/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* Histogram.cpp
*
* Created on: Jul 26, 2012
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "Histogram.hpp"
#include
#include
#include
#include
#include
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
/** Tiny helper struct to create equally spaced bins with count of zero.
*
*/
struct BinCreator_t {
BinCreator_t( const double lowerend, const double _width ) :
currentstart(lowerend),
width(_width)
{}
Histogram::Bin_t operator()() {
Histogram::Bin_t bin( make_pair( currentstart, 0.) );
currentstart+=width;
return bin;
}
private:
double currentstart;
const double width;
};
// see http://stackoverflow.com/questions/634087/stdcopy-to-stdcout-for-stdpair
// printing a pair is not easy, especially so with ostream_iterator as it cannot find
// overload operator<<() as it is not in namespace std.
template
struct PrintPair : public std::unary_function
{
std::ostream& os;
PrintPair(std::ostream& strm) : os(strm) {}
void operator()(const T& elem) const
{
os << "(" << elem.first << "," << elem.second << ") ";
}
};
std::ostream & operator<<(std::ostream &ost, const Histogram::Bin_t &elem)
{
ost << "(" << elem.first << "," << elem.second << ") ";
return ost;
}
std::ostream & operator<<(std::ostream &ost, const Histogram &histogram)
{
for (Histogram::Bins_t::const_iterator iter = histogram.bins.begin();
iter != histogram.bins.end(); ++iter)
ost << *iter;
return ost;
}
Histogram::Histogram(const samples_t &samples) :
binwidth(0.5),
offset(0.)
{
if (!samples.empty()) {
// set offset to first value
const_cast(offset) = *samples.begin();
// set binwidth to statistical sensible value
MinMax_t MinMax = getMinMaxFromSamples(samples);
// const_cast(binwidth) = (*(MinMax.second) - *(MinMax.first))/pow(samples.size(), 1./3.);
// and add all samples to these histogram bins
addSamples(samples);
}
}
Histogram::Histogram(const samples_t &samples, const BinLowerEnd _offset, const double _binwidth) :
binwidth(_binwidth),
offset(_offset)
{
addSamples(samples);
}
Histogram::MinMax_t Histogram::getMinMaxFromSamples(const samples_t &samples) const
{
std::pair returnpair;
returnpair.first = min_element(samples.begin(), samples.end());
returnpair.second = max_element(samples.begin(), samples.end());
ASSERT((returnpair.second != samples.end()) || (returnpair.first != samples.end()),
"Histogram::Histogram() - cannot find min/max despite non-empty range.");
return returnpair;
}
void Histogram::addSamples(const samples_t &samples)
{
// build histogram from samples
if (!samples.empty()) {
// 1. get min and max and determine width
MinMax_t MinMax = getMinMaxFromSamples(samples);
// LOG(1, "DEBUG: min is " << *(MinMax.first) << " and max is " << *(MinMax.second) << ".");
// 2. create each bin
{
std::vector vectorbins;
const BinLowerEnd HistogramStart = getLowerEnd(*(MinMax.first));
BinCreator_t BinCreator( HistogramStart, binwidth );
// we need one extra bin for get...Bin()'s find to work properly
const int CountBins = ceil((*(MinMax.second) - HistogramStart)/binwidth)+1;
vectorbins.resize(CountBins+1, Bin_t( make_pair(0., 0.) ) );
std::generate( vectorbins.begin(), vectorbins.end(), BinCreator );
bins.insert(vectorbins.begin(), vectorbins.end());
}
// 3. place each sample into bin
BOOST_FOREACH( double value, samples) {
const Bins_t::iterator biniter = getLowerEndBin(value);
ASSERT( biniter != bins.end(),
"Histogram::Histogram() - cannot find bin for value from given samples.");
// (make bin count normalized, i.e. always equal to surface area of 1)
biniter->second += 1./binwidth;
}
LOG(2, "DEBUG: Bins are " << printBins() << ".");
} else {
// LOG(1, "INFO: Given vector of samples is empty.");
}
}
std::string Histogram::printBins() const
{
std::stringstream output;
std::for_each( bins.begin(), bins.end(), PrintPair(output));
return output.str();
}
void Histogram::extendMissingBins(const BinLowerEnd LowerEnd, const BinLowerEnd NextLowerEnd)
{
Bins_t::const_iterator loweriter = getLowerEndBin(LowerEnd);
Bins_t::const_iterator upperiter = getHigherEndBin(NextLowerEnd);
if (loweriter == bins.end()) {
// we need bins beneath our first, add them
for(BinLowerEnd offset = getLowerEnd(LowerEnd);
offset < getLowerEnd(NextLowerEnd);
offset += binwidth) {
LOG(4, "DEBUG: Extending below at offset " << offset << ".");
bins.insert( std::make_pair (offset, 0. ) );
}
LOG(3, "DEBUG: Bins after adding empties before start are " << printBins() << ".");
loweriter = getLowerEndBin(LowerEnd);
ASSERT( loweriter != bins.end(),
"Histogram::extendMissingBins() - still no lower bound after adding empties.");
}
if (upperiter == bins.end()) {
// we need bins after our last, add them
for(BinLowerEnd offset = getLowerEnd(LowerEnd);
offset <= getLowerEnd(NextLowerEnd)+(1.5*binwidth); /* for safety we go a little further */
offset += binwidth) {
LOG(4, "DEBUG: Extending above at offset " << offset << ".");
bins.insert( std::make_pair (offset, 0. ) );
}
LOG(3, "DEBUG: Bins after adding empties after end are " << printBins() << ".");
upperiter = getHigherEndBin(NextLowerEnd);
ASSERT( upperiter != bins.end(),
"Histogram::extendMissingBins() - still no upper bound after adding empties.");
}
}
void Histogram::superposeOtherHistogram(const Histogram &other, const double prefactor)
{
// go through each of the other histogram's bins
Bins_t::const_iterator enditer = --other.bins.end(); // (except internal last one)
for (Bins_t::const_iterator biniter = other.bins.begin();
biniter != enditer; /* we advance ourselves in loop */) {
const Bin_t &bin = *biniter;
++biniter;
const Bin_t &nextbin = *biniter;
LOG(4, "DEBUG: Current bin is " << bin << ", next bin is " << nextbin << ".");
// Check first whether start or end actually fit into our histogram, if not extend.
