| [68172a] | 1 | /* | 
|---|
|  | 2 | * Project: MoleCuilder | 
|---|
|  | 3 | * Description: creates and alters molecular systems | 
|---|
|  | 4 | * Copyright (C)  2012 University of Bonn. All rights reserved. | 
|---|
| [5aaa43] | 5 | * Copyright (C)  2013 Frederik Heber. All rights reserved. | 
|---|
| [68172a] | 6 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details. | 
|---|
|  | 7 | * | 
|---|
|  | 8 | * | 
|---|
|  | 9 | *   This file is part of MoleCuilder. | 
|---|
|  | 10 | * | 
|---|
|  | 11 | *    MoleCuilder is free software: you can redistribute it and/or modify | 
|---|
|  | 12 | *    it under the terms of the GNU General Public License as published by | 
|---|
|  | 13 | *    the Free Software Foundation, either version 2 of the License, or | 
|---|
|  | 14 | *    (at your option) any later version. | 
|---|
|  | 15 | * | 
|---|
|  | 16 | *    MoleCuilder is distributed in the hope that it will be useful, | 
|---|
|  | 17 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 18 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 19 | *    GNU General Public License for more details. | 
|---|
|  | 20 | * | 
|---|
|  | 21 | *    You should have received a copy of the GNU General Public License | 
|---|
|  | 22 | *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
|  | 23 | */ | 
|---|
|  | 24 |  | 
|---|
|  | 25 | /* | 
|---|
|  | 26 | * TrainingData.cpp | 
|---|
|  | 27 | * | 
|---|
|  | 28 | *  Created on: 15.10.2012 | 
|---|
|  | 29 | *      Author: heber | 
|---|
|  | 30 | */ | 
|---|
|  | 31 |  | 
|---|
|  | 32 | // include config.h | 
|---|
|  | 33 | #ifdef HAVE_CONFIG_H | 
|---|
|  | 34 | #include <config.h> | 
|---|
|  | 35 | #endif | 
|---|
|  | 36 |  | 
|---|
|  | 37 | #include "CodePatterns/MemDebug.hpp" | 
|---|
|  | 38 |  | 
|---|
|  | 39 | #include "TrainingData.hpp" | 
|---|
|  | 40 |  | 
|---|
| [dd8094] | 41 | #include <algorithm> | 
|---|
| [04cc7e] | 42 | #include <boost/bind.hpp> | 
|---|
| [f4496d] | 43 | #include <boost/foreach.hpp> | 
|---|
| [dd8094] | 44 | #include <boost/lambda/lambda.hpp> | 
|---|
| [68172a] | 45 | #include <iostream> | 
|---|
| [f4496d] | 46 | #include <sstream> | 
|---|
| [68172a] | 47 |  | 
|---|
| [04cc7e] | 48 | #include "CodePatterns/Assert.hpp" | 
|---|
| [dd8094] | 49 | #include "CodePatterns/Log.hpp" | 
|---|
| [68172a] | 50 | #include "CodePatterns/toString.hpp" | 
|---|
|  | 51 |  | 
|---|
| [fbf143] | 52 | #include "Fragmentation/Summation/SetValues/Fragment.hpp" | 
|---|
| [f4496d] | 53 | #include "FunctionApproximation/FunctionArgument.hpp" | 
|---|
| [68172a] | 54 | #include "FunctionApproximation/FunctionModel.hpp" | 
|---|
| [af2c7ec] | 55 | #include "FunctionApproximation/Extractors.hpp" | 
|---|
| [68172a] | 56 |  | 
|---|
|  | 57 | void TrainingData::operator()(const range_t &range) { | 
|---|
|  | 58 | for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) { | 
|---|
| [bf1d1b] | 59 | const Fragment &fragment = iter->second.fragment; | 
|---|
| [af2c7ec] | 60 | // create internal list of arguments | 
|---|
|  | 61 | FunctionModel::arguments_t all_args = Extractors::gatherAllSymmetricDistances( | 
|---|
|  | 62 | fragment.getPositions(), | 
|---|
|  | 63 | fragment.getCharges(), | 
|---|
|  | 64 | DistanceVector.size() | 
|---|
| [68172a] | 65 | ); | 
|---|
| [af2c7ec] | 66 | DistanceVector.push_back( all_args ); | 
|---|
| [bf1d1b] | 67 | const double &energy = iter->second.energy; | 
|---|
| [68172a] | 68 | EnergyVector.push_back( FunctionModel::results_t(1, energy) ); | 
|---|
| [af2c7ec] | 69 | // filter distances out of list of all arguments | 
|---|
| [e1fe7e] | 70 | FunctionModel::list_of_arguments_t args = filter(all_args); | 
|---|
| [af2c7ec] | 71 | LOG(3, "DEBUG: Filtered arguments are " << args << "."); | 
|---|
