| 1 | /* | 
|---|
| 2 | * Project: MoleCuilder | 
|---|
| 3 | * Description: creates and alters molecular systems | 
|---|
| 4 | * Copyright (C)  2012 University of Bonn. All rights reserved. | 
|---|
| 5 | * Copyright (C)  2013 Frederik Heber. All rights reserved. | 
|---|
| 6 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details. | 
|---|
| 7 | * | 
|---|
| 8 | * | 
|---|
| 9 | *   This file is part of MoleCuilder. | 
|---|
| 10 | * | 
|---|
| 11 | *    MoleCuilder is free software: you can redistribute it and/or modify | 
|---|
| 12 | *    it under the terms of the GNU General Public License as published by | 
|---|
| 13 | *    the Free Software Foundation, either version 2 of the License, or | 
|---|
| 14 | *    (at your option) any later version. | 
|---|
| 15 | * | 
|---|
| 16 | *    MoleCuilder is distributed in the hope that it will be useful, | 
|---|
| 17 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 18 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 19 | *    GNU General Public License for more details. | 
|---|
| 20 | * | 
|---|
| 21 | *    You should have received a copy of the GNU General Public License | 
|---|
| 22 | *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | /* | 
|---|
| 26 | * TrainingData.cpp | 
|---|
| 27 | * | 
|---|
| 28 | *  Created on: 15.10.2012 | 
|---|
| 29 | *      Author: heber | 
|---|
| 30 | */ | 
|---|
| 31 |  | 
|---|
| 32 | // include config.h | 
|---|
| 33 | #ifdef HAVE_CONFIG_H | 
|---|
| 34 | #include <config.h> | 
|---|
| 35 | #endif | 
|---|
| 36 |  | 
|---|
| 37 | #include "CodePatterns/MemDebug.hpp" | 
|---|
| 38 |  | 
|---|
| 39 | #include "TrainingData.hpp" | 
|---|
| 40 |  | 
|---|
| 41 | #include <algorithm> | 
|---|
| 42 | #include <boost/bind.hpp> | 
|---|
| 43 | #include <boost/lambda/lambda.hpp> | 
|---|
| 44 | #include <iostream> | 
|---|
| 45 |  | 
|---|
| 46 | #include "CodePatterns/Assert.hpp" | 
|---|
| 47 | #include "CodePatterns/Log.hpp" | 
|---|
| 48 | #include "CodePatterns/toString.hpp" | 
|---|
| 49 |  | 
|---|
| 50 | #include "Fragmentation/Summation/SetValues/Fragment.hpp" | 
|---|
| 51 | #include "FunctionApproximation/FunctionModel.hpp" | 
|---|
| 52 |  | 
|---|
| 53 | void TrainingData::operator()(const range_t &range) { | 
|---|
| 54 | for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) { | 
|---|
| 55 | // get distance out of Fragment | 
|---|
| 56 | const Fragment &fragment = iter->second.first; | 
|---|
| 57 | FunctionModel::arguments_t args = extractor( | 
|---|
| 58 | fragment, | 
|---|
| 59 | DistanceVector.size() | 
|---|
| 60 | ); | 
|---|
| 61 | DistanceVector.push_back( args ); | 
|---|
| 62 | const double &energy = iter->second.second; | 
|---|
| 63 | EnergyVector.push_back( FunctionModel::results_t(1, energy) ); | 
|---|
| 64 | } | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | const double TrainingData::getL2Error(const FunctionModel &model) const | 
|---|
| 68 | { | 
|---|
| 69 | double L2sum = 0.; | 
|---|
| 70 |  | 
|---|
| 71 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin(); | 
|---|
| 72 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| 73 | for (; initer != DistanceVector.end(); ++initer, ++outiter) { | 
|---|
| 74 | const FunctionModel::results_t result = model((*initer)); | 
|---|
| 75 | const double temp = fabs((*outiter)[0] - result[0]); | 
|---|
| 76 | L2sum += temp*temp; | 
|---|
| 77 | } | 
|---|
| 78 | return L2sum; | 
|---|
| 79 | } | 
|---|
| 80 |  | 
|---|
| 81 | const double TrainingData::getLMaxError(const FunctionModel &model) const | 
|---|
| 82 | { | 
|---|
| 83 | double Lmax = 0.; | 
|---|
| 84 | size_t maxindex = -1; | 
|---|
| 85 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin(); | 
|---|
| 86 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| 87 | for (; initer != DistanceVector.end(); ++initer, ++outiter) { | 
|---|
| 88 | const FunctionModel::results_t result = model((*initer)); | 
