/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * Copyright (C) 2013 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * FragmentationLongRangeResults.cpp * * Created on: Aug 31, 2012 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "FragmentationLongRangeResults.hpp" #include #include #include #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" #include "Fragmentation/KeySetsContainer.hpp" #include "Fragmentation/parseKeySetFile.hpp" #include "Fragmentation/Summation/Converter/DataConverter.hpp" #include "Fragmentation/Summation/Containers/createMatrixNrLookup.hpp" #include "Fragmentation/Summation/Containers/extractJobIds.hpp" #include "Fragmentation/Summation/AllLevelOrthogonalSummator.hpp" #include "Fragmentation/Summation/IndexSetContainer.hpp" #include "Fragmentation/Summation/OrthogonalSumUpPerLevel.hpp" #include "Fragmentation/Summation/SubsetMap.hpp" #include "Fragmentation/Summation/SumUpPerLevel.hpp" #include "Helpers/defs.hpp" FragmentationLongRangeResults::FragmentationLongRangeResults( const std::map &fragmentData, std::map &longrangeData, const KeySetsContainer& _KeySet, const KeySetsContainer& _ForceKeySet) : KeySet(_KeySet), ForceKeySet(_ForceKeySet), hasForces((!longrangeData.empty()) && (longrangeData.begin()->second.hasForces)) { initLookups(fragmentData, longrangeData); // convert KeySetContainer to IndexSetContainer container.reset(new IndexSetContainer(KeySet)); // create the map of all keysets subsetmap.reset(new SubsetMap(*container)); } void FragmentationLongRangeResults::initLookups( const std::map &fragmentData, std::map &longrangeData ) { // create lookup from job nr to fragment number { size_t MPQCFragmentCounter = 0; std::vector ValueMask(fragmentData.size(), true); const std::vector mpqcjobids = extractJobIds(fragmentData); MPQCMatrixNrLookup = createMatrixNrLookup(mpqcjobids, MPQCFragmentCounter, ValueMask); } { size_t VMGFragmentCounter = 0; std::vector ValueMask(longrangeData.size(), true); const std::vector vmgjobids = extractJobIds(longrangeData); VMGMatrixNrLookup = createMatrixNrLookup(vmgjobids, VMGFragmentCounter, ValueMask); } } void FragmentationLongRangeResults::operator()( const std::map &fragmentData, std::map &longrangeData, const std::vector &fullsolutionData, const std::vector &full_sample, const SamplingGrid &_zero_globalgrid, const IndexedVectors::indices_t &_implicit_charges_indices) { MaxLevel = subsetmap->getMaximumSetLevel(); LOG(1, "INFO: Summing up results till level " << MaxLevel << "."); /// convert all MPQCData to MPQCDataMap_t { ASSERT( ForceKeySet.KeySets.size() == fragmentData.size(), "FragmentationLongRangeResults::FragmentationLongRangeResults() - ForceKeySet's KeySets and fragmentData differ in size."); OrthogonalSumUpPerLevel chargesummation(fragmentData); // charges and potential use same grid, hence same zero instance chargesummation.setZeroInstance(_zero_globalgrid); chargesummation(MPQCMatrixNrLookup, container, subsetmap, Result_Grid_fused, Result_perIndexSet_Grid); // multiply each short-range potential with the respective charge std::map::const_iterator mpqciter = fragmentData.begin(); std::map::iterator vmgiter = longrangeData.begin(); for (; vmgiter != longrangeData.end(); ++mpqciter, ++vmgiter) { vmgiter->second.sampled_potential *= mpqciter->second.sampled_grid; } // then sum up OrthogonalSumUpPerLevel vmgsummation( longrangeData); vmgsummation(VMGMatrixNrLookup, container, subsetmap, Result_LongRange_fused, Result_perIndexSet_LongRange); IndexedVectors::indices_t fullindices; if (hasLongRangeForces()) { // initialize zero instance map VMGDataForceMap_t ZeroInstances; ZeroInstanceInitializer initZeroInstance(ZeroInstances); boost::mpl::for_each(boost::ref(initZeroInstance)); // force has extra data converter (this is similar to MPQCData's forces std::map VMGData_Force_fused; convertDatatoForceMap( longrangeData, ForceKeySet, VMGData_Force_fused); Result_ForceLongRange_fused.resize(MaxLevel); // we need the results of correct size already AllLevelOrthogonalSummator forceSummer( subsetmap, VMGData_Force_fused, container->getContainer(), VMGMatrixNrLookup, Result_ForceLongRange_fused, Result_perIndexSet_LongRange_Force, ZeroInstances); boost::mpl::for_each(boost::ref(forceSummer)); // build full force index set KeySetsContainer::ArrayOfIntVectors::const_iterator arrayiter = ForceKeySet.KeySets.begin(); std::set sorted_indices; for (;arrayiter != ForceKeySet.KeySets.end(); ++arrayiter) { sorted_indices.insert(arrayiter->begin(), arrayiter->end()); } // add additionally those from implicit charges which are not associated to // any fragment and hence are unknown so far. sorted_indices.insert(_implicit_charges_indices.begin(), _implicit_charges_indices.end()); sorted_indices.erase(-1); fullindices.insert(fullindices.begin(), sorted_indices.begin(), sorted_indices.end()); } // then sum up OrthogonalSumUpPerLevel vmggridsummation( longrangeData); vmggridsummation.setZeroInstance(_zero_globalgrid); vmggridsummation.setZeroInstance(_zero_globalgrid); vmggridsummation(VMGMatrixNrLookup, container, subsetmap, Result_GridLongRange_fused, Result_perIndexSet_LongRange_Grid); Result_LongRangeIntegrated_fused.reserve(MaxLevel); // NOTE: potential for level 1 is wrongly calculated within a molecule // as saturation hydrogen are not removed on this level yet for (size_t level = 1; level <= MaxLevel; ++level) { // We have calculated three different contributions: e-e, e-n+n-n, and n-n. // And we want to have e-e+e-n, n-n+n-e (where e-n = n-e). // For each of these three contributions we have a full solution and summed // up short range solutions. // first we obtain the full e-e energy as potential times charge on the // respective level. const SamplingGrid &charge_weight = full_sample[level-1]; SamplingGrid full_sample_solution = fullsolutionData[level-1].sampled_potential; full_sample_solution *= charge_weight; double electron_solution_energy = full_sample_solution.integral(); // then we subtract the summed-up short-range e-e interaction energy from // the full solution. const SamplingGrid &short_range_correction = boost::fusion::at_key(Result_GridLongRange_fused[level-1]); double electron_short_range_energy = short_range_correction.integral(); electron_solution_energy -= electron_short_range_energy; #ifndef NDEBUG { static const double round_offset( (std::numeric_limits::round_style == std::round_toward_zero) ? 