|  | 72 | ArgumentVector.push_back( args ); | 
|---|
| [68172a] | 73 | } | 
|---|
|  | 74 | } | 
|---|
|  | 75 |  | 
|---|
|  | 76 | const double TrainingData::getL2Error(const FunctionModel &model) const | 
|---|
|  | 77 | { | 
|---|
|  | 78 | double L2sum = 0.; | 
|---|
|  | 79 |  | 
|---|
| [e1fe7e] | 80 | FilteredInputVector_t::const_iterator initer = ArgumentVector.begin(); | 
|---|
|  | 81 | OutputVector_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| [af2c7ec] | 82 | for (; initer != ArgumentVector.end(); ++initer, ++outiter) { | 
|---|
| [68172a] | 83 | const FunctionModel::results_t result = model((*initer)); | 
|---|
|  | 84 | const double temp = fabs((*outiter)[0] - result[0]); | 
|---|
|  | 85 | L2sum += temp*temp; | 
|---|
|  | 86 | } | 
|---|
|  | 87 | return L2sum; | 
|---|
|  | 88 | } | 
|---|
|  | 89 |  | 
|---|
|  | 90 | const double TrainingData::getLMaxError(const FunctionModel &model) const | 
|---|
|  | 91 | { | 
|---|
|  | 92 | double Lmax = 0.; | 
|---|
| [af2c7ec] | 93 | //  size_t maxindex = -1; | 
|---|
| [e1fe7e] | 94 | FilteredInputVector_t::const_iterator initer = ArgumentVector.begin(); | 
|---|
|  | 95 | OutputVector_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| [af2c7ec] | 96 | for (; initer != ArgumentVector.end(); ++initer, ++outiter) { | 
|---|
| [68172a] | 97 | const FunctionModel::results_t result = model((*initer)); | 
|---|
|  | 98 | const double temp = fabs((*outiter)[0] - result[0]); | 
|---|
|  | 99 | if (temp > Lmax) { | 
|---|
|  | 100 | Lmax = temp; | 
|---|
| [af2c7ec] | 101 | //      maxindex = std::distance( | 
|---|
|  | 102 | //          const_cast<const FunctionApproximation::inputs_t &>(ArgumentVector).begin(), | 
|---|
|  | 103 | //          initer | 
|---|
|  | 104 | //          ); | 
|---|
| [68172a] | 105 | } | 
|---|
|  | 106 | } | 
|---|
|  | 107 | return Lmax; | 
|---|
|  | 108 | } | 
|---|
|  | 109 |  | 
|---|
| [f4496d] | 110 | const TrainingData::L2ErrorConfigurationIndexMap_t | 
|---|
|  | 111 | TrainingData::getWorstFragmentMap( | 
|---|
|  | 112 | const FunctionModel &model, | 
|---|
|  | 113 | const range_t &range) const | 
|---|
|  | 114 | { | 
|---|
| [e1fe7e] | 115 | L2ErrorConfigurationIndexMap_t WorseFragmentMap; | 
|---|
| [f4496d] | 116 | // fragments make it into the container in reversed order, hence count from top down | 
|---|
|  | 117 | size_t index= std::distance(range.first, range.second)-1; | 
|---|
| [e1fe7e] | 118 | InputVector_t::const_iterator distanceiter = DistanceVector.begin(); | 
|---|
|  | 119 | FilteredInputVector_t::const_iterator initer = ArgumentVector.begin(); | 
|---|
| [f4496d] | 120 | OutputVector_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
| [e1fe7e] | 121 | for (; initer != ArgumentVector.end(); ++initer, ++outiter, ++distanceiter) { | 
|---|
| [f4496d] | 122 | // calculate value from potential | 
|---|
| [e1fe7e] | 123 | const FunctionModel::list_of_arguments_t &args = *initer; | 
|---|
| [f4496d] | 124 | const FunctionModel::results_t result = model(args); | 
|---|
|  | 125 | const double energy = (*outiter)[0]; | 
|---|
|  | 126 |  | 
|---|
|  | 127 | // insert difference into map | 
|---|
|  | 128 | const double error = fabs(energy - result[0]); | 
|---|
|  | 129 | WorseFragmentMap.insert( std::make_pair( error, index-- ) ); | 
|---|
|  | 130 |  | 
|---|
|  | 131 | { | 
|---|
|  | 132 | // give only the distances in the debugging text | 
|---|
|  | 133 | std::stringstream streamargs; | 
|---|
| [e1fe7e] | 134 | BOOST_FOREACH (argument_t arg, *distanceiter) { | 
|---|
| [f4496d] | 135 | streamargs << " " << arg.distance; | 
|---|
|  | 136 | } | 
|---|
|  | 137 | LOG(2, "DEBUG: frag.#" << index+1 << "'s error is |" << energy << " - " << result[0] | 
|---|
