/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
* Copyright (C) 2013 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* InterfaceVMGJob.cpp
*
* Created on: 10.06.2012
* Author: Frederik Heber
*/
#ifdef HAVE_CONFIG_H
#include
#endif
#ifdef HAVE_MPI
#include "mpi.h"
#endif
#include "base/vector.hpp"
#include "base/math.hpp"
#include "comm/comm.hpp"
#include "grid/grid.hpp"
#include "grid/multigrid.hpp"
#include "units/particle/comm_mpi_particle.hpp"
#include "units/particle/interpolation.hpp"
#include "units/particle/linked_cell_list.hpp"
#include "mg.hpp"
#include "InterfaceVMGJob.hpp"
//#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include "CodePatterns/Log.hpp"
#include "Fragmentation/Summation/SetValues/FragmentForces.hpp"
#include "Jobs/WindowGrid_converter.hpp"
#include "Jobs/ChargeSmearer.hpp"
using namespace VMG;
using VMGInterfaces::InterfaceVMGJob;
InterfaceVMGJob::InterfaceVMGJob(const SamplingGrid &_sampled_input,
VMGData &_returndata,
const std::vector< std::vector > &_particle_positions,
const std::vector< double > &_particle_charges,
VMG::Boundary boundary,
int levelMin,
int levelMax,
const VMG::Vector &_box_begin,
vmg_float _box_end,
const int& near_field_cells,
const ImportParticles_t _ImportParticles,
const bool _DoPrintDebug,
const bool _DoSmearCharges,
int coarseningSteps,
double alpha) :
VMG::Interface(boundary, levelMin, levelMax,
_box_begin, _box_end, coarseningSteps, alpha),
nfc(near_field_cells),
meshwidth(Extent(MaxLevel()).MeshWidth().Max()),
spl(nfc, meshwidth),
sampled_input(_sampled_input),
returndata(_returndata),
level(levelMax),
ImportParticles(_ImportParticles),
DoPrintDebug(_DoPrintDebug),
OpenBoundaryCondition(boundary[0] == VMG::Open),
DoSmearCharges(_DoSmearCharges)
{
for (size_t i=0;i<3;++i) {
box_begin[i] = _box_begin[i];
box_end[i] = _box_begin[i]+_box_end;
}
std::vector< std::vector >::const_iterator positer = _particle_positions.begin();
std::vector::const_iterator chargeiter = _particle_charges.begin();
double pos[3];
for (; positer != _particle_positions.end(); ++positer, ++chargeiter) {
ASSERT( (*positer).size() == 3,
"InterfaceVMGJob::InterfaceVMGJob() - particle "
+toString(distance(_particle_positions.begin(), positer))+" has not exactly 3 coordinates.");
for (size_t i=0;i<3;++i)
pos[i] = (*positer)[i];
particles.push_back(Particle::Particle(pos, *chargeiter));
}
}
void InterfaceVMGJob::ImportRightHandSide(Multigrid& multigrid)
{
Index i;
Vector pos;
// VMG::TempGrid *temp_grid = new VMG::TempGrid(129, 0, 0., 1.);
Grid& grid = multigrid(multigrid.MaxLevel());
grid.Clear();
//grid.ClearBoundary(); // we don't have a boundary under periodic boundary conditions
// print debugging info on grid size
LOG(1, "INFO: Mesh has extent " << grid.Extent().MeshWidth() << ".");
const int gridpoints = pow(2, level);
LOG(1, "INFO: gridpoints on finest level are " << gridpoints << ".");
LOG(1, "INFO: "
<< "X in [" << grid.Local().Begin().X() << "," << grid.Local().End().X() << "],"
<< "Y in [" << grid.Local().Begin().Y() << "," << grid.Local().End().Y() << "],"
<< "Z in [" << grid.Local().Begin().Z() << "," << grid.Local().End().Z() << "].");
/// 1. assign nuclei as smeared-out charges to the grid
/*
