1 | /*
|
---|
2 | * FunctionModel.hpp
|
---|
3 | *
|
---|
4 | * Created on: 02.10.2012
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef FUNCTIONMODEL_HPP_
|
---|
9 | #define FUNCTIONMODEL_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <boost/function.hpp>
|
---|
17 | #include <vector>
|
---|
18 |
|
---|
19 | #include "FunctionApproximation/FunctionArgument.hpp"
|
---|
20 |
|
---|
21 | class Fragment;
|
---|
22 | class TrainingData;
|
---|
23 |
|
---|
24 | /** This class represents the interface for a given function to model a
|
---|
25 | * high-dimensional data set in FunctionApproximation.
|
---|
26 | *
|
---|
27 | * As the parameters may be stored differently, the interface functions for
|
---|
28 | * getting and setting them are as light-weight (and not speed-optimized)
|
---|
29 | * as possible.
|
---|
30 | *
|
---|
31 | */
|
---|
32 | class FunctionModel
|
---|
33 | {
|
---|
34 | public:
|
---|
35 | //!> typedef for a single parameter degree of freedom of the function
|
---|
36 | typedef double parameter_t;
|
---|
37 | //!> typedef for the whole set of parameters of the function
|
---|
38 | typedef std::vector<parameter_t> parameters_t;
|
---|
39 | //!> typedef for the argument vector as input to the function
|
---|
40 | typedef std::vector<argument_t> arguments_t;
|
---|
41 | //!> typedef for a single result degree of freedom
|
---|
42 | typedef double result_t;
|
---|
43 | //!> typedef for the result vector as returned by the function
|
---|
44 | typedef std::vector<result_t> results_t;
|
---|
45 | //!> typedef for a function containing how to extract required information from a Fragment.
|
---|
46 | typedef boost::function< arguments_t (const Fragment &, const size_t)> extractor_t;
|
---|
47 | //!> typedef for the magic triple function that gets the other two distances for a given argument
|
---|
48 | typedef boost::function< std::vector<arguments_t>(const argument_t &, const double)> triplefunction_t;
|
---|
49 |
|
---|
50 | public:
|
---|
51 | FunctionModel() {}
|
---|
52 | virtual ~FunctionModel() {}
|
---|
53 |
|
---|
54 | /** Setter for the parameters of the model function.
|
---|
55 | *
|
---|
56 | * \param params set of parameters to set
|
---|
57 | */
|
---|
58 | virtual void setParameters(const parameters_t ¶ms)=0;
|
---|
59 |
|
---|
60 | /** Getter for the parameters of this model function.
|
---|
61 | *
|
---|
62 | * \return current set of parameters of the model function
|
---|
63 | */
|
---|
64 | virtual parameters_t getParameters() const=0;
|
---|
65 |
|
---|
66 | /** Sets the parameter randomly within the sensible range of each parameter.
|
---|
67 | *
|
---|
68 | * \param data container with training data for guesstimating range
|
---|
69 | */
|
---|
70 | virtual void setParametersToRandomInitialValues(const TrainingData &data)=0;
|
---|
71 |
|
---|
72 | /** Getter for the number of parameters of this model function.
|
---|
73 | *
|
---|
74 | * \return number of parameters
|
---|
75 | */
|
---|
76 | virtual size_t getParameterDimension() const=0;
|
---|
77 |
|
---|
78 | /** Sets the magic triple function that we use for getting angle distances.
|
---|
79 | *
|
---|
80 | * @param _triplefunction function that returns a list of triples (i.e. the
|
---|
81 | * two remaining distances) to a given pair of points (contained as
|
---|
82 | * indices within the argument)
|
---|
83 | */
|
---|
84 | virtual void setTriplefunction(triplefunction_t &_triplefunction)
|
---|
85 | {}
|
---|
86 |
|
---|
87 | /** Evaluates the function with the given \a arguments and the current set of
|
---|
88 | * parameters.
|
---|
89 | *
|
---|
90 | * \param arguments set of arguments as input variables to the function
|
---|
91 | * \return result of the function
|
---|
92 | */
|
---|
93 | virtual results_t operator()(const arguments_t &arguments) const=0;
|
---|
94 |
|
---|
95 | /** Evaluates the derivative of the function with the given \a arguments
|
---|
96 | * with respect to a specific parameter indicated by \a index.
|
---|
97 | *
|
---|
98 | * \param arguments set of arguments as input variables to the function
|
---|
99 | * \param index derivative of which parameter
|
---|
100 | * \return result vector containing the derivative with respect to the given
|
---|
101 | * input
|
---|
102 | */
|
---|
103 | virtual results_t parameter_derivative(const arguments_t &arguments, const size_t index) const=0;
|
---|
104 |
|
---|
105 | /** States whether lower and upper boundaries should be used to constraint
|
---|
106 | * the parameter search for this function model.
|
---|
107 | *
|
---|
108 | * \return true - constraints should be used, false - else
|
---|
109 | */
|
---|
110 | virtual bool isBoxConstraint() const=0;
|
---|
111 |
|
---|
112 | /** Returns a vector which are the lower boundaries for each parameter_t
|
---|
113 | * of this FunctionModel.
|
---|
114 | *
|
---|
115 | * \return vector of parameter_t resembling lowest allowed values
|
---|
116 | */
|
---|
117 | virtual parameters_t getLowerBoxConstraints() const=0;
|
---|
118 |
|
---|
119 | /** Returns a vector which are the upper boundaries for each parameter_t
|
---|
120 | * of this FunctionModel.
|
---|
121 | *
|
---|
122 | * \return vector of parameter_t resembling highest allowed values
|
---|
123 | */
|
---|
124 | virtual parameters_t getUpperBoxConstraints() const=0;
|
---|
125 |
|
---|
126 | /** Returns a bound function to be used with TrainingData, extracting distances
|
---|
127 | * from a Fragment.
|
---|
128 | *
|
---|
129 | * \return bound function extracting distances from a fragment
|
---|
130 | */
|
---|
131 | virtual extractor_t getFragmentSpecificExtractor() const=0;
|
---|
132 | };
|
---|
133 |
|
---|
134 | #endif /* FUNCTIONMODEL_HPP_ */
|
---|