/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * Histogram.cpp * * Created on: Jul 26, 2012 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "Histogram.hpp" #include #include #include #include #include #include #include #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" /** Tiny helper struct to create equally spaced bins with count of zero. * */ struct BinCreator_t { BinCreator_t( const double lowerend, const double _width ) : currentstart(lowerend), width(_width) {} Histogram::Bin_t operator()() { Histogram::Bin_t bin( make_pair( currentstart, 0.) ); currentstart+=width; return bin; } private: double currentstart; const double width; }; // see http://stackoverflow.com/questions/634087/stdcopy-to-stdcout-for-stdpair // printing a pair is not easy, especially so with ostream_iterator as it cannot find // overload operator<<() as it is not in namespace std. template struct PrintPair : public std::unary_function { std::ostream& os; PrintPair(std::ostream& strm) : os(strm) {} void operator()(const T& elem) const { os << "(" << elem.first << "," << elem.second << ") "; } }; std::ostream & operator<<(std::ostream &ost, const Histogram::Bin_t &elem) { ost << "(" << elem.first << "," << elem.second << ") "; return ost; } std::ostream & operator<<(std::ostream &ost, const Histogram &histogram) { for (Histogram::Bins_t::const_iterator iter = histogram.bins.begin(); iter != histogram.bins.end(); ++iter) ost << *iter; return ost; } Histogram::Histogram(const samples_t &samples) : binwidth(0.5), offset(0.) { if (!samples.empty()) { // set offset to first value const_cast(offset) = *samples.begin(); // set binwidth to statistical sensible value MinMax_t MinMax = getMinMaxFromSamples(samples); // const_cast(binwidth) = (*(MinMax.second) - *(MinMax.first))/pow(samples.size(), 1./3.); // and add all samples to these histogram bins addSamples(samples); } } Histogram::Histogram(const samples_t &samples, const BinLowerEnd _offset, const double _binwidth) : binwidth(_binwidth), offset(_offset) { addSamples(samples); } Histogram::MinMax_t Histogram::getMinMaxFromSamples(const samples_t &samples) const { std::pair returnpair; returnpair.first = min_element(samples.begin(), samples.end()); returnpair.second = max_element(samples.begin(), samples.end()); ASSERT((returnpair.second != samples.end()) || (returnpair.first != samples.end()), "Histogram::Histogram() - cannot find min/max despite non-empty range."); return returnpair; } void Histogram::addSamples(const samples_t &samples) { // build histogram from samples if (!samples.empty()) { // 1. get min and max and determine width MinMax_t MinMax = getMinMaxFromSamples(samples); // LOG(1, "DEBUG: min is " << *(MinMax.first) << " and max is " << *(MinMax.second) << "."); // 2. create each bin { std::vector vectorbins; const BinLowerEnd HistogramStart = getLowerEnd(*(MinMax.first)); BinCreator_t BinCreator( HistogramStart, binwidth ); // we need one extra bin for get...Bin()'s find to work properly const int CountBins = ceil((*(MinMax.second) - HistogramStart)/binwidth)+1; vectorbins.resize(CountBins+1, Bin_t( make_pair(0., 0.) ) ); std::generate( vectorbins.begin(), vectorbins.end(), BinCreator ); bins.insert(vectorbins.begin(), vectorbins.end()); } // 3. place each sample into bin BOOST_FOREACH( double value, samples) { const Bins_t::iterator biniter = getLowerEndBin(value); ASSERT( biniter != bins.end(), "Histogram::Histogram() - cannot find bin for value from given samples."); // (make bin count normalized, i.e. always equal to surface area of 1) biniter->second += 1./binwidth; } LOG(2, "DEBUG: Bins are " << printBins() << "."); } else { // LOG(1, "INFO: Given vector of samples is empty."); } } std::string Histogram::printBins() const { std::stringstream output; std::for_each( bins.begin(), bins.end(), PrintPair(output)); return output.str(); } void Histogram::extendMissingBins(const BinLowerEnd LowerEnd, const BinLowerEnd NextLowerEnd) { Bins_t::const_iterator loweriter = getLowerEndBin(LowerEnd); Bins_t::const_iterator upperiter = getHigherEndBin(NextLowerEnd); if (loweriter == bins.end()) { // we need bins beneath our first, add them for(BinLowerEnd offset = getLowerEnd(LowerEnd); offset < getLowerEnd(NextLowerEnd); offset += binwidth) { LOG(4, "DEBUG: Extending below at offset " << offset << "."); bins.insert( std::make_pair (offset, 0. ) ); } LOG(3, "DEBUG: Bins after adding empties before start are " << printBins() << "."); loweriter = getLowerEndBin(LowerEnd); ASSERT( loweriter != bins.end(), "Histogram::extendMissingBins() - still no lower bound after adding empties."); } if (upperiter == bins.end()) { // we need bins after our last, add them for(BinLowerEnd offset = getLowerEnd(LowerEnd); offset <= getLowerEnd(NextLowerEnd)+(1.5*binwidth); /* for