1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * fragmentation_helpers.cpp
|
---|
10 | *
|
---|
11 | * Created on: Oct 18, 2011
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include "fragmentation_helpers.hpp"
|
---|
23 |
|
---|
24 | #include <sstream>
|
---|
25 |
|
---|
26 | #include "CodePatterns/Log.hpp"
|
---|
27 |
|
---|
28 | #include "atom.hpp"
|
---|
29 | #include "Bond/bond.hpp"
|
---|
30 | #include "Element/element.hpp"
|
---|
31 | #include "Helpers/defs.hpp"
|
---|
32 | #include "Helpers/helpers.hpp"
|
---|
33 | #include "molecule.hpp"
|
---|
34 |
|
---|
35 | using namespace std;
|
---|
36 |
|
---|
37 | /** Scans a single line for number and puts them into \a KeySet.
|
---|
38 | * \param *out output stream for debugging
|
---|
39 | * \param *buffer buffer to scan
|
---|
40 | * \param &CurrentSet filled KeySet on return
|
---|
41 | * \return true - at least one valid atom id parsed, false - CurrentSet is empty
|
---|
42 | */
|
---|
43 | bool ScanBufferIntoKeySet(char *buffer, KeySet &CurrentSet)
|
---|
44 | {
|
---|
45 | stringstream line;
|
---|
46 | int AtomNr;
|
---|
47 | int status = 0;
|
---|
48 |
|
---|
49 | line.str(buffer);
|
---|
50 | while (!line.eof()) {
|
---|
51 | line >> AtomNr;
|
---|
52 | if (AtomNr >= 0) {
|
---|
53 | CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
|
---|
54 | status++;
|
---|
55 | } // else it's "-1" or else and thus must not be added
|
---|
56 | }
|
---|
57 | DoLog(1) && (Log() << Verbose(1) << "The scanned KeySet is ");
|
---|
58 | for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
|
---|
59 | DoLog(0) && (Log() << Verbose(0) << (*runner) << "\t");
|
---|
60 | }
|
---|
61 | DoLog(0) && (Log() << Verbose(0) << endl);
|
---|
62 | return (status != 0);
|
---|
63 | };
|
---|
64 |
|
---|
65 | /** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
|
---|
66 | * Does two-pass scanning:
|
---|
67 | * -# Scans the keyset file and initialises a temporary graph
|
---|
68 | * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
|
---|
69 | * Finally, the temporary graph is inserted into the given \a FragmentList for return.
|
---|
70 | * \param &path path to file
|
---|
71 | * \param *FragmentList empty, filled on return
|
---|
72 | * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
|
---|
73 | */
|
---|
74 | bool ParseKeySetFile(std::string &path, Graph *&FragmentList)
|
---|
75 | {
|
---|
76 | bool status = true;
|
---|
77 | ifstream InputFile;
|
---|
78 | stringstream line;
|
---|
79 | GraphTestPair testGraphInsert;
|
---|
80 | int NumberOfFragments = 0;
|
---|
81 | string filename;
|
---|
82 |
|
---|
83 | if (FragmentList == NULL) { // check list pointer
|
---|
84 | FragmentList = new Graph;
|
---|
85 | }
|
---|
86 |
|
---|
87 | // 1st pass: open file and read
|
---|
88 | DoLog(1) && (Log() << Verbose(1) << "Parsing the KeySet file ... " << endl);
|
---|
89 | filename = path + KEYSETFILE;
|
---|
90 | InputFile.open(filename.c_str());
|
---|
91 | if (InputFile.good()) {
|
---|
92 | // each line represents a new fragment
|
---|
93 | char buffer[MAXSTRINGSIZE];
|
---|
94 | // 1. parse keysets and insert into temp. graph
|
---|
95 | while (!InputFile.eof()) {
|
---|
96 | InputFile.getline(buffer, MAXSTRINGSIZE);
|
---|
97 | KeySet CurrentSet;
|
---|
98 | if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(buffer, CurrentSet))) { // if at least one valid atom was added, write config
|
---|
99 | testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
|
---|
100 | if (!testGraphInsert.second) {
|
---|
101 | DoeLog(0) && (eLog()<< Verbose(0) << "KeySet file must be corrupt as there are two equal key sets therein!" << endl);
|
---|
102 | performCriticalExit();
|
---|
103 | }
|
---|
104 | }
|
---|
105 | }
|
---|
106 | // 2. Free and done
|
---|
107 | InputFile.close();
|
---|
108 | InputFile.clear();
|
---|
109 | DoLog(1) && (Log() << Verbose(1) << "\t ... done." << endl);
|
---|
110 | } else {
|
---|
111 | DoLog(1) && (Log() << Verbose(1) << "\t ... File " << filename << " not found." << endl);
|
---|
112 | status = false;
|
---|
113 | }
|
---|
114 |
|
---|
115 | return status;
|
---|
116 | };
|
---|
117 |
|
---|
118 | /** Parses the TE factors file and fills \a *FragmentList from the known molecule structure.
