| [66cfc7] | 1 | /* | 
|---|
|  | 2 | * Project: MoleCuilder | 
|---|
|  | 3 | * Description: creates and alters molecular systems | 
|---|
|  | 4 | * Copyright (C)  2012 University of Bonn. All rights reserved. | 
|---|
|  | 5 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details. | 
|---|
|  | 6 | * | 
|---|
|  | 7 | * | 
|---|
|  | 8 | *   This file is part of MoleCuilder. | 
|---|
|  | 9 | * | 
|---|
|  | 10 | *    MoleCuilder is free software: you can redistribute it and/or modify | 
|---|
|  | 11 | *    it under the terms of the GNU General Public License as published by | 
|---|
|  | 12 | *    the Free Software Foundation, either version 2 of the License, or | 
|---|
|  | 13 | *    (at your option) any later version. | 
|---|
|  | 14 | * | 
|---|
|  | 15 | *    MoleCuilder is distributed in the hope that it will be useful, | 
|---|
|  | 16 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 17 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 18 | *    GNU General Public License for more details. | 
|---|
|  | 19 | * | 
|---|
|  | 20 | *    You should have received a copy of the GNU General Public License | 
|---|
|  | 21 | *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
|  | 22 | */ | 
|---|
|  | 23 |  | 
|---|
|  | 24 | /* | 
|---|
|  | 25 | * FunctionApproximation.cpp | 
|---|
|  | 26 | * | 
|---|
|  | 27 | *  Created on: 02.10.2012 | 
|---|
|  | 28 | *      Author: heber | 
|---|
|  | 29 | */ | 
|---|
|  | 30 |  | 
|---|
|  | 31 | // include config.h | 
|---|
|  | 32 | #ifdef HAVE_CONFIG_H | 
|---|
|  | 33 | #include <config.h> | 
|---|
|  | 34 | #endif | 
|---|
|  | 35 |  | 
|---|
|  | 36 | #include "CodePatterns/MemDebug.hpp" | 
|---|
|  | 37 |  | 
|---|
|  | 38 | #include "FunctionApproximation.hpp" | 
|---|
|  | 39 |  | 
|---|
|  | 40 | #include <algorithm> | 
|---|
|  | 41 | #include <boost/bind.hpp> | 
|---|
|  | 42 | #include <boost/function.hpp> | 
|---|
|  | 43 | #include <iostream> | 
|---|
|  | 44 | #include <iterator> | 
|---|
|  | 45 | #include <numeric> | 
|---|
|  | 46 | #include <sstream> | 
|---|
|  | 47 |  | 
|---|
|  | 48 | #include <levmar.h> | 
|---|
|  | 49 |  | 
|---|
|  | 50 | #include "CodePatterns/Assert.hpp" | 
|---|
|  | 51 | #include "CodePatterns/Log.hpp" | 
|---|
|  | 52 |  | 
|---|
|  | 53 | #include "FunctionApproximation/FunctionModel.hpp" | 
|---|
|  | 54 |  | 
|---|
|  | 55 | void FunctionApproximation::setTrainingData(const inputs_t &input, const outputs_t &output) | 
|---|
|  | 56 | { | 
|---|
|  | 57 | ASSERT( input.size() == output.size(), | 
|---|
|  | 58 | "FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!=" | 
|---|
|  | 59 | +toString(output.size())+"."); | 
|---|
|  | 60 | if (input.size() != 0) { | 
|---|
|  | 61 | ASSERT( input[0].size() == input_dimension, | 
|---|
|  | 62 | "FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!=" | 
|---|
|  | 63 | +toString(input_dimension)+"."); | 
|---|
|  | 64 | input_data = input; | 
|---|
|  | 65 | ASSERT( output[0].size() == output_dimension, | 
|---|
|  | 66 | "FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!=" | 
|---|
|  | 67 | +toString(output_dimension)+"."); | 
