1 | /*
|
---|
2 | * TrainingData.hpp
|
---|
3 | *
|
---|
4 | * Created on: 15.10.2012
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef TRAININGDATA_HPP_
|
---|
9 | #define TRAININGDATA_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <iosfwd>
|
---|
17 | #include <boost/function.hpp>
|
---|
18 |
|
---|
19 | #include "Fragmentation/Homology/HomologyContainer.hpp"
|
---|
20 | #include "FunctionApproximation/FunctionApproximation.hpp"
|
---|
21 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
22 |
|
---|
23 | /** This class encapsulates the training data for a given potential function
|
---|
24 | * to learn.
|
---|
25 | *
|
---|
26 | * The data is added piece-wise by calling the operator() with a specific
|
---|
27 | * Fragment.
|
---|
28 | *
|
---|
29 | * TrainingData::operator() takes the set of all possible pair-wise distances
|
---|
30 | * (InputVector_t) and transforms it via the given filter into a list of subsets
|
---|
31 | * of distances (FilteredInputVector_t) that is feedable to the model.
|
---|
32 | *
|
---|
33 | */
|
---|
34 | class TrainingData
|
---|
35 | {
|
---|
36 | public:
|
---|
37 | //!> typedef for a range within the HomologyContainer at which fragments to look at
|
---|
38 | typedef std::pair<
|
---|
39 | HomologyContainer::const_iterator,
|
---|
40 | HomologyContainer::const_iterator> range_t;
|
---|
41 | //!> Training tuple input vector pair
|
---|
42 | typedef FunctionApproximation::inputs_t InputVector_t;
|
---|
43 | //!> Training tuple modified input vector pair
|
---|
44 | typedef FunctionApproximation::filtered_inputs_t FilteredInputVector_t;
|
---|
45 | //!> Training tuple output vector pair
|
---|
46 | typedef FunctionApproximation::outputs_t OutputVector_t;
|
---|
47 | //!> Typedef for a table with columns of all distances and the energy
|
---|
48 | typedef std::vector< std::vector<double> > DistanceEnergyTable_t;
|
---|
49 | //!> Typedef for a map of each fragment with error.
|
---|
50 | typedef std::multimap< double, size_t > L2ErrorConfigurationIndexMap_t;
|
---|
51 |
|
---|
52 | public:
|
---|
53 | /** Constructor for class TrainingData.
|
---|
54 | *
|
---|
55 | */
|
---|
56 | explicit TrainingData(const FunctionModel::filter_t &_filter) :
|
---|
57 | filter(_filter)
|
---|
58 | {}
|
---|
59 |
|
---|
60 | /** Destructor for class TrainingData.
|
---|
61 | *
|
---|
62 | */
|
---|
63 | ~TrainingData()
|
---|
64 | {}
|
---|
65 |
|
---|
66 | /** We go through the given \a range of homologous fragments and call
|
---|
67 | * TrainingData::filter on them in order to gather the distance and
|
---|
68 | * the energy value, stored internally.
|
---|
69 | *
|
---|
70 | * \param range given range within a HomologyContainer of homologous fragments
|
---|
71 | */
|
---|
72 | void operator()(const range_t &range);
|
---|
73 |
|
---|
74 | /** Getter for const access to internal training data inputs.
|
---|
75 | *
|
---|
76 | * \return const ref to training tuple of input vector
|
---|
77 | */
|
---|
78 | const FilteredInputVector_t& getTrainingInputs() const {
|
---|
79 | return ArgumentVector;
|
---|
80 | }
|
---|
81 |
|
---|
82 | /** Getter for const access to internal list of all pair-wise distances.
|
---|
83 | *
|
---|
84 | * \return const ref to all arguments
|
---|
85 | */
|
---|
86 | const InputVector_t& getAllArguments() const {
|
---|
87 | return DistanceVector;
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** Getter for const access to internal training data outputs.
|
---|
91 | *
|
---|
92 | * \return const ref to training tuple of output vector
|
---|
93 | */
|
---|
94 | const OutputVector_t& getTrainingOutputs() const {
|
---|
95 | return EnergyVector;
|
---|
96 | }
|
---|
97 |
|
---|
98 | /** Returns the average of each component over all OutputVectors.
|
---|
99 | *
|
---|
100 | * This is useful for initializing the offset of the potential.
|
---|
101 | *
|
---|
102 | * @return average output vector
|
---|
103 | */
|
---|
104 | const FunctionModel::results_t getTrainingOutputAverage() const;
|
---|
105 |
|
---|
106 | /** Calculate the L2 error of a given \a model against the stored training data.
|
---|
107 | *
|
---|
108 | * \param model model whose L2 error to calculate
|
---|
109 | * \return sum of squared differences at training tuples
|
---|
110 | */
|
---|
111 | const double getL2Error(const FunctionModel &model) const;
|
---|
112 |
|
---|
113 | /** Calculate the Lmax error of a given \a model against the stored training data.
|
---|
114 | *
|
---|
115 | * \param model model whose Lmax error to calculate
|
---|
116 | * \return maximum difference over all training tuples
|
---|
117 | */
|
---|
118 | const double getLMaxError(const FunctionModel &model) const;
|
---|
119 |
|
---|
120 | /** Calculate the Lmax error of a given \a model against the stored training data.
|
---|
121 | *
|
---|
122 | * \param model model whose Lmax error to calculate
|
---|
123 | * \param range given range within a HomologyContainer of homologous fragments
|
---|
124 | * \return map with L2 error per configuration
|
---|
125 | */
|
---|
126 | const L2ErrorConfigurationIndexMap_t getWorstFragmentMap(
|
---|
127 | const FunctionModel &model,
|
---|
128 | const range_t &range) const;
|
---|
129 |
|
---|
130 | /** Creates a table of columns with all distances and the energy.
|
---|
131 | *
|
---|
132 | * \return array with first columns containing distances, last column energy
|
---|
133 | */
|
---|
134 | const DistanceEnergyTable_t getDistanceEnergyTable() const;
|
---|
135 |
|
---|
136 | private:
|
---|
137 | // prohibit use of default constructor, as we always require extraction functor.
|
---|
138 | TrainingData();
|
---|
139 |
|
---|
140 | private:
|
---|
141 | //!> private training data vector
|
---|
142 | InputVector_t DistanceVector;
|
---|
143 | OutputVector_t EnergyVector;
|
---|
144 | //!> list of all filtered arguments over all tuples
|
---|
145 | FilteredInputVector_t ArgumentVector;
|
---|
146 | //!> function to be used for training input data extraction from a fragment
|
---|
147 | const FunctionModel::filter_t filter;
|
---|
148 | };
|
---|
149 |
|
---|
150 | // print training data for debugging
|
---|
151 | std::ostream &operator<<(std::ostream &out, const TrainingData &data);
|
---|
152 |
|
---|
153 | #endif /* TRAININGDATA_HPP_ */
|
---|