|
---|
119 | * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
|
---|
120 | * \param *out output stream for debugging
|
---|
121 | * \param *path path to file
|
---|
122 | * \param *FragmentList graph whose nodes's TE factors are set on return
|
---|
123 | * \return true - parsing successfully, false - failure on parsing
|
---|
124 | */
|
---|
125 | bool ParseTEFactorsFile(char *path, Graph *FragmentList)
|
---|
126 | {
|
---|
127 | bool status = true;
|
---|
128 | ifstream InputFile;
|
---|
129 | stringstream line;
|
---|
130 | GraphTestPair testGraphInsert;
|
---|
131 | int NumberOfFragments = 0;
|
---|
132 | double TEFactor;
|
---|
133 | char filename[MAXSTRINGSIZE];
|
---|
134 |
|
---|
135 | if (FragmentList == NULL) { // check list pointer
|
---|
136 | FragmentList = new Graph;
|
---|
137 | }
|
---|
138 |
|
---|
139 | // 2nd pass: open TEFactors file and read
|
---|
140 | DoLog(1) && (Log() << Verbose(1) << "Parsing the TEFactors file ... " << endl);
|
---|
141 | sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
|
---|
142 | InputFile.open(filename);
|
---|
143 | if (InputFile != NULL) {
|
---|
144 | // 3. add found TEFactors to each keyset
|
---|
145 | NumberOfFragments = 0;
|
---|
146 | for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
|
---|
147 | if (!InputFile.eof()) {
|
---|
148 | InputFile >> TEFactor;
|
---|
149 | (*runner).second.second = TEFactor;
|
---|
150 | DoLog(2) && (Log() << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl);
|
---|
151 | } else {
|
---|
152 | status = false;
|
---|
153 | break;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | // 4. Free and done
|
---|
157 | InputFile.close();
|
---|
158 | DoLog(1) && (Log() << Verbose(1) << "done." << endl);
|
---|
159 | } else {
|
---|
160 | DoLog(1) && (Log() << Verbose(1) << "File " << filename << " not found." << endl);
|
---|
161 | status = false;
|
---|
162 | }
|
---|
163 |
|
---|
164 | return status;
|
---|
165 | };
|
---|
166 |
|
---|
167 | /** Stores key sets to file.
|
---|
168 | * \param KeySetList Graph with Keysets
|
---|
169 | * \param &path path to file
|
---|
170 | * \return true - file written successfully, false - writing failed
|
---|
171 | */
|
---|
172 | bool StoreKeySetFile(Graph &KeySetList, std::string &path)
|
---|
173 | {
|
---|
174 | bool status = true;
|
---|
175 | string line = path + KEYSETFILE;
|
---|
176 | ofstream output(line.c_str());
|
---|
177 |
|
---|
178 | // open KeySet file
|
---|
179 | DoLog(1) && (Log() << Verbose(1) << "Saving key sets of the total graph ... ");
|
---|
180 | if(output.good()) {
|
---|
181 | for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
|
---|
182 | for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
|
---|
183 | if (sprinter != (*runner).first.begin())
|
---|
184 | output << "\t";
|
---|
185 | output << *sprinter;
|
---|
186 | }
|
---|
187 | output << endl;
|
---|
188 | }
|
---|
189 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
190 | } else {
|
---|
191 | DoeLog(0) && (eLog()<< Verbose(0) << "Unable to open " << line << " for writing keysets!" << endl);
|
---|
192 | performCriticalExit();
|
---|
193 | status = false;
|
---|
194 | }
|
---|
195 | output.close();
|
---|
196 | output.clear();
|
---|
197 |
|
---|
198 | return status;
|
---|
199 | };
|
---|
200 |
|
---|
201 |
|
---|
202 | /** Stores TEFactors to file.
