1 | /*
|
---|
2 | * TrainingData.hpp
|
---|
3 | *
|
---|
4 | * Created on: 15.10.2012
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef TRAININGDATA_HPP_
|
---|
9 | #define TRAININGDATA_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <iosfwd>
|
---|
17 | #include <boost/function.hpp>
|
---|
18 |
|
---|
19 | #include "Fragmentation/Homology/HomologyContainer.hpp"
|
---|
20 | #include "FunctionApproximation/FunctionApproximation.hpp"
|
---|
21 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
22 |
|
---|
23 | /** This class encapsulates the training data for a given potential function
|
---|
24 | * to learn.
|
---|
25 | *
|
---|
26 | * The data is added piece-wise by calling the operator() with a specific
|
---|
27 | * Fragment.
|
---|
28 | */
|
---|
29 | class TrainingData
|
---|
30 | {
|
---|
31 | public:
|
---|
32 | //!> typedef for a range within the HomologyContainer at which fragments to look at
|
---|
33 | typedef std::pair<
|
---|
34 | HomologyContainer::const_iterator,
|
---|
35 | HomologyContainer::const_iterator> range_t;
|
---|
36 | //!> Training tuple input vector pair
|
---|
37 | typedef FunctionApproximation::inputs_t InputVector_t;
|
---|
38 | //!> Training tuple output vector pair
|
---|
39 | typedef FunctionApproximation::outputs_t OutputVector_t;
|
---|
40 | //!> Typedef for a table with columns of all distances and the energy
|
---|
41 | typedef std::vector< std::vector<double> > DistanceEnergyTable_t;
|
---|
42 |
|
---|
43 | public:
|
---|
44 | /** Constructor for class TrainingData.
|
---|
45 | *
|
---|
46 | */
|
---|
47 | explicit TrainingData(const FunctionModel::extractor_t &_extractor) :
|
---|
48 | extractor(_extractor)
|
---|
49 | {}
|
---|
50 | /** Destructor for class TrainingData.
|
---|
51 | *
|
---|
52 | */
|
---|
53 | ~TrainingData()
|
---|
54 | {}
|
---|
55 |
|
---|
56 | /** We go through the given \a range of homologous fragments and call
|
---|
57 | * TrainingData::extractor on them in order to gather the distance and
|
---|
58 | * the energy value, stored internally.
|
---|
59 | *
|
---|
60 | * \param range given range within a HomologyContainer of homologous fragments
|
---|
61 | */
|
---|
62 | void operator()(const range_t &range);
|
---|
63 |
|
---|
64 | /** Getter for const access to internal training data inputs.
|
---|
65 | *
|
---|
66 | * \return const ref to training tuple of input vector
|
---|
67 | */
|
---|
68 | const InputVector_t& getTrainingInputs() const {
|
---|
69 | return DistanceVector;
|
---|
70 | }
|
---|
71 |
|
---|
72 | /** Getter for const access to internal training data outputs.
|
---|
73 | *
|
---|
74 | * \return const ref to training tuple of output vector
|
---|
75 | */
|
---|
76 | const OutputVector_t& getTrainingOutputs() const {
|
---|
77 | return EnergyVector;
|
---|
78 | }
|
---|
79 |
|
---|
80 | /** Returns the average of each component over all OutputVectors.
|
---|
81 | *
|
---|
82 | * This is useful for initializing the offset of the potential.
|
---|
83 | *
|
---|
84 | * @return average output vector
|
---|
85 | */
|
---|
86 | const FunctionModel::results_t getTrainingOutputAverage() const;
|
---|
87 |
|
---|
88 | /** Calculate the L2 error of a given \a model against the stored training data.
|
---|
89 | *
|
---|
90 | * \param model model whose L2 error to calculate
|
---|
91 | * \return sum of squared differences at training tuples
|
---|
92 | */
|
---|
93 | const double getL2Error(const FunctionModel &model) const;
|
---|
94 |
|
---|
95 | /** Calculate the Lmax error of a given \a model against the stored training data.
|
---|
96 | *
|
---|
97 | * \param model model whose Lmax error to calculate
|
---|
98 | * \return maximum difference over all training tuples
|
---|
99 | */
|
---|
100 | const double getLMaxError(const FunctionModel &model) const;
|
---|
101 |
|
---|
102 | /** Creates a table of columns with all distances and the energy.
|
---|
103 | *
|
---|
104 | * \return array with first columns containing distances, last column energy
|
---|
105 | */
|
---|
106 | const DistanceEnergyTable_t getDistanceEnergyTable() const;
|
---|
107 |
|
---|
108 | private:
|
---|
109 | // prohibit use of default constructor, as we always require extraction functor.
|
---|
110 | TrainingData();
|
---|
111 |
|
---|
112 | private:
|
---|
113 | //!> private training data vector
|
---|
114 | InputVector_t DistanceVector;
|
---|
115 | OutputVector_t EnergyVector;
|
---|
116 | //!> function to be used for training input data extraction from a fragment
|
---|
117 | const FunctionModel::extractor_t extractor;
|
---|
118 | };
|
---|
119 |
|
---|
120 | // print training data for debugging
|
---|
121 | std::ostream &operator<<(std::ostream &out, const TrainingData &data);
|
---|
122 |
|
---|
123 | #endif /* TRAININGDATA_HPP_ */
|
---|