|---|
|  | 68 | output_data = output; | 
|---|
|  | 69 | } else { | 
|---|
|  | 70 | ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly."); | 
|---|
|  | 71 | input_data.clear(); | 
|---|
|  | 72 | output_data.clear(); | 
|---|
|  | 73 | } | 
|---|
|  | 74 | } | 
|---|
|  | 75 |  | 
|---|
|  | 76 | void FunctionApproximation::setModelFunction(FunctionModel &_model) | 
|---|
|  | 77 | { | 
|---|
|  | 78 | model= _model; | 
|---|
|  | 79 | } | 
|---|
|  | 80 |  | 
|---|
|  | 81 | /** Callback to circumvent boost::bind, boost::function and function pointer problem. | 
|---|
|  | 82 | * | 
|---|
|  | 83 | * See here (second answer!) to the nature of the problem: | 
|---|
|  | 84 | * http://stackoverflow.com/questions/282372/demote-boostfunction-to-a-plain-function-pointer | 
|---|
|  | 85 | * | 
|---|
|  | 86 | * We cannot use a boost::bind bounded boost::function as a function pointer. | 
|---|
|  | 87 | * boost::function::target() will just return NULL because the signature does not | 
|---|
|  | 88 | * match. We have to use a C-style callback function and our luck is that | 
|---|
|  | 89 | * the levmar signature provides for a void* additional data pointer which we | 
|---|
|  | 90 | * can cast back to our FunctionApproximation class, as we need access to the | 
|---|
|  | 91 | * data contained, e.g. the FunctionModel reference FunctionApproximation::model. | 
|---|
|  | 92 | * | 
|---|
|  | 93 | */ | 
|---|
|  | 94 | void FunctionApproximation::LevMarCallback(double *p, double *x, int m, int n, void *data) | 
|---|
|  | 95 | { | 
|---|
|  | 96 | FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data); | 
|---|
|  | 97 | ASSERT( approximator != NULL, | 
|---|
|  | 98 | "LevMarCallback() - received data does not represent a FunctionApproximation object."); | 
|---|
|  | 99 | boost::function<void(double*,double*,int,int,void*)> function = | 
|---|
|  | 100 | boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5); | 
|---|
|  | 101 | function(p,x,m,n,data); | 
|---|
|  | 102 | } | 
|---|
|  | 103 |  | 
|---|
| [5b5724] | 104 | void FunctionApproximation::LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data) | 
|---|
|  | 105 | { | 
|---|
|  | 106 | FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data); | 
|---|
|  | 107 | ASSERT( approximator != NULL, | 
|---|
|  | 108 | "LevMarDerivativeCallback() - received data does not represent a FunctionApproximation object."); | 
|---|
|  | 109 | boost::function<void(double*,double*,int,int,void*)> function = | 
|---|
|  | 110 | boost::bind(&FunctionApproximation::evaluateDerivative, approximator, _1, _2, _3, _4, _5); | 
|---|
|  | 111 | function(p,x,m,n,data); | 
|---|
|  | 112 | } | 
|---|
|  | 113 |  | 
|---|
| [63b9f7] | 114 | void FunctionApproximation::prepareParameters(double *&p, int &m) const | 
|---|
| [66cfc7] | 115 | { | 
|---|
|  | 116 | m = model.getParameterDimension(); | 
|---|
|  | 117 | const FunctionModel::parameters_t params = model.getParameters(); | 
|---|
| [c62f96] | 118 | { | 
|---|
|  | 119 | p = new double[m]; | 
|---|
|  | 120 | size_t index = 0; | 
|---|
|  | 121 | for(FunctionModel::parameters_t::const_iterator paramiter = params.begin(); | 