|---|
| 89 | const double temp = fabs((*outiter)[0] - result[0]); | 
|---|
| 90 | if (temp > Lmax) { | 
|---|
| 91 | Lmax = temp; | 
|---|
| 92 | maxindex = std::distance( | 
|---|
| 93 | const_cast<const FunctionApproximation::inputs_t &>(DistanceVector).begin(), | 
|---|
| 94 | initer | 
|---|
| 95 | ); | 
|---|
| 96 | } | 
|---|
| 97 | } | 
|---|
| 98 | return Lmax; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | const TrainingData::DistanceEnergyTable_t TrainingData::getDistanceEnergyTable() const | 
|---|
| 102 | { | 
|---|
| 103 | TrainingData::DistanceEnergyTable_t table; | 
|---|
| 104 | const InputVector_t &DistanceVector = getTrainingInputs(); | 
|---|
| 105 | const OutputVector_t &EnergyVector = getTrainingOutputs(); | 
|---|
| 106 |  | 
|---|
| 107 | /// extract distance member variable from argument_t and first value from results_t | 
|---|
| 108 | OutputVector_t::const_iterator ergiter = EnergyVector.begin(); | 
|---|
| 109 | for (InputVector_t::const_iterator iter = DistanceVector.begin(); | 
|---|
| 110 | iter != DistanceVector.end(); ++iter, ++ergiter) { | 
|---|
| 111 | ASSERT( ergiter != EnergyVector.end(), | 
|---|
| 112 | "TrainingData::getDistanceEnergyTable() - less output than input values."); | 
|---|
| 113 | std::vector< double > values(iter->size(), 0.); | 
|---|
| 114 | // transform all distances | 
|---|
| 115 | const FunctionModel::arguments_t &args = *iter; | 
|---|
| 116 | std::transform( | 
|---|
| 117 | args.begin(), args.end(), | 
|---|
| 118 | values.begin(), | 
|---|
| 119 | boost::bind(&argument_t::distance, _1)); | 
|---|
| 120 |  | 
|---|
| 121 | // get first energy value | 
|---|
| 122 | values.push_back((*ergiter)[0]); | 
|---|
| 123 |  | 
|---|
| 124 | // push as table row | 
|---|
| 125 | table.push_back(values); | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | return table; | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | const FunctionModel::results_t TrainingData::getTrainingOutputAverage() const | 
|---|
| 132 | { | 
|---|
| 133 | if (EnergyVector.size() != 0) { | 
|---|
| 134 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| 135 | FunctionModel::results_t result(*outiter); | 
|---|
| 136 | for (++outiter; outiter != EnergyVector.end(); ++outiter) | 
|---|
| 137 | for (size_t index = 0; index < (*outiter).size(); ++index) | 
|---|
| 138 | result[index] += (*outiter)[index]; | 
|---|
| 139 | LOG(2, "DEBUG: Sum of EnergyVector is " << result << "."); | 
|---|
| 140 | const double factor = 1./EnergyVector.size(); | 
|---|
| 141 | std::transform(result.begin(), result.end(), result.begin(), | 
|---|
| 142 | boost::lambda::_1 * factor); | 
|---|
| 143 | LOG(2, "DEBUG: Average EnergyVector is " << result << "."); | 
|---|
| 144 | return result; | 
|---|
| 145 | } | 
|---|
| 146 | return FunctionModel::results_t(); | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | std::ostream &operator<<(std::ostream &out, const TrainingData &data) | 
|---|
| 150 | { | 
|---|
| 151 | const TrainingData::InputVector_t &DistanceVector = data.getTrainingInputs(); | 
|---|
| 152 | const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs(); | 
|---|
| 153 | out << "(" << DistanceVector.size() | 
|---|
| 154 | << "," << EnergyVector.size() << ") data pairs: " << std::endl; | 
|---|
| 155 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin(); | 
|---|
| 156 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| 157 | for (; initer != DistanceVector.end(); ++initer, ++outiter) { | 
|---|
| 158 | for (size_t index = 0; index < (*initer).size(); ++index) | 
|---|
| 159 | out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second | 
|---|
| 160 | << ") " << (*initer)[index].distance; | 
|---|
| 161 | out << " with energy "; | 
|---|
| 162 | out << (*outiter); | 
|---|
| 163 | out << std::endl; | 
|---|
| 164 | } | 
|---|
| 165 | return out; | 
|---|
| 166 | } | 
|---|