|
---|
203 | * \param *out output stream for debugging
|
---|
204 | * \param KeySetList Graph with factors
|
---|
205 | * \param *path path to file
|
---|
206 | * \return true - file written successfully, false - writing failed
|
---|
207 | */
|
---|
208 | bool StoreTEFactorsFile(Graph &KeySetList, char *path)
|
---|
209 | {
|
---|
210 | ofstream output;
|
---|
211 | bool status = true;
|
---|
212 | string line;
|
---|
213 |
|
---|
214 | // open TEFactors file
|
---|
215 | line = path;
|
---|
216 | line.append("/");
|
---|
217 | line += FRAGMENTPREFIX;
|
---|
218 | line += TEFACTORSFILE;
|
---|
219 | output.open(line.c_str(), ios::out);
|
---|
220 | DoLog(1) && (Log() << Verbose(1) << "Saving TEFactors of the total graph ... ");
|
---|
221 | if(output != NULL) {
|
---|
222 | for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
|
---|
223 | output << (*runner).second.second << endl;
|
---|
224 | DoLog(1) && (Log() << Verbose(1) << "done." << endl);
|
---|
225 | } else {
|
---|
226 | DoLog(1) && (Log() << Verbose(1) << "failed to open " << line << "." << endl);
|
---|
227 | status = false;
|
---|
228 | }
|
---|
229 | output.close();
|
---|
230 |
|
---|
231 | return status;
|
---|
232 | };
|
---|
233 |
|
---|
234 | /** For a given graph, sorts KeySets into a (index, keyset) map.
|
---|
235 | * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase
|
---|
236 | * \return map from index to keyset
|
---|
237 | */
|
---|
238 | std::map<int,KeySet> * GraphToIndexedKeySet(Graph *GlobalKeySetList)
|
---|
239 | {
|
---|
240 | map<int,KeySet> *IndexKeySetList = new map<int,KeySet>;
|
---|
241 | for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {
|
---|
242 | IndexKeySetList->insert( pair<int,KeySet>(runner->second.first,runner->first) );
|
---|
243 | }
|
---|
244 | return IndexKeySetList;
|
---|
245 | };
|
---|
246 |
|
---|
247 | /** Inserts a (\a No, \a value) pair into the list, overwriting present one.
|
---|
248 | * Note if values are equal, No will decided on which is first
|
---|
249 | * \param *out output stream for debugging
|
---|
250 | * \param &AdaptiveCriteriaList list to insert into
|
---|
251 | * \param &IndexedKeySetList list to find key set for a given index \a No
|
---|
252 | * \param FragOrder current bond order of fragment
|
---|
253 | * \param No index of keyset
|
---|
254 | * \param value energy value
|
---|
255 | */
|
---|
256 | void InsertIntoAdaptiveCriteriaList(std::map<int, pair<double,int> > *AdaptiveCriteriaList, std::map<int,KeySet> &IndexKeySetList, int FragOrder, int No, double Value)
|
---|
257 | {
|
---|
258 | map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.
|
---|
259 | if (marker != IndexKeySetList.end()) { // if found
|
---|
260 | Value *= 1 + MYEPSILON*(*((*marker).second.begin())); // in case of equal energies this makes them not equal without changing anything actually
|
---|
261 | // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask
|
---|
262 | pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList->insert( make_pair(*((*marker).second.begin()), pair<double,int>( fabs(Value), FragOrder) ));
|
---|
263 | map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;
|
---|
264 | if (!InsertedElement.second) { // this root is already present
|
---|
265 | if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term
|
---|
266 | //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)
|
---|
267 | { // if value is smaller, update value and order
|
---|
268 | (*PresentItem).second.first = fabs(Value);
|
---|
269 | (*PresentItem).second.second = FragOrder;
|
---|
270 | DoLog(2) && (Log() << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl);
|
---|
271 | } else {
|
---|
272 | DoLog(2) && (Log() << Verbose(2) << "Did not update element " << (*PresentItem).first << " as " << FragOrder << " is less than or equal to " << (*PresentItem).second.second << "." << endl);
|
---|
273 | }
|
---|
274 | } else {
|
---|
275 | DoLog(2) && (Log() << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl);
|
---|
276 | }
|
---|
277 | } else {
|
---|
278 | DoLog(1) && (Log() << Verbose(1) << "No Fragment under No. " << No << "found." << endl);
|
---|
279 | }
|
---|
280 | };
|
---|
281 |
|
---|
282 | /** Counts lines in file.
|
---|
283 | * Note we are scanning lines from current position, not from beginning.
|
---|
284 | * \param InputFile file to be scanned.
