source: src/Dynamics/MinimiseConstrainedPotential.cpp@ ff4fff9

CombiningParticlePotentialParsing
Last change on this file since ff4fff9 was 51cdfd, checked in by Frederik Heber <heber@…>, 10 years ago

Extracted common functions from VerletForceIntegration into AtomicForceManipulator.

  • Property mode set to 100644
File size: 18.3 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 *
6 *
7 * This file is part of MoleCuilder.
8 *
9 * MoleCuilder is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * MoleCuilder is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23/*
24 * MinimiseConstrainedPotential.cpp
25 *
26 * Created on: Feb 23, 2011
27 * Author: heber
28 */
29
30// include config.h
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35#include "CodePatterns/MemDebug.hpp"
36
37#include <gsl/gsl_matrix.h>
38#include <gsl/gsl_vector.h>
39#include <gsl/gsl_linalg.h>
40
41#include "Atom/atom.hpp"
42#include "Element/element.hpp"
43#include "CodePatterns/enumeration.hpp"
44#include "CodePatterns/Info.hpp"
45#include "CodePatterns/Verbose.hpp"
46#include "CodePatterns/Log.hpp"
47#include "Fragmentation/ForceMatrix.hpp"
48#include "Helpers/helpers.hpp"
49#include "molecule.hpp"
50#include "LinearAlgebra/Plane.hpp"
51#include "World.hpp"
52
53#include "Dynamics/MinimiseConstrainedPotential.hpp"
54
55
56MinimiseConstrainedPotential::MinimiseConstrainedPotential(
57 World::AtomComposite &_atoms,
58 std::map<atom*, atom *> &_PermutationMap) :
59 atoms(_atoms),
60 PermutationMap(_PermutationMap)
61{}
62
63MinimiseConstrainedPotential::~MinimiseConstrainedPotential()
64{}
65
66double MinimiseConstrainedPotential::operator()(int _startstep, int _endstep, bool IsAngstroem)
67{
68 double Potential, OldPotential, OlderPotential;
69 int round;
70 atom *Sprinter = NULL;
71 DistanceMap::iterator Rider, Strider;
72
73 // set to zero
74 PermutationMap.clear();
75 DoubleList.clear();
76 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
77 DistanceList[*iter].clear();
78 }
79 DistanceList.clear();
80 DistanceIterators.clear();
81 DistanceIterators.clear();
82
83 /// Minimise the potential
84 // set Lagrange multiplier constants
85 PenaltyConstants[0] = 10.;
86 PenaltyConstants[1] = 1.;
87 PenaltyConstants[2] = 1e+7; // just a huge penalty
88 // generate the distance list
89 LOG(1, "Allocating, initializting and filling the distance list ... ");
90 FillDistanceList();
91
92 // create the initial PermutationMap (source -> target)
93 CreateInitialLists();
94
95 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
96 LOG(1, "Making the PermutationMap injective ... ");
97 MakeInjectivePermutation();
98 DoubleList.clear();
99
100 // argument minimise the constrained potential in this injective PermutationMap
101 LOG(1, "Argument minimising the PermutationMap.");
102 OldPotential = 1e+10;
103 round = 0;
104 do {
105 LOG(2, "Starting round " << ++round << ", at current potential " << OldPotential << " ... ");
106 OlderPotential = OldPotential;
107 World::AtomComposite::const_iterator iter;
108 do {
109 iter = atoms.begin();
110 for (; iter != atoms.end(); ++iter) {
111 CalculateDoubleList();
112 PrintPermutationMap();
113 Sprinter = DistanceIterators[(*iter)]->second; // store initial partner
114 Strider = DistanceIterators[(*iter)]; //remember old iterator
115 DistanceIterators[(*iter)] = StepList[(*iter)];
116 if (DistanceIterators[(*iter)] == DistanceList[(*iter)].end()) {// stop, before we run through the list and still on
117 DistanceIterators[(*iter)] == DistanceList[(*iter)].begin();
118 break;
119 }
120 //LOG(2, "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)]->second << ".");
121 // find source of the new target
122 World::AtomComposite::const_iterator runner = atoms.begin();
123 for (; runner != atoms.end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
124 if (PermutationMap[(*runner)] == DistanceIterators[(*iter)]->second) {
125 //LOG(2, "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)] << ".");
126 break;
127 }
128 }
129 if (runner != atoms.end()) { // we found the other source
130 // then look in its distance list for Sprinter
131 Rider = DistanceList[(*runner)].begin();
132 for (; Rider != DistanceList[(*runner)].end(); Rider++)
133 if (Rider->second == Sprinter)
134 break;
135 if (Rider != DistanceList[(*runner)].end()) { // if we have found one
136 //LOG(2, "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)] << "/" << *Rider->second << ".");
137 // exchange both
138 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // put next farther distance into PermutationMap
139 PermutationMap[(*runner)] = Sprinter; // and hand the old target to its respective owner
140 CalculateDoubleList();
141 PrintPermutationMap();
142 // calculate the new potential
143 //LOG(2, "Checking new potential ...");
144 Potential = ConstrainedPotential();
145 if (Potential > OldPotential) { // we made everything worse! Undo ...
