[66cfc7] | 1 | /*
|
---|
| 2 | * FunctionApproximation.hpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: 02.10.2012
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | #ifndef FUNCTIONAPPROXIMATION_HPP_
|
---|
| 9 | #define FUNCTIONAPPROXIMATION_HPP_
|
---|
| 10 |
|
---|
| 11 | // include config.h
|
---|
| 12 | #ifdef HAVE_CONFIG_H
|
---|
| 13 | #include <config.h>
|
---|
| 14 | #endif
|
---|
| 15 |
|
---|
| 16 | #include <vector>
|
---|
| 17 |
|
---|
| 18 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
| 19 |
|
---|
| 20 | /** This class encapsulates the solution to approximating a high-dimensional
|
---|
| 21 | * function represented by two vectors of tuples, being input variables and
|
---|
| 22 | * output of the function via a model function, manipulated by a set of
|
---|
| 23 | * parameters.
|
---|
| 24 | *
|
---|
| 25 | * \note For this reason the input and output dimension has to be given in
|
---|
| 26 | * the constructor since these are fixed parameters to the problem as a
|
---|
| 27 | * whole and usually: a different input dimension means we have a completely
|
---|
| 28 | * different problem (and hence we may as well construct and new instance of
|
---|
| 29 | * this class).
|
---|
| 30 | *
|
---|
| 31 | * The "training data", i.e. the two sets of input and output values, is
|
---|
| 32 | * given extra.
|
---|
| 33 | *
|
---|
| 34 | * The problem is then that a given high-dimensional function is supplied,
|
---|
| 35 | * the "model", and we have to fit this function via its set of variable
|
---|
| 36 | * parameters. This fitting procedure is executed via a Levenberg-Marquardt
|
---|
| 37 | * algorithm as implemented in the
|
---|
| 38 | * <a href="http://www.ics.forth.gr/~lourakis/levmar/index.html">LevMar</a>
|
---|
| 39 | * package.
|
---|
| 40 | *
|
---|
| 41 | */
|
---|
| 42 | class FunctionApproximation
|
---|
| 43 | {
|
---|
| 44 | public:
|
---|
| 45 | //!> typedef for a vector of input arguments
|
---|
| 46 | typedef std::vector<FunctionModel::arguments_t> inputs_t;
|
---|
| 47 | //!> typedef for a vector of output values
|
---|
| 48 | typedef std::vector<FunctionModel::results_t> outputs_t;
|
---|
| 49 | public:
|
---|
| 50 | /** Constructor of the class FunctionApproximation.
|
---|
| 51 | *
|
---|
| 52 | * \param _input_dimension input dimension for this function approximation
|
---|
| 53 | * \param _output_dimension output dimension for this function approximation
|
---|
| 54 | */
|
---|
| 55 | FunctionApproximation(
|
---|
| 56 | const size_t &_input_dimension,
|
---|
| 57 | const size_t &_output_dimension,
|
---|
| 58 | FunctionModel &_model) :
|
---|
| 59 | input_dimension(_input_dimension),
|
---|
| 60 | output_dimension(_output_dimension),
|
---|
| 61 | model(_model)
|
---|
| 62 | {}
|
---|
| 63 | /** Destructor for class FunctionApproximation.
|
---|
| 64 | *
|
---|
| 65 | */
|
---|
| 66 | ~FunctionApproximation()
|
---|
| 67 | {}
|
---|
| 68 |
|
---|
| 69 | /** Setter for the training data to be used.
|
---|
| 70 | *
|
---|
| 71 | * \param input vector of input tuples, needs to be of
|
---|
| 72 | * FunctionApproximation::input_dimension size
|
---|
| 73 | * \param output vector of output tuples, needs to be of
|
---|
| 74 | * FunctionApproximation::output_dimension size
|
---|
| 75 | */
|
---|
| 76 | void setTrainingData(const inputs_t &input, const outputs_t &output);
|
---|
| 77 |
|
---|
| 78 | /** Setter for the model function to be used in the approximation.
|
---|
| 79 | *
|
---|
| 80 | */
|
---|
| 81 | void setModelFunction(FunctionModel &_model);
|
---|
| 82 |
|
---|
[76e63d] | 83 | /** This enum steers whether we use finite differences or
|
---|
| 84 | * FunctionModel::parameter_derivative to calculate the jacobian.