|
---|
285 | */
|
---|
286 | int CountLinesinFile(std::ifstream &InputFile)
|
---|
287 | {
|
---|
288 | char *buffer = new char[MAXSTRINGSIZE];
|
---|
289 | int lines=0;
|
---|
290 |
|
---|
291 | int PositionMarker = InputFile.tellg(); // not needed as Inputfile is copied, given by value, not by ref
|
---|
292 | // count the number of lines, i.e. the number of fragments
|
---|
293 | InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
|
---|
294 | InputFile.getline(buffer, MAXSTRINGSIZE);
|
---|
295 | while(!InputFile.eof()) {
|
---|
296 | InputFile.getline(buffer, MAXSTRINGSIZE);
|
---|
297 | lines++;
|
---|
298 | }
|
---|
299 | InputFile.seekg(PositionMarker, ios::beg);
|
---|
300 | delete[](buffer);
|
---|
301 | return lines;
|
---|
302 | };
|
---|
303 |
|
---|
304 |
|
---|
305 | /** Scans the adaptive order file and insert (index, value) into map.
|
---|
306 | * \param &path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)
|
---|
307 | * \param &IndexedKeySetList list to find key set for a given index \a No
|
---|
308 | * \return adaptive criteria list from file
|
---|
309 | */
|
---|
310 | std::map<int, std::pair<double,int> > * ScanAdaptiveFileIntoMap(std::string &path, std::map<int,KeySet> &IndexKeySetList)
|
---|
311 | {
|
---|
312 | map<int, pair<double,int> > *AdaptiveCriteriaList = new map<int, pair<double,int> >;
|
---|
313 | int No = 0, FragOrder = 0;
|
---|
314 | double Value = 0.;
|
---|
315 | char buffer[MAXSTRINGSIZE];
|
---|
316 | string filename = path + ENERGYPERFRAGMENT;
|
---|
317 | ifstream InputFile(filename.c_str());
|
---|
318 |
|
---|
319 | if (InputFile.fail()) {
|
---|
320 | DoeLog(1) && (eLog() << Verbose(1) << "Cannot find file " << filename << "." << endl);
|
---|
321 | return AdaptiveCriteriaList;
|
---|
322 | }
|
---|
323 |
|
---|
324 | if (CountLinesinFile(InputFile) > 0) {
|
---|
325 | // each line represents a fragment root (Atom::Nr) id and its energy contribution
|
---|
326 | InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
|
---|
327 | InputFile.getline(buffer, MAXSTRINGSIZE);
|
---|
328 | while(!InputFile.eof()) {
|
---|
329 | InputFile.getline(buffer, MAXSTRINGSIZE);
|
---|
330 | if (strlen(buffer) > 2) {
|
---|
331 | //Log() << Verbose(2) << "Scanning: " << buffer << endl;
|
---|
332 | stringstream line(buffer);
|
---|
333 | line >> FragOrder;
|
---|
334 | line >> ws >> No;
|
---|
335 | line >> ws >> Value; // skip time entry
|
---|
336 | line >> ws >> Value;
|
---|
337 | No -= 1; // indices start at 1 in file, not 0
|
---|
338 | //Log() << Verbose(2) << " - yields (" << No << "," << Value << ", " << FragOrder << ")" << endl;
|
---|
339 |
|
---|
340 | // clean the list of those entries that have been superceded by higher order terms already
|
---|
341 | InsertIntoAdaptiveCriteriaList(AdaptiveCriteriaList, IndexKeySetList, FragOrder, No, Value);
|
---|
342 | }
|
---|
343 | }
|
---|
344 | // close and done
|
---|
345 | InputFile.close();
|
---|
346 | InputFile.clear();
|
---|
347 | }
|
---|
348 |
|
---|
349 | return AdaptiveCriteriaList;
|
---|
350 | };
|
---|
351 |
|
---|
352 | /** Maps adaptive criteria list back onto (Value, (Root Nr., Order))
|
---|
353 | * (i.e. sorted by value to pick the highest ones)
|
---|
354 | * \param *out output stream for debugging
|
---|
355 | * \param &AdaptiveCriteriaList list to insert into
|
---|
356 | * \param *mol molecule with atoms
|
---|
357 | * \return remapped list
|
---|
358 | */
|
---|
359 | std::map<double, std::pair<int,int> > * ReMapAdaptiveCriteriaListToValue(std::map<int, std::pair<double,int> > *AdaptiveCriteriaList, molecule *mol)
|
---|
360 | {
|
---|
361 | atom *Walker = NULL;
|
---|
362 | map<double, pair<int,int> > *FinalRootCandidates = new map<double, pair<int,int> > ;
|
---|
363 | DoLog(1) && (Log() << Verbose(1) << "Root candidate list is: " << endl);
|
---|
364 | for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList->begin(); runner != AdaptiveCriteriaList->end(); runner++) {
|
---|
365 | Walker = mol->FindAtom((*runner).first);
|
---|
366 | if (Walker != NULL) {
|
---|
367 | //if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order
|
---|
368 | if (!Walker->MaxOrder) {
|
---|
369 | DoLog(2) && (Log() << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl);
|
---|
370 | FinalRootCandidates->insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );
|
---|
371 | } else {
|
---|
372 | DoLog(2) && (Log() << Verbose(2) << "Excluding (" << *Walker << ", " << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "]), as it has reached its maximum order." << endl);
|
---|
373 | }
|
---|
374 | } else {
|
---|
375 | DoeLog(0) && (eLog()<< Verbose(0) << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl);
|
---|
376 | performCriticalExit();
|
---|
377 | }
|
---|
378 | }
|
---|
379 | return FinalRootCandidates;
|
---|
380 | };
|
---|
381 |
|
---|
382 | /** Marks all candidate sites for update if below adaptive threshold.