|---|
|  | 122 | paramiter != params.end(); | 
|---|
|  | 123 | ++paramiter, ++index) { | 
|---|
|  | 124 | p[index] = *paramiter; | 
|---|
|  | 125 | } | 
|---|
|  | 126 | } | 
|---|
| [63b9f7] | 127 | } | 
|---|
|  | 128 |  | 
|---|
|  | 129 | void FunctionApproximation::prepareOutput(double *&x, int &n) const | 
|---|
|  | 130 | { | 
|---|
|  | 131 | n = output_data.size(); | 
|---|
| [c62f96] | 132 | { | 
|---|
|  | 133 | x = new double[n]; | 
|---|
|  | 134 | size_t index = 0; | 
|---|
|  | 135 | for(outputs_t::const_iterator outiter = output_data.begin(); | 
|---|
|  | 136 | outiter != output_data.end(); | 
|---|
|  | 137 | ++outiter, ++index) { | 
|---|
|  | 138 | x[index] = (*outiter)[0]; | 
|---|
|  | 139 | } | 
|---|
| [66cfc7] | 140 | } | 
|---|
| [63b9f7] | 141 | } | 
|---|
|  | 142 |  | 
|---|
|  | 143 | void FunctionApproximation::operator()(const enum JacobianMode mode) | 
|---|
|  | 144 | { | 
|---|
|  | 145 | // let levmar optimize | 
|---|
|  | 146 | register int i, j; | 
|---|
|  | 147 | int ret; | 
|---|
|  | 148 | double *p; | 
|---|
|  | 149 | double *x; | 
|---|
|  | 150 | int m, n; | 
|---|
|  | 151 | double opts[LM_OPTS_SZ], info[LM_INFO_SZ]; | 
|---|
|  | 152 |  | 
|---|
|  | 153 | opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20; | 
|---|
|  | 154 | opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing | 
|---|
|  | 155 | //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute! | 
|---|
|  | 156 |  | 
|---|
|  | 157 | prepareParameters(p,m); | 
|---|
|  | 158 | prepareOutput(x,n); | 
|---|
| [66cfc7] | 159 |  | 
|---|
|  | 160 | { | 
|---|
|  | 161 | double *work, *covar; | 
|---|
|  | 162 | work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double)); | 
|---|
|  | 163 | if(!work){ | 
|---|
|  | 164 | ELOG(0, "FunctionApproximation::operator() - memory allocation request failed."); | 
|---|
|  | 165 | return; | 
|---|
|  | 166 | } | 
|---|
|  | 167 | covar=work+LM_DIF_WORKSZ(m, n); | 
|---|
|  | 168 |  | 
|---|
|  | 169 | // give this pointer as additional data to construct function pointer in | 
|---|
|  | 170 | // LevMarCallback and call | 
|---|
| [d03292] | 171 | if (model.isBoxConstraint()) { | 
|---|
|  | 172 | FunctionModel::parameters_t lowerbound = model.getLowerBoxConstraints(); | 
|---|
|  | 173 | FunctionModel::parameters_t upperbound = model.getUpperBoxConstraints(); | 
|---|
|  | 174 | double *lb = new double[m]; | 
|---|
|  | 175 | double *ub = new double[m]; | 
|---|
|  | 176 | for (size_t i=0;i<m;++i) { | 
|---|
|  | 177 | lb[i] = lowerbound[i]; | 
|---|
|  | 178 | ub[i] = upperbound[i]; | 
|---|
|  | 179 | } | 
|---|
|  | 180 | if (mode == FiniteDifferences) { | 
|---|
|  | 181 | ret=dlevmar_bc_dif( | 
|---|
|  | 182 | &FunctionApproximation::LevMarCallback, | 
|---|
|  | 183 | p, x, m, n, lb, ub, NULL, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
|  | 184 | } else if (mode == ParameterDerivative) { | 
|---|
|  | 185 | ret=dlevmar_bc_der( | 
|---|
|  | 186 | &FunctionApproximation::LevMarCallback, | 
|---|
|  | 187 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
