/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * Copyright (C) 2013 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * InterfaceVMGJob.cpp * * Created on: 10.06.2012 * Author: Frederik Heber */ #ifdef HAVE_CONFIG_H #include #endif #ifdef HAVE_MPI #include "mpi.h" #endif #include "base/vector.hpp" #include "base/math.hpp" #include "comm/comm.hpp" #include "grid/grid.hpp" #include "grid/multigrid.hpp" #include "units/particle/comm_mpi_particle.hpp" #include "units/particle/interpolation.hpp" #include "units/particle/linked_cell_list.hpp" #include "mg.hpp" #include "InterfaceVMGJob.hpp" //#include "CodePatterns/MemDebug.hpp" #include #include #include #include "CodePatterns/Log.hpp" #include "Fragmentation/Summation/SetValues/FragmentForces.hpp" #include "Jobs/WindowGrid_converter.hpp" #include "Jobs/ChargeSmearer.hpp" using namespace VMG; using VMGInterfaces::InterfaceVMGJob; InterfaceVMGJob::InterfaceVMGJob(const SamplingGrid &_sampled_input, VMGData &_returndata, const std::vector< std::vector > &_particle_positions, const std::vector< double > &_particle_charges, VMG::Boundary boundary, int levelMin, int levelMax, const VMG::Vector &_box_begin, vmg_float _box_end, const int& near_field_cells, const ImportParticles_t _ImportParticles, const bool _DoPrintDebug, const bool _DoSmearCharges, int coarseningSteps, double alpha) : VMG::Interface(boundary, levelMin, levelMax, _box_begin, _box_end, coarseningSteps, alpha), nfc(near_field_cells), meshwidth(Extent(MaxLevel()).MeshWidth().Max()), spl(nfc, meshwidth), sampled_input(_sampled_input), returndata(_returndata), level(levelMax), ImportParticles(_ImportParticles), DoPrintDebug(_DoPrintDebug), OpenBoundaryCondition(boundary[0] == VMG::Open), DoSmearCharges(_DoSmearCharges) { for (size_t i=0;i<3;++i) { box_begin[i] = _box_begin[i]; box_end[i] = _box_begin[i]+_box_end; } std::vector< std::vector >::const_iterator positer = _particle_positions.begin(); std::vector::const_iterator chargeiter = _particle_charges.begin(); double pos[3]; for (; positer != _particle_positions.end(); ++positer, ++chargeiter) { ASSERT( (*positer).size() == 3, "InterfaceVMGJob::InterfaceVMGJob() - particle " +toString(distance(_particle_positions.begin(), positer))+" has not exactly 3 coordinates."); for (size_t i=0;i<3;++i) pos[i] = (*positer)[i]; particles.push_back(Particle::Particle(pos, *chargeiter)); } } void InterfaceVMGJob::ImportRightHandSide(Multigrid& multigrid) { Index i; Vector pos; // VMG::TempGrid *temp_grid = new VMG::TempGrid(129, 0, 0., 1.); Grid& grid = multigrid(multigrid.MaxLevel()); grid.Clear(); //grid.ClearBoundary(); // we don't have a boundary under periodic boundary conditions // print debugging info on grid size LOG(1, "INFO: Mesh has extent " << grid.Extent().MeshWidth() << "."); const int gridpoints = pow(2, level); LOG(1, "INFO: gridpoints on finest level are " << gridpoints << "."); LOG(1, "INFO: " << "X in [" << grid.Local().Begin().X() << "," << grid.Local().End().X() << "]," << "Y in [" << grid.Local().Begin().Y() << "," << grid.Local().End().Y() << "]," << "Z in [" << grid.Local().Begin().Z() << "," << grid.Local().End().Z() << "]."); /// 1. assign nuclei as smeared-out charges to the grid /* * Charge assignment on the grid */ Particle::CommMPI& comm = *dynamic_cast(MG::GetComm()); Grid& particle_grid = comm.GetParticleGrid(); particle_grid.Clear(); // distribute particles particles.clear(); comm.CommParticles(grid, particles); assert(particle_grid.Global().LocalSize().IsComponentwiseGreater( VMG::MG::GetFactory().GetObjectStorageVal("PARTICLE_NEAR_FIELD_CELLS"))); if (ImportParticles == DoImportParticles) { // create smeared-out particle charges on particle_grid via splines LOG(1, "INFO: Creating particle grid for " << particles.size() << " particles."); for (std::list::iterator iter = particles.begin(); iter != particles.end(); ++iter) { LOG(2, "DEBUG: Current particle is at " << (*iter).Pos() << " with charge " << (*iter).Charge() << "."); spl.SetSpline(particle_grid, *iter); } } // Communicate charges over halo comm.CommFromGhosts(particle_grid); if (DoPrintDebug) { // print nuclei grid to vtk comm.PrintGrid(particle_grid, "Sampled Nuclei Density"); } // add sampled electron charge density onto grid if (DoSmearCharges) { ChargeSmearer &smearer = ChargeSmearer::getInstance(); smearer.initializeSplineArray(spl, nfc, meshwidth); } WindowGrid_converter::addWindowOntoGrid( grid, sampled_input, 1., OpenBoundaryCondition, DoSmearCharges); if (DoPrintDebug) { // print electron grid to vtk comm.PrintGrid(grid, "Sampled Electron Density"); } // add particle_grid onto grid for (int i=0; i(MG::GetComm()); if (DoPrintDebug) { // print output grid to vtk comm.PrintGrid(grid, "Potential Solution"); } // obtain sampled potential from grid returndata.sampled_potential.setWindow( box_begin, box_end ); WindowGrid_converter::addGridOntoWindow( grid, returndata.sampled_potential, +1., OpenBoundaryCondition ); // calculate integral over potential as long-range energy contribution const double element_volume = grid.Extent().MeshWidth().X() * grid.Extent().MeshWidth().Y() * grid.Extent().MeshWidth().Z(); Grid::iterator grid_iter; double potential_sum = 0.0; for (grid_iter=grid.Iterators().Local().Begin(); grid_iter!