|
---|
383 | * Picks a given number of highest values and set *AtomMask to true.
|
---|
384 | * \param *out output stream for debugging
|
---|
385 | * \param *AtomMask defines true/false per global Atom::Nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
|
---|
386 | * \param FinalRootCandidates list candidates to check
|
---|
387 | * \param Order desired order
|
---|
388 | * \param *mol molecule with atoms
|
---|
389 | * \return true - if update is necessary, false - not
|
---|
390 | */
|
---|
391 | bool MarkUpdateCandidates(bool *AtomMask, std::map<double, std::pair<int,int> > &FinalRootCandidates, int Order, molecule *mol)
|
---|
392 | {
|
---|
393 | atom *Walker = NULL;
|
---|
394 | int No = -1;
|
---|
395 | bool status = false;
|
---|
396 | for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {
|
---|
397 | No = (*runner).second.first;
|
---|
398 | Walker = mol->FindAtom(No);
|
---|
399 | //if (Walker->AdaptiveOrder < MinimumRingSize[Walker->getNr()]) {
|
---|
400 | DoLog(2) && (Log() << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl);
|
---|
401 | AtomMask[No] = true;
|
---|
402 | status = true;
|
---|
403 | //} else
|
---|
404 | //Log() << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", however MinimumRingSize of " << MinimumRingSize[Walker->getNr()] << " does not allow further adaptive increase." << endl;
|
---|
405 | }
|
---|
406 | return status;
|
---|
407 | };
|
---|
408 |
|
---|
409 | /** print atom mask for debugging.
|
---|
410 | * \param *out output stream for debugging
|
---|
411 | * \param *AtomMask defines true/false per global Atom::Nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
|
---|
412 | * \param AtomCount number of entries in \a *AtomMask
|
---|
413 | */
|
---|
414 | void PrintAtomMask(bool *AtomMask, int AtomCount)
|
---|
415 | {
|
---|
416 | DoLog(2) && (Log() << Verbose(2) << " ");
|
---|
417 | for(int i=0;i<AtomCount;i++)
|
---|
418 | DoLog(0) && (Log() << Verbose(0) << (i % 10));
|
---|
419 | DoLog(0) && (Log() << Verbose(0) << endl);
|
---|
420 | DoLog(2) && (Log() << Verbose(2) << "Atom mask is: ");
|
---|
421 | for(int i=0;i<AtomCount;i++)
|
---|
422 | DoLog(0) && (Log() << Verbose(0) << (AtomMask[i] ? "t" : "f"));
|
---|
423 | DoLog(0) && (Log() << Verbose(0) << endl);
|
---|
424 | };
|
---|
425 |
|
---|
426 |
|
---|
427 |
|
---|
428 | bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
|
---|
429 | {
|
---|
430 | //Log() << Verbose(0) << "my check is used." << endl;
|
---|
431 | if (SubgraphA.size() < SubgraphB.size()) {
|
---|
432 | return true;
|
---|
433 | } else {
|
---|
434 | if (SubgraphA.size() > SubgraphB.size()) {
|
---|
435 | return false;
|
---|
436 | } else {
|
---|
437 | KeySet::iterator IteratorA = SubgraphA.begin();
|
---|
438 | KeySet::iterator IteratorB = SubgraphB.begin();
|
---|
439 | while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
|
---|
440 | if ((*IteratorA) < (*IteratorB))
|
---|
441 | return true;
|
---|
442 | else if ((*IteratorA) > (*IteratorB)) {
|
---|
443 | return false;
|
---|
444 | } // else, go on to next index
|
---|
445 | IteratorA++;
|
---|
446 | IteratorB++;
|
---|
447 | } // end of while loop
|
---|
448 | }// end of check in case of equal sizes
|
---|
449 | }
|
---|
450 | return false; // if we reach this point, they are equal
|
---|
451 | };
|
---|
452 |
|
---|
453 | /** Combines all KeySets from all orders into single ones (with just unique entries).
