192 |
|
---|
193 | res = line.getOrigin() + scaleFactor * line.getDirection();
|
---|
194 |
|
---|
195 | // tests to make sure the resulting vector really is on plane and line
|
---|
196 | ASSERT(isContained(res),"Calculated line-Plane intersection does not lie on plane.");
|
---|
197 | ASSERT(line.isContained(res),"Calculated line-Plane intersection does not lie on line.");
|
---|
198 | return res;
|
---|
199 | };
|
---|
200 |
|
---|
201 | Vector Plane::mirrorVector(const Vector &rhs) const {
|
---|
202 | Vector helper = getVectorToPoint(rhs);
|
---|
203 | // substract twice the Vector to the plane
|
---|
204 | return rhs+2*helper;
|
---|
205 | }
|
---|
206 |
|
---|
207 | Line Plane::getOrthogonalLine(const Vector &origin) const{
|
---|
208 | return Line(origin,getNormal());
|
---|
209 | }
|
---|
210 |
|
---|
211 | bool Plane::onSameSide(const Vector &point1,const Vector &point2) const{
|
---|
212 | return sign(point1.ScalarProduct(*normalVector)-offset) ==
|
---|
213 | sign(point2.ScalarProduct(*normalVector)-offset);
|
---|
214 | }
|
---|
215 |
|
---|
216 | /************ Methods inherited from Space ****************/
|
---|
217 |
|
---|
218 | double Plane::distance(const Vector &point) const{
|
---|
219 | double res = point.ScalarProduct(*normalVector)-offset;
|
---|
220 | return fabs(res);
|
---|
221 | }
|
---|
222 |
|
---|
223 | Vector Plane::getClosestPoint(const Vector &point) const{
|
---|
224 | double factor = point.ScalarProduct(*normalVector)-offset;
|
---|
225 | if(fabs(factor) < MYEPSILON){
|
---|
226 | // the point itself lies on the plane
|
---|
227 | return point;
|
---|
228 | }
|
---|
229 | Vector difference = factor * (*normalVector);
|
---|
230 | return (point - difference);
|
---|
231 | }
|
---|
232 |
|
---|
233 | // Operators
|
---|
234 |
|
---|
235 | bool operator==(const Plane &x,const Plane &y){
|
---|
236 | return *x.normalVector == *y.normalVector && x.offset == y.offset;
|
---|
237 | }
|
---|
238 |
|
---|
239 | ostream &operator << (ostream &ost,const Plane &p){
|
---|
240 | ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
|
---|
241 | return ost;
|
---|
242 | }
|
---|