=grid.Iterators().Local().End(); ++grid_iter) potential_sum += grid.GetVal(*grid_iter); potential_sum = element_volume * comm.GlobalSum(potential_sum); comm.PrintOnce(Debug, "Grid potential sum: %e", potential_sum); { Grid::iterator grid_iter = grid.Iterators().Local().Begin(); comm.PrintOnce(Debug, "Grid potential at (0,0,0): %e", grid.GetVal(*grid_iter)); } //Particle::CommMPI& comm = *dynamic_cast(MG::GetComm()); returndata.e_long = potential_sum; /// Calculate potential energy of nuclei vmg_float e = 0.0; vmg_float e_long = 0.0; vmg_float e_self = 0.0; vmg_float e_short_peak = 0.0; vmg_float e_short_spline = 0.0; Factory& factory = MG::GetFactory(); /* * Get parameters and arrays */ const vmg_int& near_field_cells = factory.GetObjectStorageVal("PARTICLE_NEAR_FIELD_CELLS"); const vmg_int& interpolation_degree = factory.GetObjectStorageVal("PARTICLE_INTERPOLATION_DEGREE"); Particle::Interpolation ip(interpolation_degree); const vmg_float r_cut = near_field_cells * grid.Extent().MeshWidth().Max(); /* * Copy potential values to a grid with sufficiently large halo size. * This may be optimized in future. * The parameters of this grid have been set in the import step. */ Grid& particle_grid = comm.GetParticleGrid(); { Index i; for (i.X()=0; i.X() 0) ip.ComputeCoefficients(particle_grid, Index(i,j,k) - lc.Local().Begin() + particle_grid.Local().Begin()); for (p1=lc(i,j,k).begin(); p1!=lc(i,j,k).end(); ++p1) { // Interpolate long-range part of potential and electric field ip.Evaluate(**p1); // Subtract self-induced potential (*p1)->Pot() -= (*p1)->Charge() * spl.GetAntiDerivativeAtZero(); e_long += 0.5 * (*p1)->Charge() * ip.EvaluatePotentialLR(**p1); e_self += 0.5 * (*p1)->Charge() * (*p1)->Charge() * spl.GetAntiDerivativeAtZero(); for (int dx=-1*near_field_cells; dx<=near_field_cells; ++dx) for (int dy=-1*near_field_cells; dy<=near_field_cells; ++dy) for (int dz=-1*near_field_cells; dz<=near_field_cells; ++dz) { for (p2=lc(i+dx,j+dy,k+dz).begin(); p2!=lc(i+dx,j+dy,k+dz).end(); ++p2) if (*p1 != *p2) { const Vector dir = (*p1)->Pos() - (*p2)->Pos(); const vmg_float length = dir.Length(); if ((length < r_cut) && (length > std::numeric_limits::epsilon())) { (*p1)->Pot() += (*p2)->Charge() / length * (1.0 + spl.EvaluatePotential(length)); (*p1)->Field() += (*p2)->Charge() * dir * spl.EvaluateField(length); e_short_peak += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length; e_short_spline += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length * spl.EvaluatePotential(length); } } } } } const vmg_int& num_particles_local = factory.GetObjectStorageVal("PARTICLE_NUM_LOCAL"); /* Remove average force term */ // if (!particles.empty()) { // Vector average_force = 0.0; // for (std::list::const_iterator iter=particles.begin(); iter!=particles.end(); ++iter) // average_force += iter->Charge() * iter->Field(); // const vmg_int num_particles_global = comm.GlobalSum(num_particles_local); // average_force /= (double)num_particles_global; // comm.GlobalSumArray(average_force.vec(), 3); // for (std::list::iterator iter=particles.begin(); iter!=particles.end(); ++iter) // iter->Field() -= average_force / iter->Charge(); // comm.PrintOnce(Debug, "Average force term is: %e %e %e", average_force[0], average_force[1], average_force[2]); // } comm.CommParticlesBack(particles); vmg_float* q = factory.GetObjectStorageArray("PARTICLE_CHARGE_ARRAY"); const vmg_float* p = factory.GetObjectStorageArray("PARTICLE_POTENTIAL_ARRAY"); const vmg_float* f = factory.GetObjectStorageArray("PARTICLE_FIELD_ARRAY"); // extract forces if (!particles.empty()) { size_t index = 0; returndata.forces.resize( num_particles_local, FragmentForces::force_t(3, 0.) ); for (FragmentForces::forces_t::iterator iter = returndata.forces.begin(); iter != returndata.forces.end(); ++iter) { comm.PrintOnce(Debug, "%d force vector: %e %e %e", (index/3)+1, f[index+0], f[index+1], f[index+2]); for (size_t i=0;i<3;++i) (*iter)[i] = f[index++]; } returndata.hasForces = true; } e_long = comm.GlobalSumRoot(e_long); e_short_peak = comm.GlobalSumRoot(e_short_peak); e_short_spline = comm.GlobalSumRoot(e_short_spline); e_self = comm.GlobalSumRoot(e_self); for (int j=0; j("RESIDUAL"); const vmg_float& init_res = factory.GetObjectStorageVal("INITIAL_RESIDUAL"); const vmg_float& precision = factory.GetObjectStorageVal("PRECISION"); const vmg_float rel_res = (init_res != 0.) ? std::fabs(res / init_res) : 0.; returndata.precision = precision; returndata.residual = res; returndata.relative_residual = rel_res; }