|
---|
454 | * \param *out output stream for debugging
|
---|
455 | * \param *&FragmentList list to fill
|
---|
456 | * \param ***FragmentLowerOrdersList
|
---|
457 | * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
|
---|
458 | * \param *mol molecule with atoms and bonds
|
---|
459 | */
|
---|
460 | int CombineAllOrderListIntoOne(Graph *&FragmentList, Graph ***FragmentLowerOrdersList, KeyStack &RootStack, molecule *mol)
|
---|
461 | {
|
---|
462 | int RootNr = 0;
|
---|
463 | int RootKeyNr = 0;
|
---|
464 | int StartNr = 0;
|
---|
465 | int counter = 0;
|
---|
466 | int NumLevels = 0;
|
---|
467 | atom *Walker = NULL;
|
---|
468 |
|
---|
469 | DoLog(0) && (Log() << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl);
|
---|
470 | if (FragmentList == NULL) {
|
---|
471 | FragmentList = new Graph;
|
---|
472 | counter = 0;
|
---|
473 | } else {
|
---|
474 | counter = FragmentList->size();
|
---|
475 | }
|
---|
476 |
|
---|
477 | StartNr = RootStack.back();
|
---|
478 | do {
|
---|
479 | RootKeyNr = RootStack.front();
|
---|
480 | RootStack.pop_front();
|
---|
481 | Walker = mol->FindAtom(RootKeyNr);
|
---|
482 | NumLevels = 1 << (Walker->AdaptiveOrder - 1);
|
---|
483 | for(int i=0;i<NumLevels;i++) {
|
---|
484 | if (FragmentLowerOrdersList[RootNr][i] != NULL) {
|
---|
485 | InsertGraphIntoGraph(*FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
|
---|
486 | }
|
---|
487 | }
|
---|
488 | RootStack.push_back(Walker->getNr());
|
---|
489 | RootNr++;
|
---|
490 | } while (RootKeyNr != StartNr);
|
---|
491 | return counter;
|
---|
492 | };
|
---|
493 |
|
---|
494 | /** Free's memory allocated for all KeySets from all orders.
|
---|
495 | * \param *out output stream for debugging
|
---|
496 | * \param ***FragmentLowerOrdersList
|
---|
497 | * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
|
---|
498 | * \param *mol molecule with atoms and bonds
|
---|
499 | */
|
---|
500 | void FreeAllOrdersList(Graph ***FragmentLowerOrdersList, KeyStack &RootStack, molecule *mol)
|
---|
501 | {
|
---|
502 | DoLog(1) && (Log() << Verbose(1) << "Free'ing the lists of all orders per order." << endl);
|
---|
503 | int RootNr = 0;
|
---|
504 | int RootKeyNr = 0;
|
---|
505 | int NumLevels = 0;
|
---|
506 | atom *Walker = NULL;
|
---|
507 | while (!RootStack.empty()) {
|
---|
508 | RootKeyNr = RootStack.front();
|
---|
509 | RootStack.pop_front();
|
---|
510 | Walker = mol->FindAtom(RootKeyNr);
|
---|
511 | NumLevels = 1 << (Walker->AdaptiveOrder - 1);
|
---|
512 | for(int i=0;i<NumLevels;i++) {
|
---|
513 | if (FragmentLowerOrdersList[RootNr][i] != NULL) {
|
---|
514 | delete(FragmentLowerOrdersList[RootNr][i]);
|
---|
515 | }
|
---|
516 | }
|
---|
517 | delete[](FragmentLowerOrdersList[RootNr]);
|
---|
518 | RootNr++;
|
---|
519 | }
|
---|
520 | delete[](FragmentLowerOrdersList);
|
---|
521 | };
|
---|
522 |
|
---|