|  | 188 | p, x, m, n, lb, ub, NULL, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
|  | 189 | } else { | 
|---|
|  | 190 | ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen."); | 
|---|
|  | 191 | } | 
|---|
|  | 192 | delete[] lb; | 
|---|
|  | 193 | delete[] ub; | 
|---|
| [76e63d] | 194 | } else { | 
|---|
|  | 195 | ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen."); | 
|---|
| [d03292] | 196 | if (mode == FiniteDifferences) { | 
|---|
|  | 197 | ret=dlevmar_dif( | 
|---|
|  | 198 | &FunctionApproximation::LevMarCallback, | 
|---|
|  | 199 | p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
|  | 200 | } else if (mode == ParameterDerivative) { | 
|---|
|  | 201 | ret=dlevmar_der( | 
|---|
|  | 202 | &FunctionApproximation::LevMarCallback, | 
|---|
|  | 203 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
|  | 204 | p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
|  | 205 | } else { | 
|---|
|  | 206 | ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen."); | 
|---|
|  | 207 | } | 
|---|
| [76e63d] | 208 | } | 
|---|
| [66cfc7] | 209 |  | 
|---|
|  | 210 | { | 
|---|
|  | 211 | std::stringstream covar_msg; | 
|---|
|  | 212 | covar_msg << "Covariance of the fit:\n"; | 
|---|
|  | 213 | for(i=0; i<m; ++i){ | 
|---|
|  | 214 | for(j=0; j<m; ++j) | 
|---|
|  | 215 | covar_msg << covar[i*m+j] << " "; | 
|---|
|  | 216 | covar_msg << std::endl; | 
|---|
|  | 217 | } | 
|---|
|  | 218 | covar_msg << std::endl; | 
|---|
|  | 219 | LOG(1, "INFO: " << covar_msg.str()); | 
|---|
|  | 220 | } | 
|---|
|  | 221 |  | 
|---|
|  | 222 | free(work); | 
|---|
|  | 223 | } | 
|---|
|  | 224 |  | 
|---|
|  | 225 | { | 
|---|
|  | 226 | std::stringstream result_msg; | 
|---|
|  | 227 | result_msg << "Levenberg-Marquardt returned " << ret << " in " << info[5] << " iter, reason " << info[6] << "\nSolution: "; | 
|---|
|  | 228 | for(i=0; i<m; ++i) | 
|---|
|  | 229 | result_msg << p[i] << " "; | 
|---|
|  | 230 | result_msg << "\n\nMinimization info:\n"; | 
|---|
|  | 231 | std::vector<std::string> infonames(LM_INFO_SZ); | 
|---|
|  | 232 | infonames[0] = std::string("||e||_2 at initial p"); | 
|---|
|  | 233 | infonames[1] = std::string("||e||_2"); | 
|---|
|  | 234 | infonames[2] = std::string("||J^T e||_inf"); | 
|---|
|  | 235 | infonames[3] = std::string("||Dp||_2"); | 
|---|
|  | 236 | infonames[4] = std::string("mu/max[J^T J]_ii"); | 
|---|
|  | 237 | infonames[5] = std::string("# iterations"); | 
|---|
|  | 238 | infonames[6] = std::string("reason for termination"); | 
|---|
|  | 239 | infonames[7] = std::string(" # function evaluations"); | 
|---|
|  | 240 | infonames[8] = std::string(" # Jacobian evaluations"); | 
|---|
|  | 241 | infonames[9] = std::string(" # linear systems solved"); | 
|---|
|  | 242 | for(i=0; i<LM_INFO_SZ; ++i) | 
|---|
|  | 243 | result_msg << infonames[i] << ": " << info[i] << " "; | 
|---|
|  | 244 | result_msg << std::endl; | 
|---|
|  | 245 | LOG(1, "INFO: " << result_msg.str()); | 
|---|
|  | 246 | } | 
|---|
|  | 247 |  | 
|---|
| [c62f96] | 248 | delete[] p; | 
|---|
|  | 249 | delete[] x; | 
|---|
| [66cfc7] | 250 | } | 
|---|
|  | 251 |  | 
|---|