* Charge assignment on the grid
*/
Particle::CommMPI& comm = *dynamic_cast(MG::GetComm());
Grid& particle_grid = comm.GetParticleGrid();
particle_grid.Clear();
// distribute particles
particles.clear();
comm.CommParticles(grid, particles);
assert(particle_grid.Global().LocalSize().IsComponentwiseGreater(
VMG::MG::GetFactory().GetObjectStorageVal("PARTICLE_NEAR_FIELD_CELLS")));
if (ImportParticles == DoImportParticles) {
// create smeared-out particle charges on particle_grid via splines
LOG(1, "INFO: Creating particle grid for " << particles.size() << " particles.");
for (std::list::iterator iter = particles.begin();
iter != particles.end(); ++iter) {
LOG(2, "DEBUG: Current particle is at " << (*iter).Pos()
<< " with charge " << (*iter).Charge() << ".");
spl.SetSpline(particle_grid, *iter);
}
}
// Communicate charges over halo
comm.CommFromGhosts(particle_grid);
if (DoPrintDebug) {
// print nuclei grid to vtk
comm.PrintGrid(particle_grid, "Sampled Nuclei Density");
}
// add sampled electron charge density onto grid
if (DoSmearCharges) {
ChargeSmearer &smearer = ChargeSmearer::getInstance();
smearer.initializeSplineArray(spl, nfc, meshwidth);
}
WindowGrid_converter::addWindowOntoGrid(
grid,
sampled_input,
1.,
OpenBoundaryCondition,
DoSmearCharges);
if (DoPrintDebug) {
// print electron grid to vtk
comm.PrintGrid(grid, "Sampled Electron Density");
}
// add particle_grid onto grid
for (int i=0; i(MG::GetComm());
if (DoPrintDebug) {
// print output grid to vtk
comm.PrintGrid(grid, "Potential Solution");
}
// obtain sampled potential from grid
returndata.sampled_potential.setWindow(
box_begin,
box_end
);
WindowGrid_converter::addGridOntoWindow(
grid,
returndata.sampled_potential,
+1.,
OpenBoundaryCondition
);
// calculate integral over potential as long-range energy contribution
const double element_volume =
grid.Extent().MeshWidth().X() * grid.Extent().MeshWidth().Y() * grid.Extent().MeshWidth().Z();
Grid::iterator grid_iter;
double potential_sum = 0.0;
for (grid_iter=grid.Iterators().Local().Begin(); grid_iter!=grid.Iterators().Local().End(); ++grid_iter)
potential_sum += grid.GetVal(*grid_iter);
potential_sum = element_volume * comm.GlobalSum(potential_sum);
comm.PrintOnce(Debug, "Grid potential sum: %e", potential_sum);
{
Grid::iterator grid_iter = grid.Iterators().Local().Begin();
comm.PrintOnce(Debug, "Grid potential at (0,0,0): %e", grid.GetVal(*grid_iter));
}
//Particle::CommMPI& comm = *dynamic_cast(MG::GetComm()); returndata.e_long = potential_sum;
/// Calculate potential energy of nuclei
vmg_float e = 0.0;
vmg_float e_long = 0.0;
vmg_float e_self = 0.0;
vmg_float e_short_peak = 0.0;
vmg_float e_short_spline = 0.0;
Factory& factory = MG::GetFactory();
/*
* Get parameters and arrays
*/
const vmg_int& near_field_cells = factory.GetObjectStorageVal("PARTICLE_NEAR_FIELD_CELLS");
const vmg_int& interpolation_degree = factory.GetObjectStorageVal("PARTICLE_INTERPOLATION_DEGREE");
Particle::Interpolation ip(interpolation_degree);
const vmg_float r_cut = near_field_cells * grid.Extent().MeshWidth().Max();
/*
* Copy potential values to a grid with sufficiently large halo size.
* This may be optimized in future.
* The parameters of this grid have been set in the import step.