146 //LOG(3, "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!");
147 //LOG(3, "Setting " << *(*runner) << "'s source to " << *DistanceIterators[(*runner)]->second << ".");
148 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
149 PermutationMap[(*runner)] = DistanceIterators[(*runner)]->second;
150 // Undo for Walker
151 DistanceIterators[(*iter)] = Strider; // take next farther distance target
152 //LOG(3, "Setting " << *(*iter) << "'s source to " << *DistanceIterators[(*iter)]->second << ".");
153 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second;
154 } else {
155 DistanceIterators[(*runner)] = Rider; // if successful also move the pointer in the iterator list
156 LOG(3, "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << ".");
157 OldPotential = Potential;
158 }
159 if (Potential > PenaltyConstants[2]) {
160 ELOG(1, "The two-step permutation procedure did not maintain injectivity!");
161 exit(255);
162 }
163 } else {
164 ELOG(1, **runner << " was not the owner of " << *Sprinter << "!");
165 exit(255);
166 }
167 } else {
168 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // new target has no source!
169 }
170 StepList[(*iter)]++; // take next farther distance target
171 }
172 } while (++iter != atoms.end());
173 } while ((OlderPotential - OldPotential) > 1e-3);
174 LOG(1, "done.");
175
176
177 return ConstrainedPotential();
178}
179
180void MinimiseConstrainedPotential::FillDistanceList()
181{
182 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
183 for (World::AtomComposite::const_iterator runner = atoms.begin(); runner != atoms.end(); ++runner) {
184 DistanceList[(*iter)].insert( DistancePair((*iter)->getPositionAtStep(startstep).distance((*runner)->getPositionAtStep(endstep)), (*runner)) );
185 }
186 }
187};
188
189void MinimiseConstrainedPotential::CreateInitialLists()
190{
191 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
192 StepList[(*iter)] = DistanceList[(*iter)].begin(); // stores the step to the next iterator that could be a possible next target
193 PermutationMap[(*iter)] = DistanceList[(*iter)].begin()->second; // always pick target with the smallest distance
194 DoubleList[DistanceList[(*iter)].begin()->second]++; // increase this target's source count (>1? not injective)
195 DistanceIterators[(*iter)] = DistanceList[(*iter)].begin(); // and remember which one we picked
196 LOG(2, **iter << " starts with distance " << DistanceList[(*iter)].begin()->first << ".");
197 }
198};
199
200void MinimiseConstrainedPotential::MakeInjectivePermutation()
201{
202 World::AtomComposite::const_iterator iter = atoms.begin();
203 DistanceMap::iterator NewBase;
204 double Potential = fabs(ConstrainedPotential());
205
206 if (atoms.empty()) {
207 ELOG(1, "Molecule is empty.");
208 return;
209 }
210 while ((Potential) > PenaltyConstants[2]) {
211 CalculateDoubleList();
212 PrintPermutationMap();
213 iter++;
214 if (iter == atoms.end()) // round-robin at the end
215 iter = atoms.begin();
216 if (DoubleList[DistanceIterators[(*iter)]->second] <= 1) // no need to make those injective that aren't
217 continue;
218 // now, try finding a new one
219 Potential = TryNextNearestNeighbourForInjectivePermutation((*iter), Potential);
220 }
221 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
222 // now each single entry in the DoubleList should be <=1
223 if (DoubleList[*iter] > 1) {
224 ELOG(0, "Failed to create an injective PermutationMap!");
225 performCriticalExit();
226 }
227 }
228 LOG(1, "done.");
229};
230
231unsigned int MinimiseConstrainedPotential::CalculateDoubleList()
232{
233 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
234 DoubleList[*iter] = 0;
235 unsigned int doubles = 0;
236 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
237 DoubleList[ PermutationMap[*iter] ]++;
238 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
239 if (DoubleList[*iter] > 1)
240 doubles++;
241 if (doubles >0)
242 LOG(2, "Found " << doubles << " Doubles.");