| [371c8b] | 252 | bool FunctionApproximation::checkParameterDerivatives() | 
|---|
|  | 253 | { | 
|---|
|  | 254 | double *p; | 
|---|
|  | 255 | int m; | 
|---|
|  | 256 | const FunctionModel::parameters_t backupparams = model.getParameters(); | 
|---|
|  | 257 | prepareParameters(p,m); | 
|---|
|  | 258 | int n = output_data.size(); | 
|---|
|  | 259 | double *err = new double[n]; | 
|---|
|  | 260 | dlevmar_chkjac( | 
|---|
|  | 261 | &FunctionApproximation::LevMarCallback, | 
|---|
|  | 262 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
|  | 263 | p, m, n, this, err); | 
|---|
|  | 264 | int i; | 
|---|
|  | 265 | for(i=0; i<n; ++i) | 
|---|
|  | 266 | LOG(1, "INFO: gradient " << i << ", err " << err[i] << "."); | 
|---|
|  | 267 | bool status = true; | 
|---|
|  | 268 | for(i=0; i<n; ++i) | 
|---|
|  | 269 | status &= err[i] > 0.5; | 
|---|
|  | 270 |  | 
|---|
|  | 271 | if (!status) { | 
|---|
|  | 272 | int faulty; | 
|---|
|  | 273 | ELOG(0, "At least one of the parameter derivatives are incorrect."); | 
|---|
|  | 274 | for (faulty=1; faulty<=m; ++faulty) { | 
|---|
|  | 275 | LOG(1, "INFO: Trying with only the first " << faulty << " parameters..."); | 
|---|
|  | 276 | model.setParameters(backupparams); | 
|---|
|  | 277 | dlevmar_chkjac( | 
|---|
|  | 278 | &FunctionApproximation::LevMarCallback, | 
|---|
|  | 279 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
|  | 280 | p, faulty, n, this, err); | 
|---|
|  | 281 | bool status = true; | 
|---|
|  | 282 | for(i=0; i<n; ++i) | 
|---|
|  | 283 | status &= err[i] > 0.5; | 
|---|
|  | 284 | for(i=0; i<n; ++i) | 
|---|
|  | 285 | LOG(1, "INFO: gradient(" << faulty << ") " << i << ", err " << err[i] << "."); | 
|---|
|  | 286 | if (!status) | 
|---|
|  | 287 | break; | 
|---|
|  | 288 | } | 
|---|
|  | 289 | ELOG(0, "The faulty parameter derivative is with respect to the " << faulty << " parameter."); | 
|---|
|  | 290 | } else | 
|---|
|  | 291 | LOG(1, "INFO: parameter derivatives are ok."); | 
|---|
|  | 292 |  | 
|---|
|  | 293 | delete[] err; | 
|---|
|  | 294 | delete[] p; | 
|---|
|  | 295 | model.setParameters(backupparams); | 
|---|
|  | 296 |  | 
|---|
|  | 297 | return status; | 
|---|
|  | 298 | } | 
|---|
|  | 299 |  | 
|---|
| [66cfc7] | 300 | double SquaredDifference(const double res1, const double res2) | 
|---|
|  | 301 | { | 
|---|
|  | 302 | return (res1-res2)*(res1-res2); | 
|---|
|  | 303 | } | 
|---|
|  | 304 |  | 
|---|
| [5b5724] | 305 | void FunctionApproximation::prepareModel(double *p, int m) | 
|---|
| [66cfc7] | 306 | { | 
|---|
| [371c8b] | 307 | //  ASSERT( (size_t)m == model.getParameterDimension(), | 
|---|
|  | 308 | //      "FunctionApproximation::prepareModel() - LevMar expects "+toString(m) | 
|---|
|  | 309 | //      +" parameters but the model function expects "+toString(model.getParameterDimension())+"."); | 
|---|
| [66cfc7] | 310 | FunctionModel::parameters_t params(m, 0.); | 
|---|
|  | 311 | std::copy(p, p+m, params.begin()); | 
|---|
|  | 312 | model.setParameters(params); | 
|---|
| [5b5724] | 313 | } | 
|---|
|  | 314 |  | 
|---|
|  | 315 | void FunctionApproximation::evaluate(double *p, double *x, int m, int n, void *data) | 
