1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2012 University of Bonn. All rights reserved.
|
---|
5 | * Copyright (C) 2013 Frederik Heber. All rights reserved.
|
---|
6 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
|
---|
7 | *
|
---|
8 | *
|
---|
9 | * This file is part of MoleCuilder.
|
---|
10 | *
|
---|
11 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
12 | * it under the terms of the GNU General Public License as published by
|
---|
13 | * the Free Software Foundation, either version 2 of the License, or
|
---|
14 | * (at your option) any later version.
|
---|
15 | *
|
---|
16 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | * GNU General Public License for more details.
|
---|
20 | *
|
---|
21 | * You should have received a copy of the GNU General Public License
|
---|
22 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
23 | */
|
---|
24 |
|
---|
25 | /*
|
---|
26 | * TrainingData.cpp
|
---|
27 | *
|
---|
28 | * Created on: 15.10.2012
|
---|
29 | * Author: heber
|
---|
30 | */
|
---|
31 |
|
---|
32 | // include config.h
|
---|
33 | #ifdef HAVE_CONFIG_H
|
---|
34 | #include <config.h>
|
---|
35 | #endif
|
---|
36 |
|
---|
37 | #include "CodePatterns/MemDebug.hpp"
|
---|
38 |
|
---|
39 | #include "TrainingData.hpp"
|
---|
40 |
|
---|
41 | #include <algorithm>
|
---|
42 | #include <boost/bind.hpp>
|
---|
43 | #include <boost/lambda/lambda.hpp>
|
---|
44 | #include <iostream>
|
---|
45 |
|
---|
46 | #include "CodePatterns/Assert.hpp"
|
---|
47 | #include "CodePatterns/Log.hpp"
|
---|
48 | #include "CodePatterns/toString.hpp"
|
---|
49 |
|
---|
50 | #include "Fragmentation/Summation/SetValues/Fragment.hpp"
|
---|
51 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
52 | #include "FunctionApproximation/Extractors.hpp"
|
---|
53 |
|
---|
54 | void TrainingData::operator()(const range_t &range) {
|
---|
55 | for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
|
---|
56 | const Fragment &fragment = iter->second.fragment;
|
---|
57 | // create internal list of arguments
|
---|
58 | FunctionModel::arguments_t all_args = Extractors::gatherAllSymmetricDistances(
|
---|
59 | fragment.getPositions(),
|
---|
60 | fragment.getCharges(),
|
---|
61 | DistanceVector.size()
|
---|
62 | );
|
---|
63 | DistanceVector.push_back( all_args );
|
---|
64 | const double &energy = iter->second.energy;
|
---|
65 | EnergyVector.push_back( FunctionModel::results_t(1, energy) );
|
---|
66 | // filter distances out of list of all arguments
|
---|
67 | FunctionModel::arguments_t args = filter(all_args);
|
---|
68 | LOG(3, "DEBUG: Filtered arguments are " << args << ".");
|
---|
69 | ArgumentVector.push_back( args );
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | const double TrainingData::getL2Error(const FunctionModel &model) const
|
---|
74 | {
|
---|
75 | double L2sum = 0.;
|
---|
76 |
|
---|
77 | FunctionApproximation::inputs_t::const_iterator initer = ArgumentVector.begin();
|
---|
78 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
79 | for (; initer != ArgumentVector.end(); ++initer, ++outiter) {
|
---|
80 | const FunctionModel::results_t result = model((*initer));
|
---|
81 | const double temp = fabs((*outiter)[0] - result[0]);
|
---|
82 | L2sum += temp*temp;
|
---|
83 | }
|
---|
84 | return L2sum;
|
---|
85 | }
|
---|
86 |
|
---|
87 | const double TrainingData::getLMaxError(const FunctionModel &model) const
|
---|
88 | {
|
---|
89 | double Lmax = 0.;
|
---|
90 | // size_t maxindex = -1;
|
---|
91 | FunctionApproximation::inputs_t::const_iterator initer = ArgumentVector.begin();
|
---|