243 return doubles;
244};
245
246void MinimiseConstrainedPotential::PrintPermutationMap() const
247{
248 stringstream zeile1, zeile2;
249 int doubles = 0;
250 zeile1 << "PermutationMap: ";
251 zeile2 << " ";
252 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
253 zeile1 << (*iter)->getName() << " ";
254 zeile2 << (PermutationMap[*iter])->getName() << " ";
255 }
256 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
257 std::map<atom *, unsigned int>::const_iterator value_iter = DoubleList.find(*iter);
258 if (value_iter->second > (unsigned int)1)
259 doubles++;
260 }
261 if (doubles >0)
262 LOG(2, "Found " << doubles << " Doubles.");
263// LOG(2, zeile1.str() << endl << zeile2.str());
264};
265
266double MinimiseConstrainedPotential::ConstrainedPotential()
267{
268 double tmp = 0.;
269 double result = 0.;
270 // go through every atom
271 atom *Runner = NULL;
272 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
273 // first term: distance to target
274 Runner = PermutationMap[(*iter)]; // find target point
275 tmp = ((*iter)->getPositionAtStep(startstep).distance(Runner->getPositionAtStep(endstep)));
276 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
277 result += PenaltyConstants[0] * tmp;
278 //LOG(4, "Adding " << tmp*constants[0] << ".");
279
280 // second term: sum of distances to other trajectories
281 result += SumDistanceOfTrajectories((*iter));
282
283 // third term: penalty for equal targets
284 result += PenalizeEqualTargets((*iter));
285 }
286
287 return result;
288};
289
290double MinimiseConstrainedPotential::TryNextNearestNeighbourForInjectivePermutation(atom *Walker, double &OldPotential)
291{
292 double Potential = 0;
293 DistanceMap::iterator NewBase = DistanceIterators[Walker]; // store old base
294 do {
295 NewBase++; // take next further distance in distance to targets list that's a target of no one
296 } while ((DoubleList[NewBase->second] != 0) && (NewBase != DistanceList[Walker].end()));
297 if (NewBase != DistanceList[Walker].end()) {
298 PermutationMap[Walker] = NewBase->second;
299 Potential = fabs(ConstrainedPotential());
300 if (Potential > OldPotential) { // undo
301 PermutationMap[Walker] = DistanceIterators[Walker]->second;
302 } else { // do
303 DoubleList[DistanceIterators[Walker]->second]--; // decrease the old entry in the doubles list
304 DoubleList[NewBase->second]++; // increase the old entry in the doubles list
305 DistanceIterators[Walker] = NewBase;
306 OldPotential = Potential;
307 LOG(3, "Found a new permutation, new potential is " << OldPotential << ".");
308 }
309 }
310 return Potential;
311};
312
313double MinimiseConstrainedPotential::PenalizeEqualTargets(atom *Walker)
314{
315 double result = 0.;
316 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
317 if ((PermutationMap[Walker] == PermutationMap[(*iter)]) && (Walker < (*iter))) {
318// atom *Sprinter = PermutationMap[Walker->nr];
319// if (DoLog(0)) {
320// std::stringstream output;
321// output << *Walker << " and " << *(*iter) << " are heading to the same target at ";
322// output << Sprinter->getPosition(endstep);
323// output << ", penalting.";
324// LOG(0, output.str());
325// }
326 result += PenaltyConstants[2];
327 //LOG(4, "INFO: Adding " << constants[2] << ".");
328 }
329 }
330 return result;
331};
332
333double MinimiseConstrainedPotential::SumDistanceOfTrajectories(atom *Walker)
334{
335 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
336 gsl_vector *x = gsl_vector_alloc(NDIM);
337 atom *Sprinter = NULL;
338 Vector trajectory1, trajectory2, normal, TestVector;
339 double Norm1, Norm2, tmp, result = 0.;
340
341 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
342 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
343 break;
344 // determine normalized trajectories direction vector (n1, n2)
345 Sprinter = PermutationMap[Walker]; // find first target point
346 trajectory1 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep);