|---|
|  | 316 | { | 
|---|
|  | 317 | // first set parameters | 
|---|
|  | 318 | prepareModel(p,m); | 
|---|
| [66cfc7] | 319 |  | 
|---|
|  | 320 | // then evaluate | 
|---|
| [5b5724] | 321 | ASSERT( (size_t)n == output_data.size(), | 
|---|
|  | 322 | "FunctionApproximation::evaluate() - LevMar expects "+toString(n) | 
|---|
|  | 323 | +" outputs but we provide "+toString(output_data.size())+"."); | 
|---|
| [c62f96] | 324 | if (!output_data.empty()) { | 
|---|
| [66cfc7] | 325 | inputs_t::const_iterator initer = input_data.begin(); | 
|---|
|  | 326 | outputs_t::const_iterator outiter = output_data.begin(); | 
|---|
|  | 327 | size_t index = 0; | 
|---|
| [5b5724] | 328 | for (; initer != input_data.end(); ++initer, ++outiter) { | 
|---|
| [66cfc7] | 329 | // result may be a vector, calculate L2 norm | 
|---|
|  | 330 | const FunctionModel::results_t functionvalue = | 
|---|
|  | 331 | model(*initer); | 
|---|
| [5b5724] | 332 | x[index++] = functionvalue[0]; | 
|---|
|  | 333 | //      std::vector<double> differences(functionvalue.size(), 0.); | 
|---|
|  | 334 | //      std::transform( | 
|---|
|  | 335 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(), | 
|---|
|  | 336 | //          differences.begin(), | 
|---|
|  | 337 | //          &SquaredDifference); | 
|---|
|  | 338 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.); | 
|---|
|  | 339 | } | 
|---|
|  | 340 | } | 
|---|
|  | 341 | } | 
|---|
|  | 342 |  | 
|---|
|  | 343 | void FunctionApproximation::evaluateDerivative(double *p, double *jac, int m, int n, void *data) | 
|---|
|  | 344 | { | 
|---|
|  | 345 | // first set parameters | 
|---|
|  | 346 | prepareModel(p,m); | 
|---|
|  | 347 |  | 
|---|
|  | 348 | // then evaluate | 
|---|
|  | 349 | ASSERT( (size_t)n == output_data.size(), | 
|---|
|  | 350 | "FunctionApproximation::evaluateDerivative() - LevMar expects "+toString(n) | 
|---|
|  | 351 | +" outputs but we provide "+toString(output_data.size())+"."); | 
|---|
|  | 352 | if (!output_data.empty()) { | 
|---|
|  | 353 | inputs_t::const_iterator initer = input_data.begin(); | 
|---|
|  | 354 | outputs_t::const_iterator outiter = output_data.begin(); | 
|---|
|  | 355 | size_t index = 0; | 
|---|
|  | 356 | for (; initer != input_data.end(); ++initer, ++outiter) { | 
|---|
|  | 357 | // result may be a vector, calculate L2 norm | 
|---|
|  | 358 | for (int paramindex = 0; paramindex < m; ++paramindex) { | 
|---|
|  | 359 | const FunctionModel::results_t functionvalue = | 
|---|
|  | 360 | model.parameter_derivative(*initer, paramindex); | 
|---|
|  | 361 | jac[index++] = functionvalue[0]; | 
|---|
|  | 362 | } | 
|---|
|  | 363 | //      std::vector<double> differences(functionvalue.size(), 0.); | 
|---|
|  | 364 | //      std::transform( | 
|---|
|  | 365 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(), | 
|---|
|  | 366 | //          differences.begin(), | 
|---|
|  | 367 | //          &SquaredDifference); | 
|---|
|  | 368 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.); | 
|---|
| [66cfc7] | 369 | } | 
|---|
|  | 370 | } | 
|---|
|  | 371 | } | 
|---|