0.5 : 0.); // need offset to get to round_toward_nearest behavior // we can only check equivalence if both have same level, otherwise // short_range_correction.integral() has higher precision because of finger grid const int surplus_level = full_sample_solution.getSurplusLevel(short_range_correction)+round_offset; if (full_sample_solution.level == short_range_correction.level+surplus_level) { SamplingGrid check_difference_full_solution = full_sample_solution; check_difference_full_solution -= short_range_correction; ASSERT( fabs(electron_solution_energy - check_difference_full_solution.integral()) < 1e-7, "FragmentationLongRangeResults::operator() - integral and energy are not exchangeable."); } } #endif // then, we obtain the e-n+n-n full solution in the same way double nuclei_solution_energy = fullsolutionData[level-1].nuclei_long; double nuclei_short_range_energy = boost::fusion::at_key(Result_LongRange_fused[level-1]); nuclei_solution_energy -= nuclei_short_range_energy; // and also the e-n full solution double both_solution_energy = fullsolutionData[level-1].electron_long; double both_short_range_energy = boost::fusion::at_key(Result_LongRange_fused[level-1]); both_solution_energy -= both_short_range_energy; // energies from interpolation at nuclei position has factor of 1/2 already electron_solution_energy *= .5; electron_short_range_energy *= .5; // At last, we subtract e-n from n-n+e-n for full solution and short-range // correction. nuclei_solution_energy -= both_solution_energy; nuclei_short_range_energy -= both_short_range_energy; VMGDataLongRangeMap_t instance; boost::fusion::at_key(instance) = electron_solution_energy; // LOG(0, "Remaining long-range potential integral of level " << level << " is " // << full_sample_solution.integral() << "."); boost::fusion::at_key(instance) = electron_short_range_energy; // LOG(0, "Short-range correction potential integral of level " << level << " is " // << short_range_correction.integral() << "."); boost::fusion::at_key(instance) = both_solution_energy; // LOG(0, "Remaining long-range energy from potential integral of level " << level << " is " // << full_solution_energy << "."); boost::fusion::at_key(instance) = both_short_range_energy; // LOG(0, "Short-range correction energy from potential integral of level " << level << " is " // << short_range_energy << "."); boost::fusion::at_key(instance) = nuclei_solution_energy; // LOG(0, "Remaining long-range energy from potential integral of level " << level << " is " // << full_solution_energy << "."); boost::fusion::at_key(instance) = nuclei_short_range_energy; // LOG(0, "Short-range correction energy from potential integral of level " << level << " is " // << short_range_energy << "."); boost::fusion::at_key(instance) = boost::fusion::at_key(instance) + 2.*boost::fusion::at_key(instance) + boost::fusion::at_key(instance); boost::fusion::at_key(instance) = boost::fusion::at_key(instance) + 2.*boost::fusion::at_key(instance) + boost::fusion::at_key(instance); Result_LongRangeIntegrated_fused.push_back(instance); if (hasLongRangeForces()) { VMGDataLongRangeForceMap_t forceinstance; IndexedVectors fullforces( fullindices, fullsolutionData[level-1].forces); IndexedVectors longrangeforces = boost::fusion::at_key(Result_ForceLongRange_fused[level-1]); boost::fusion::at_key(forceinstance) = fullforces; fullforces -= longrangeforces; boost::fusion::at_key(forceinstance) = fullforces; Result_ForcesLongRangeIntegrated_fused.push_back(forceinstance); } } // { // // LOG(0, "Remaining long-range energy from energy_potential is " << full_sample_solution.integral()-epotentialSummer.getFullContribution() << "."); // SamplingGrid full_sample_solution = fullsolutionData.back().sampled_potential; // const SamplingGrid &short_range_correction = // boost::fusion::at_key(Result_GridLongRange_fused.back()).getFullContribution(); // full_sample_solution -= short_range_correction; // // multiply element-wise with charge distribution // LOG(0, "Remaining long-range potential integral is " << full_sample_solution.integral() << "."); // LOG(0, "Short-range correction potential integral of level is " << short_range_correction.integral() << "."); // LOG(0, "Remaining long-range energy from potential integral is " // << full_sample_solution.integral(full_sample.back()) << "."); // LOG(0, "Short-range correction energy from potential integral is " // << short_range_correction.integral(full_sample.back()) << "."); // // double e_long = fullsolutionData.back().e_long; // e_long -= boost::fusion::at_key(Result_LongRange_fused.back()).getFullContribution(); // LOG(0, "Remaining long-range energy is " << e_long << "."); // } // TODO: Extract long-range corrections to forces // NOTE: potential is in atomic length units, NOT IN ANGSTROEM! } }