92 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
93 | for (; initer != ArgumentVector.end(); ++initer, ++outiter) {
|
---|
94 | const FunctionModel::results_t result = model((*initer));
|
---|
95 | const double temp = fabs((*outiter)[0] - result[0]);
|
---|
96 | if (temp > Lmax) {
|
---|
97 | Lmax = temp;
|
---|
98 | // maxindex = std::distance(
|
---|
99 | // const_cast<const FunctionApproximation::inputs_t &>(ArgumentVector).begin(),
|
---|
100 | // initer
|
---|
101 | // );
|
---|
102 | }
|
---|
103 | }
|
---|
104 | return Lmax;
|
---|
105 | }
|
---|
106 |
|
---|
107 | const TrainingData::DistanceEnergyTable_t TrainingData::getDistanceEnergyTable() const
|
---|
108 | {
|
---|
109 | TrainingData::DistanceEnergyTable_t table;
|
---|
110 |
|
---|
111 | /// extract distance member variable from argument_t and first value from results_t
|
---|
112 | OutputVector_t::const_iterator ergiter = EnergyVector.begin();
|
---|
113 | for (InputVector_t::const_iterator iter = ArgumentVector.begin();
|
---|
114 | iter != ArgumentVector.end(); ++iter, ++ergiter) {
|
---|
115 | ASSERT( ergiter != EnergyVector.end(),
|
---|
116 | "TrainingData::getDistanceEnergyTable() - less output than input values.");
|
---|
117 | std::vector< double > values(iter->size(), 0.);
|
---|
118 | // transform all distances
|
---|
119 | const FunctionModel::arguments_t &args = *iter;
|
---|
120 | std::transform(
|
---|
121 | args.begin(), args.end(),
|
---|
122 | values.begin(),
|
---|
123 | boost::bind(&argument_t::distance, _1));
|
---|
124 |
|
---|
125 | // get first energy value
|
---|
126 | values.push_back((*ergiter)[0]);
|
---|
127 |
|
---|
128 | // push as table row
|
---|
129 | table.push_back(values);
|
---|
130 | }
|
---|
131 |
|
---|
132 | return table;
|
---|
133 | }
|
---|
134 |
|
---|
135 | const FunctionModel::results_t TrainingData::getTrainingOutputAverage() const
|
---|
136 | {
|
---|
137 | if (EnergyVector.size() != 0) {
|
---|
138 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
139 | FunctionModel::results_t result(*outiter);
|
---|
140 | for (++outiter; outiter != EnergyVector.end(); ++outiter)
|
---|
141 | for (size_t index = 0; index < (*outiter).size(); ++index)
|
---|
142 | result[index] += (*outiter)[index];
|
---|
143 | LOG(2, "DEBUG: Sum of EnergyVector is " << result << ".");
|
---|
144 | const double factor = 1./EnergyVector.size();
|
---|
145 | std::transform(result.begin(), result.end(), result.begin(),
|
---|
146 | boost::lambda::_1 * factor);
|
---|
147 | LOG(2, "DEBUG: Average EnergyVector is " << result << ".");
|
---|
148 | return result;
|
---|
149 | }
|
---|
150 | return FunctionModel::results_t();
|
---|
151 | }
|
---|
152 |
|
---|
153 | std::ostream &operator<<(std::ostream &out, const TrainingData &data)
|
---|
154 | {
|
---|
155 | const TrainingData::InputVector_t &DistanceVector = data.getAllArguments();
|
---|
156 | const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs();
|
---|
157 | out << "(" << DistanceVector.size()
|
---|
158 | << "," << EnergyVector.size() << ") data pairs: " << std::endl;
|
---|
159 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
160 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
161 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
162 | for (size_t index = 0; index < (*initer).size(); ++index)
|
---|
163 | out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second
|
---|
164 | << ") " << (*initer)[index].distance;
|
---|
165 | out << " with energy ";
|
---|
166 | out << (*outiter);
|
---|
167 | out << std::endl;
|
---|
168 | }
|
---|
169 | return out;
|
---|
170 | }
|
---|