|  | 138 | << "| = " << error << " for args " << streamargs.str() << "."); | 
|---|
|  | 139 | } | 
|---|
|  | 140 | } | 
|---|
|  | 141 |  | 
|---|
|  | 142 | return WorseFragmentMap; | 
|---|
|  | 143 | } | 
|---|
|  | 144 |  | 
|---|
| [04cc7e] | 145 | const TrainingData::DistanceEnergyTable_t TrainingData::getDistanceEnergyTable() const | 
|---|
|  | 146 | { | 
|---|
|  | 147 | TrainingData::DistanceEnergyTable_t table; | 
|---|
|  | 148 |  | 
|---|
|  | 149 | /// extract distance member variable from argument_t and first value from results_t | 
|---|
|  | 150 | OutputVector_t::const_iterator ergiter = EnergyVector.begin(); | 
|---|
| [e1fe7e] | 151 | for (InputVector_t::const_iterator iter = DistanceVector.begin(); | 
|---|
|  | 152 | iter != DistanceVector.end(); ++iter, ++ergiter) { | 
|---|
| [04cc7e] | 153 | ASSERT( ergiter != EnergyVector.end(), | 
|---|
|  | 154 | "TrainingData::getDistanceEnergyTable() - less output than input values."); | 
|---|
|  | 155 | std::vector< double > values(iter->size(), 0.); | 
|---|
|  | 156 | // transform all distances | 
|---|
|  | 157 | const FunctionModel::arguments_t &args = *iter; | 
|---|
|  | 158 | std::transform( | 
|---|
|  | 159 | args.begin(), args.end(), | 
|---|
|  | 160 | values.begin(), | 
|---|
|  | 161 | boost::bind(&argument_t::distance, _1)); | 
|---|
|  | 162 |  | 
|---|
|  | 163 | // get first energy value | 
|---|
|  | 164 | values.push_back((*ergiter)[0]); | 
|---|
|  | 165 |  | 
|---|
|  | 166 | // push as table row | 
|---|
|  | 167 | table.push_back(values); | 
|---|
|  | 168 | } | 
|---|
|  | 169 |  | 
|---|
|  | 170 | return table; | 
|---|
|  | 171 | } | 
|---|
|  | 172 |  | 
|---|
| [dd8094] | 173 | const FunctionModel::results_t TrainingData::getTrainingOutputAverage() const | 
|---|
|  | 174 | { | 
|---|
|  | 175 | if (EnergyVector.size() != 0) { | 
|---|
|  | 176 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
|  | 177 | FunctionModel::results_t result(*outiter); | 
|---|
|  | 178 | for (++outiter; outiter != EnergyVector.end(); ++outiter) | 
|---|
|  | 179 | for (size_t index = 0; index < (*outiter).size(); ++index) | 
|---|
|  | 180 | result[index] += (*outiter)[index]; | 
|---|
|  | 181 | LOG(2, "DEBUG: Sum of EnergyVector is " << result << "."); | 
|---|
|  | 182 | const double factor = 1./EnergyVector.size(); | 
|---|
|  | 183 | std::transform(result.begin(), result.end(), result.begin(), | 
|---|
|  | 184 | boost::lambda::_1 * factor); | 
|---|
|  | 185 | LOG(2, "DEBUG: Average EnergyVector is " << result << "."); | 
|---|
|  | 186 | return result; | 
|---|
|  | 187 | } | 
|---|
|  | 188 | return FunctionModel::results_t(); | 
|---|
|  | 189 | } | 
|---|
|  | 190 |  | 
|---|
| [68172a] | 191 | std::ostream &operator<<(std::ostream &out, const TrainingData &data) | 
|---|
|  | 192 | { | 
|---|
| [af2c7ec] | 193 | const TrainingData::InputVector_t &DistanceVector = data.getAllArguments(); | 
|---|
| [68172a] | 194 | const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs(); | 
|---|
|  | 195 | out << "(" << DistanceVector.size() | 
|---|
|  | 196 | << "," << EnergyVector.size() << ") data pairs: " << std::endl; | 
|---|
|  | 197 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin(); | 
|---|
|  | 198 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin(); | 
|---|
|  | 199 | for (; initer != DistanceVector.end(); ++initer, ++outiter) { | 
|---|
|  | 200 | for (size_t index = 0; index < (*initer).size(); ++index) | 
|---|
|  | 201 | out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second | 
|---|
|  | 202 | << ") " << (*initer)[index].distance; | 
|---|
|  | 203 | out << " with energy "; | 
|---|
|  | 204 | out << (*outiter); | 
|---|
|  | 205 | out << std::endl; | 
|---|
|  | 206 | } | 
|---|
|  | 207 | return out; | 
|---|
|  | 208 | } | 
|---|