/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * Copyright (C) 2013 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * FragmentationLongRangeResults.cpp * * Created on: Aug 31, 2012 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "FragmentationLongRangeResults.hpp" #include #include #include #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" #include "Fragmentation/KeySetsContainer.hpp" #include "Fragmentation/parseKeySetFile.hpp" #include "Fragmentation/Summation/Converter/DataConverter.hpp" #include "Fragmentation/Summation/Containers/createMatrixNrLookup.hpp" #include "Fragmentation/Summation/Containers/extractJobIds.hpp" #include "Fragmentation/Summation/AllLevelOrthogonalSummator.hpp" #include "Fragmentation/Summation/IndexSetContainer.hpp" #include "Fragmentation/Summation/OrthogonalSumUpPerLevel.hpp" #include "Fragmentation/Summation/SubsetMap.hpp" #include "Fragmentation/Summation/SumUpPerLevel.hpp" #include "Helpers/defs.hpp" FragmentationLongRangeResults::FragmentationLongRangeResults( const std::map &fragmentData, std::map &longrangeData, const KeySetsContainer& _KeySet, const KeySetsContainer& _ForceKeySet) : KeySet(_KeySet), ForceKeySet(_ForceKeySet) { initLookups(fragmentData, longrangeData); // convert KeySetContainer to IndexSetContainer container.reset(new IndexSetContainer(KeySet)); // create the map of all keysets subsetmap.reset(new SubsetMap(*container)); } void FragmentationLongRangeResults::initLookups( const std::map &fragmentData, std::map &longrangeData ) { // create lookup from job nr to fragment number size_t MPQCFragmentCounter = 0; const std::vector mpqcjobids = extractJobIds(fragmentData); MPQCMatrixNrLookup = createMatrixNrLookup(mpqcjobids, MPQCFragmentCounter); size_t VMGFragmentCounter = 0; const std::vector vmgjobids = extractJobIds(longrangeData); VMGMatrixNrLookup = createMatrixNrLookup(vmgjobids, VMGFragmentCounter); } void FragmentationLongRangeResults::operator()( const std::map &fragmentData, std::map &longrangeData, const std::vector &fullsolutionData, const std::vector &full_sample) { MaxLevel = subsetmap->getMaximumSetLevel(); LOG(1, "INFO: Summing up results till level " << MaxLevel << "."); /// convert all MPQCData to MPQCDataMap_t { ASSERT( ForceKeySet.KeySets.size() == fragmentData.size(), "FragmentationLongRangeResults::FragmentationLongRangeResults() - ForceKeySet's KeySets and fragmentData differ in size."); OrthogonalSumUpPerLevel( fragmentData, MPQCMatrixNrLookup, container, subsetmap, Result_Grid_fused, Result_perIndexSet_Grid); OrthogonalSumUpPerLevel( fragmentData, MPQCMatrixNrLookup, container, subsetmap, Result_Fragment_fused, Result_perIndexSet_Fragment); // multiply each short-range potential with the respective charge std::map::const_iterator mpqciter = fragmentData.begin(); std::map::iterator vmgiter = longrangeData.begin(); for (; vmgiter != longrangeData.end(); ++mpqciter, ++vmgiter) { vmgiter->second.sampled_potential *= mpqciter->second.sampled_grid; } // then sum up OrthogonalSumUpPerLevel( longrangeData, VMGMatrixNrLookup, container, subsetmap, Result_LongRange_fused, Result_perIndexSet_LongRange); Result_LongRangeIntegrated_fused.reserve(MaxLevel); { // NOTE: potential for level 1 is not calculated as saturation hydrogen // are not removed on this level yet VMGDataLongRangeMap_t instance; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; boost::fusion::at_key(instance) = 0.; Result_LongRangeIntegrated_fused.push_back(instance); } for (size_t level = 2; level <= MaxLevel; ++level) { // We have calculated three different contributions: e-e, e-n+n-n, and n-n. // And we want to have e-e+e-n, n-n+n-e (where e-n = n-e). // For each of these three contributions we have a full solution and summed // up short range solutions. // first we obtain the full e-e energy as potential times charge on the // respective level. // \note that sampled_potential starts at level 2 because we do not calculate // for level 1 as there saturated hydrogens are still present, leaving the // result to be nonsense. const SamplingGrid &charge_weight = boost::fusion::at_key(Result_Grid_fused[level-1]); SamplingGrid full_sample_solution = fullsolutionData[level-2].sampled_potential; full_sample_solution *= charge_weight; double electron_solution_energy = full_sample_solution.integral(); // then we subtract the summed-up short-range e-e interaction energy from // the full solution. const SamplingGrid &short_range_correction = boost::fusion::at_key(Result_LongRange_fused[level-1]); double electron_short_range_energy = short_range_correction.integral(); full_sample_solution -= short_range_correction; electron_solution_energy -= electron_short_range_energy; ASSERT( fabs(electron_solution_energy - full_sample_solution.integral()) < 1e-7, "FragmentationLongRangeResults::operator() - integral and energy are not exchangeable."); // then, we obtain the e-n+n-n full solution in the same way double nuclei_solution_energy = fullsolutionData[level-2].nuclei_long; double nuclei_short_range_energy = boost::fusion::at_key(Result_LongRange_fused[level-1]); nuclei_solution_energy -= nuclei_short_range_energy; // and also the e-n full solution double both_solution_energy = fullsolutionData[level-2].electron_long; double both_short_range_energy = boost::fusion::at_key(Result_LongRange_fused[level-1]); both_solution_energy -= both_short_range_energy; // energies from interpolation at nuclei position has factor of 1/2 already electron_solution_energy *= .5; electron_short_range_energy *= .5; // At last, we subtract e-n from n-n+e-n for full solution and short-range // correction. nuclei_solution_energy -= both_solution_energy; nuclei_short_range_energy -= both_short_range_energy; VMGDataLongRangeMap_t instance; boost::fusion::at_key(instance) = electron_solution_energy; // LOG(0, "Remaining long-range potential integral of level " << level << " is " // << full_sample_solution.integral() << "."); boost::fusion::at_key(instance) = electron_short_range_energy; // LOG(0, "Short-range correction potential integral of level " << level << " is " // << short_range_correction.integral() << "."); boost::fusion::at_key(instance) = both_solution_energy; // LOG(0, "Remaining long-range energy from potential integral of level " << level << " is " // << full_solution_energy << "."); boost::fusion::at_key(instance) = both_short_range_energy; // LOG(0, "Short-range correction energy from potential integral of level " << level << " is " // << short_range_energy << "."); boost::fusion::at_key(instance) = nuclei_solution_energy; // LOG(0, "Remaining long-range energy from potential integral of level " << level << " is " // << full_solution_energy << "."); boost::fusion::at_key(instance) = nuclei_short_range_energy; // LOG(0, "Short-range correction energy from potential integral of level " << level << " is " // << short_range_energy << "."); boost::fusion::at_key(instance) = boost::fusion::at_key(instance) + 2.*boost::fusion::at_key(instance) + boost::fusion::at_key(instance); boost::fusion::at_key(instance) = boost::fusion::at_key(instance) + 2.*boost::fusion::at_key(instance) + boost::fusion::at_key(instance); Result_LongRangeIntegrated_fused.push_back(instance); } // { // // LOG(0, "Remaining long-range energy from energy_potential is " << full_sample_solution.integral()-epotentialSummer.getFullContribution() << "."); // SamplingGrid full_sample_solution = fullsolutionData.back().sampled_potential; // const SamplingGrid &short_range_correction = // boost::fusion::at_key(Result_LongRange_fused.back()).getFullContribution(); // full_sample_solution -= short_range_correction; // // multiply element-wise with charge distribution // LOG(0, "Remaining long-range potential integral is " << full_sample_solution.integral() << "."); // LOG(0, "Short-range correction potential integral of level is " << short_range_correction.integral() << "."); // LOG(0, "Remaining long-range energy from potential integral is " // << full_sample_solution.integral(full_sample.back()) << "."); // LOG(0, "Short-range correction energy from potential integral is " // << short_range_correction.integral(full_sample.back()) << "."); // // double e_long = fullsolutionData.back().e_long; // e_long -= boost::fusion::at_key(Result_LongRange_fused.back()).getFullContribution(); // LOG(0, "Remaining long-range energy is " << e_long << "."); // } // TODO: Extract long-range corrections to forces // NOTE: potential is in atomic length units, NOT IN ANGSTROEM! } }