*/
Grid& particle_grid = comm.GetParticleGrid();
{
Index i;
for (i.X()=0; i.X() 0)
ip.ComputeCoefficients(particle_grid, Index(i,j,k) - lc.Local().Begin() + particle_grid.Local().Begin());
for (p1=lc(i,j,k).begin(); p1!=lc(i,j,k).end(); ++p1) {
// Interpolate long-range part of potential and electric field
ip.Evaluate(**p1);
// Subtract self-induced potential
(*p1)->Pot() -= (*p1)->Charge() * spl.GetAntiDerivativeAtZero();
e_long += 0.5 * (*p1)->Charge() * ip.EvaluatePotentialLR(**p1);
e_self += 0.5 * (*p1)->Charge() * (*p1)->Charge() * spl.GetAntiDerivativeAtZero();
for (int dx=-1*near_field_cells; dx<=near_field_cells; ++dx)
for (int dy=-1*near_field_cells; dy<=near_field_cells; ++dy)
for (int dz=-1*near_field_cells; dz<=near_field_cells; ++dz) {
for (p2=lc(i+dx,j+dy,k+dz).begin(); p2!=lc(i+dx,j+dy,k+dz).end(); ++p2)
if (*p1 != *p2) {
const Vector dir = (*p1)->Pos() - (*p2)->Pos();
const vmg_float length = dir.Length();
if ((length < r_cut) && (length > std::numeric_limits::epsilon())) {
(*p1)->Pot() += (*p2)->Charge() / length * (1.0 + spl.EvaluatePotential(length));
(*p1)->Field() += (*p2)->Charge() * dir * spl.EvaluateField(length);
e_short_peak += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length;
e_short_spline += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length * spl.EvaluatePotential(length);
}
}
}
}
}
const vmg_int& num_particles_local = factory.GetObjectStorageVal("PARTICLE_NUM_LOCAL");
/* Remove average force term */
// if (!particles.empty()) {
// Vector average_force = 0.0;
// for (std::list::const_iterator iter=particles.begin(); iter!=particles.end(); ++iter)
// average_force += iter->Charge() * iter->Field();
// const vmg_int num_particles_global = comm.GlobalSum(num_particles_local);
// average_force /= (double)num_particles_global;
// comm.GlobalSumArray(average_force.vec(), 3);
// for (std::list::iterator iter=particles.begin(); iter!=particles.end(); ++iter)
// iter->Field() -= average_force / iter->Charge();
// comm.PrintOnce(Debug, "Average force term is: %e %e %e", average_force[0], average_force[1], average_force[2]);
// }
comm.CommParticlesBack(particles);
vmg_float* q = factory.GetObjectStorageArray("PARTICLE_CHARGE_ARRAY");
const vmg_float* p = factory.GetObjectStorageArray("PARTICLE_POTENTIAL_ARRAY");
const vmg_float* f = factory.GetObjectStorageArray("PARTICLE_FIELD_ARRAY");
// extract forces
if (!particles.empty()) {
size_t index = 0;
returndata.forces.resize(
num_particles_local, FragmentForces::force_t(3, 0.) );
for (FragmentForces::forces_t::iterator iter = returndata.forces.begin();
iter != returndata.forces.end(); ++iter) {
comm.PrintOnce(Debug, "%d force vector: %e %e %e", (index/3)+1, f[index+0], f[index+1], f[index+2]);
for (size_t i=0;i<3;++i)
(*iter)[i] = f[index++];
}
returndata.hasForces = true;
}
e_long = comm.GlobalSumRoot(e_long);
e_short_peak = comm.GlobalSumRoot(e_short_peak);
e_short_spline = comm.GlobalSumRoot(e_short_spline);
e_self = comm.GlobalSumRoot(e_self);
for (int j=0; j("RESIDUAL");
const vmg_float& init_res = factory.GetObjectStorageVal("INITIAL_RESIDUAL");
const vmg_float& precision = factory.GetObjectStorageVal("PRECISION");
const vmg_float rel_res = (init_res != 0.) ? std::fabs(res / init_res) : 0.;
returndata.precision = precision;
returndata.residual = res;
returndata.relative_residual = rel_res;
}