347 trajectory1.Normalize();
348 Norm1 = trajectory1.Norm();
349 Sprinter = PermutationMap[(*iter)]; // find second target point
350 trajectory2 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
351 trajectory2.Normalize();
352 Norm2 = trajectory1.Norm();
353 // check whether either is zero()
354 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
355 tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
356 } else if (Norm1 < MYEPSILON) {
357 Sprinter = PermutationMap[Walker]; // find first target point
358 trajectory1 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
359 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
360 trajectory1 -= trajectory2; // project the part in norm direction away
361 tmp = trajectory1.Norm(); // remaining norm is distance
362 } else if (Norm2 < MYEPSILON) {
363 Sprinter = PermutationMap[(*iter)]; // find second target point
364 trajectory2 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep); // copy second offset
365 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
366 trajectory2 -= trajectory1; // project the part in norm direction away
367 tmp = trajectory2.Norm(); // remaining norm is distance
368 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
369// std::stringstream output;
370// output << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
371// output << trajectory1 << " and " << trajectory2;
372// LOG(3, output.str());
373 tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
374// LOG(0, " with distance " << tmp << ".");
375 } else { // determine distance by finding minimum distance
376// std::stringstream output;
377// output "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent -- ";
378// output "First Trajectory: " << trajectory1 << ". Second Trajectory: " << trajectory2);
379// LOG(3, output.str());
380 // determine normal vector for both
381 normal = Plane(trajectory1, trajectory2,0).getNormal();
382 // print all vectors for debugging
383// LOG(3, "INFO: Normal vector in between: " << normal);
384 // setup matrix
385 for (int i=NDIM;i--;) {
386 gsl_matrix_set(A, 0, i, trajectory1[i]);
387 gsl_matrix_set(A, 1, i, trajectory2[i]);
388 gsl_matrix_set(A, 2, i, normal[i]);
389 gsl_vector_set(x,i, (Walker->getPositionAtStep(startstep)[i] - (*iter)->getPositionAtStep(startstep)[i]));
390 }
391 // solve the linear system by Householder transformations
392 gsl_linalg_HH_svx(A, x);
393 // distance from last component
394 tmp = gsl_vector_get(x,2);
395// LOG(0, " with distance " << tmp << ".");
396 // test whether we really have the intersection (by checking on c_1 and c_2)
397 trajectory1.Scale(gsl_vector_get(x,0));
398 trajectory2.Scale(gsl_vector_get(x,1));
399 normal.Scale(gsl_vector_get(x,2));
400 TestVector = (*iter)->getPositionAtStep(startstep) + trajectory2 + normal
401 - (Walker->getPositionAtStep(startstep) + trajectory1);
402 if (TestVector.Norm() < MYEPSILON) {
403// LOG(2, "Test: ok.\tDistance of " << tmp << " is correct.");
404 } else {
405// LOG(2, "Test: failed.\tIntersection is off by " << TestVector << ".");
406 }
407 }
408 // add up
409 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
410 if (fabs(tmp) > MYEPSILON) {
411 result += PenaltyConstants[1] * 1./tmp;
412 //LOG(4, "Adding " << 1./tmp*constants[1] << ".");
413 }
414 }
415 return result;
416};
417
418void MinimiseConstrainedPotential::EvaluateConstrainedForces(ForceMatrix *Force)
419{
420 double constant = 10.;
421
422 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
423 LOG(1, "Calculating forces and adding onto ForceMatrix ... ");
424 for(World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
425 atom *Sprinter = PermutationMap[(*iter)];
426 // set forces
427 for (int i=NDIM;i++;)
428 Force->Matrix[0][(*iter)->getNr()][5+i] += 2.*constant*sqrt((*iter)->getPositionAtStep(startstep).distance(Sprinter->getPositionAtStep(endstep)));
429 }
430 LOG(1, "done.");
431};
432
Note: See TracBrowser for help on using the repository browser.