extendMissingBins(bin.first, nextbin.first);
// The bin will in general not fit into one bin in this histogram, but overlap.
// Hence, we determine the contribution of the bin to each bin in this histogram
// its overlaps into and add this weight to the bin.
Bins_t::const_iterator loweriter = getLowerEndBin(bin.first);
Bins_t::const_iterator upperiter = getHigherEndBin(nextbin.first);
ASSERT( loweriter->first < upperiter->first,
"Histogram::superposeOtherHistogram() - the bin range is invalid.");
LOG(5, "DEBUG: bin range here is ["
<< loweriter->first << "," << upperiter->first << ").");
// Next, we create a vector of offsets
typedef std::vector< BinLowerEnd > offsets_t;
offsets_t offsets;
{
offsets.push_back(bin.first);
Bins_t::const_iterator iter = loweriter;
for (++iter; iter != upperiter; ++iter)
if (offsets.back() != iter->first)
offsets.push_back(iter->first);
if (offsets.back() != nextbin.first)
offsets.push_back(nextbin.first);
LOG(4, "DEBUG: Offsets are " << offsets << ".");
}
// then, we go through the offsets but the last one and add the respective area
{
offsets_t::const_iterator iter = offsets.begin();
offsets_t::const_iterator nextiter = ++offsets.begin();
for (; iter != --offsets.end(); ++iter, ++nextiter) {
const double length = *nextiter - *iter;
const double weight = bin.second * (length/binwidth);
Bins_t::iterator filliter = getLowerEndBin(*iter);
filliter->second += prefactor * weight;
}
}
{
std::stringstream output;
std::for_each( bins.begin(), bins.end(), PrintPair(output));
LOG(3, "DEBUG: Bins are after summation " << output.str() << ".");
}
}
}
Histogram& Histogram::operator=(const Histogram &other)
{
// check for self-assigment
if (&other != this) {
bins.clear();
const_cast(offset) = other.offset;
const_cast(binwidth) = other.binwidth;
bins.insert(other.bins.begin(), other.bins.end());
}
return *this;
}
Histogram& Histogram::operator+=(const Histogram &other)
{
superposeOtherHistogram(other, +1.);
LOG(3, "DEBUG: Bins after addition are " << printBins() << ".");
return *this;
}
Histogram& Histogram::operator-=(const Histogram &other)
{
superposeOtherHistogram(other, -1.);
LOG(3, "DEBUG: Bins after subtraction are " << printBins() << ".");
return *this;
}
bool Histogram::isEmpty() const
{
bool status = true;
for (Bins_t::const_iterator iter = bins.begin(); iter != bins.end(); ++iter)
status &= iter->second == 0;
return status;
}
Histogram::Bins_t::iterator Histogram::getLowerEndBin(const double _value)
{
// lower bound returns key that is equal or greater
Bins_t::iterator iter = bins.lower_bound(_value);
if (iter != bins.end()) {
// if we are not on the boundary we always have to step back by one
if (_value != iter->first) {
if (iter != bins.begin()) {
--iter;
} else {
iter = bins.end();
}
} else if (iter == --bins.end()) {
// if we actually are on boundary of "last bin", set to end
iter = bins.end();
}
}
return iter;
}
Histogram::Bins_t::iterator Histogram::getHigherEndBin(const double _value)
{
// upper bound return key that is strictly greater
Bins_t::iterator iter = bins.upper_bound(_value);
// if we are on the boundary we have to step back by one
if (iter != bins.end())
if (_value == iter->first)
if (iter != bins.begin())
--iter;
return iter;
}
Histogram::BinLowerEnd Histogram::getLowerEnd(const double _value) const
{
BinLowerEnd start = _value - offset;
// then divide by binwidth
const int integral = floor(start/binwidth);
//const double fraction = fmod(start,binwidth);
start = offset + binwidth*integral;
return start;
}
double Histogram::area() const
{
double area = 0.;
for(Bins_t::const_iterator iter = bins.begin(); iter != bins.end(); ++iter)
area += iter->second*binwidth;
return area;
}
template<> Histogram ZeroInstance()
{
Histogram returnvalue;
return returnvalue;
}