safety we go a little further */ offset += binwidth) { LOG(4, "DEBUG: Extending above at offset " << offset << "."); bins.insert( std::make_pair (offset, 0. ) ); } LOG(3, "DEBUG: Bins after adding empties after end are " << printBins() << "."); upperiter = getHigherEndBin(NextLowerEnd); ASSERT( upperiter != bins.end(), "Histogram::extendMissingBins() - still no upper bound after adding empties."); } } void Histogram::superposeOtherHistogram(const Histogram &other, const double prefactor) { // go through each of the other histogram's bins Bins_t::const_iterator enditer = --other.bins.end(); // (except internal last one) for (Bins_t::const_iterator biniter = other.bins.begin(); biniter != enditer; /* we advance ourselves in loop */) { const Bin_t &bin = *biniter; ++biniter; const Bin_t &nextbin = *biniter; LOG(4, "DEBUG: Current bin is " << bin << ", next bin is " << nextbin << "."); // Check first whether start or end actually fit into our histogram, if not extend. extendMissingBins(bin.first, nextbin.first); // The bin will in general not fit into one bin in this histogram, but overlap. // Hence, we determine the contribution of the bin to each bin in this histogram // its overlaps into and add this weight to the bin. Bins_t::const_iterator loweriter = getLowerEndBin(bin.first); Bins_t::const_iterator upperiter = getHigherEndBin(nextbin.first); ASSERT( loweriter->first < upperiter->first, "Histogram::superposeOtherHistogram() - the bin range is invalid."); LOG(5, "DEBUG: bin range here is [" << loweriter->first << "," << upperiter->first << ")."); // Next, we create a vector of offsets typedef std::vector< BinLowerEnd > offsets_t; offsets_t offsets; { offsets.push_back(bin.first); Bins_t::const_iterator iter = loweriter; for (++iter; iter != upperiter; ++iter) if (offsets.back() != iter->first) offsets.push_back(iter->first); if (offsets.back() != nextbin.first) offsets.push_back(nextbin.first); LOG(4, "DEBUG: Offsets are " << offsets << "."); } // then, we go through the offsets but the last one and add the respective area { offsets_t::const_iterator iter = offsets.begin(); offsets_t::const_iterator nextiter = ++offsets.begin(); for (; iter != --offsets.end(); ++iter, ++nextiter) { const double length = *nextiter - *iter; const double weight = bin.second * (length/binwidth); Bins_t::iterator filliter = getLowerEndBin(*iter); filliter->second += prefactor * weight; } } { std::stringstream output; std::for_each( bins.begin(), bins.end(), PrintPair(output)); LOG(3, "DEBUG: Bins are after summation " << output.str() << "."); } } } Histogram& Histogram::operator=(const Histogram &other) { // check for self-assigment if (&other != this) { bins.clear(); const_cast(offset) = other.offset; const_cast(binwidth) = other.binwidth; bins.insert(other.bins.begin(), other.bins.end()); } return *this; } Histogram& Histogram::operator+=(const Histogram &other) { superposeOtherHistogram(other, +1.); LOG(3, "DEBUG: Bins after addition are " << printBins() << "."); return *this; } Histogram& Histogram::operator-=(const Histogram &other) { superposeOtherHistogram(other, -1.); LOG(3, "DEBUG: Bins after subtraction are " << printBins() << "."); return *this; } bool Histogram::isEmpty() const { bool status = true; for (Bins_t::const_iterator iter = bins.begin(); iter != bins.end(); ++iter) status &= iter->second == 0; return status; } Histogram::Bins_t::iterator Histogram::getLowerEndBin(const double _value) { // lower bound returns key that is equal or greater Bins_t::iterator iter = bins.lower_bound(_value); if (iter != bins.end()) { // if we are not on the boundary we always have to step back by one if (_value != iter->first) { if (iter != bins.begin()) { --iter; } else { iter = bins.end(); } } else if (iter == --bins.end()) { // if we actually are on boundary of "last bin", set to end iter = bins.end(); } } return iter; } Histogram::Bins_t::iterator Histogram::getHigherEndBin(const double _value) { // upper bound return key that is strictly greater Bins_t::iterator iter = bins.upper_bound(_value); // if we are on the boundary we have to step back by one if (iter != bins.end()) if (_value == iter->first) if (iter != bins.begin()) --iter; return iter; } Histogram::BinLowerEnd Histogram::getLowerEnd(const double _value) const { BinLowerEnd start = _value - offset; // then divide by binwidth const int integral = floor(start/binwidth); //const double fraction = fmod(start,binwidth); start = offset + binwidth*integral; return start; } double Histogram::area() const { double area = 0.; for(Bins_t::const_iterator iter = bins.begin(); iter != bins.end(); ++iter) area += iter->second*binwidth; return area; } template<> Histogram ZeroInstance() { Histogram returnvalue; return returnvalue; }