|
---|
| 85 | *
|
---|
| 86 | */
|
---|
| 87 | enum JacobianMode {
|
---|
| 88 | FiniteDifferences,
|
---|
| 89 | ParameterDerivative,
|
---|
| 90 | MAXMODE
|
---|
| 91 | };
|
---|
| 92 |
|
---|
[66cfc7] | 93 | /** This starts the fitting process, resulting in the parameters to
|
---|
| 94 | * the model function being optimized with respect to the given training
|
---|
| 95 | * data.
|
---|
[76e63d] | 96 | *
|
---|
| 97 | * \param mode whether to use finite differences or the parameter derivative
|
---|
| 98 | * in calculating the jacobian
|
---|
[66cfc7] | 99 | */
|
---|
[76e63d] | 100 | void operator()(const enum JacobianMode mode = FiniteDifferences);
|
---|
[66cfc7] | 101 |
|
---|
| 102 | /** Evaluates the model function for each pair of training tuple and returns
|
---|
[5b5724] | 103 | * the output of the function as a vector.
|
---|
[66cfc7] | 104 | *
|
---|
| 105 | * This function as a signature compatible to the one required by the
|
---|
| 106 | * LevMar package (with double precision).
|
---|
| 107 | *
|
---|
| 108 | * \param *p array of parameters for the model function of dimension \a m
|
---|
| 109 | * \param *x array of result values of dimension \a n
|
---|
| 110 | * \param m parameter dimension
|
---|
| 111 | * \param n output dimension
|
---|
| 112 | * \param *data additional data, unused here
|
---|
| 113 | */
|
---|
| 114 | void evaluate(double *p, double *x, int m, int n, void *data);
|
---|
| 115 |
|
---|
[5b5724] | 116 | /** Evaluates the parameter derivative of the model function for each pair of
|
---|
| 117 | * training tuple and returns the output of the function as vector.
|
---|
| 118 | *
|
---|
| 119 | * This function as a signature compatible to the one required by the
|
---|
| 120 | * LevMar package (with double precision).
|
---|
| 121 | *
|
---|
| 122 | * \param *p array of parameters for the model function of dimension \a m
|
---|
| 123 | * \param *jac on output jacobian matrix of result values of dimension \a n times \a m
|
---|
| 124 | * \param m parameter dimension
|
---|
| 125 | * \param n output dimension times parameter dimension
|
---|
| 126 | * \param *data additional data, unused here
|
---|
| 127 | */
|
---|
| 128 | void evaluateDerivative(double *p, double *jac, int m, int n, void *data);
|
---|
| 129 |
|
---|
[371c8b] | 130 | /** This functions checks whether the parameter derivative of the FunctionModel
|
---|
| 131 | * has been correctly implemented by validating against finite differences.
|
---|
| 132 | *
|
---|
| 133 | * We use LevMar's dlevmar_chkjac() function.
|
---|
| 134 | *
|
---|
| 135 | * \return true - gradients are ok (>0.5), false - else
|
---|
| 136 | */
|
---|
| 137 | bool checkParameterDerivatives();
|
---|
| 138 |
|
---|
[66cfc7] | 139 | private:
|
---|
| 140 | static void LevMarCallback(double *p, double *x, int m, int n, void *data);
|
---|
| 141 |
|
---|
[5b5724] | 142 | static void LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data);
|
---|
| 143 |
|
---|
| 144 | void prepareModel(double *p, int m);
|
---|
| 145 |
|
---|
[63b9f7] | 146 | void prepareParameters(double *&p, int &m) const;
|
---|
| 147 |
|
---|
| 148 | void prepareOutput(double *&x, int &n) const;
|
---|
| 149 |
|
---|
[66cfc7] | 150 | private:
|
---|
| 151 | //!> input dimension (is fixed from construction)
|
---|
| 152 | const size_t input_dimension;
|
---|
| 153 | //!> output dimension (is fixed from construction)
|
---|
| 154 | const size_t output_dimension;
|
---|
| 155 |
|
---|
| 156 | //!> current input set of training data
|
---|
| 157 | inputs_t input_data;
|
---|
| 158 | //!> current output set of training data
|
---|
| 159 | outputs_t output_data;
|
---|
| 160 |
|
---|
| 161 | //!> the model function to be used in the high-dimensional approximation
|
---|
| 162 | FunctionModel &model;
|
---|
| 163 | };
|
---|
| 164 |
|
---|
| 165 | #endif /* FUNCTIONAPPROXIMATION_HPP_ */
|
---|