source: src/Dynamics/MinimiseConstrainedPotential.cpp@ e670e4

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since e670e4 was 255829, checked in by Frederik Heber <heber@…>, 14 years ago

Removed Helpers.hpp, deleted Helpers.cpp and libMoleCuilderHelpers.la is history.

  • defs.cpp is now compiled into libmolecuilder.la.
  • ShapeUnitTest alone needs defs.cpp.
  • Most changes are removal of Helpers/helpers.hpp.
  • performCriticalExit() now inline function in Helpers/helpers.hpp.
  • also inclusion possible where performCriticalExit() is needed.
  • Helpers/helpers.hpp does not include defs.hpp anymore and this causes lots of missing Helpers/defs.hpp, CodePatterns/Log.hpp and alikes.
  • removed src/Helpers from configure.ac.
  • Property mode set to 100644
File size: 18.8 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * MinimiseConstrainedPotential.cpp
10 *
11 * Created on: Feb 23, 2011
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <gsl/gsl_matrix.h>
23#include <gsl/gsl_vector.h>
24#include <gsl/gsl_linalg.h>
25
26#include "atom.hpp"
27#include "config.hpp"
28#include "element.hpp"
29#include "CodePatterns/enumeration.hpp"
30#include "CodePatterns/Info.hpp"
31#include "CodePatterns/Verbose.hpp"
32#include "CodePatterns/Log.hpp"
33#include "Helpers/helpers.hpp"
34#include "molecule.hpp"
35#include "parser.hpp"
36#include "LinearAlgebra/Plane.hpp"
37#include "World.hpp"
38
39#include "Dynamics/MinimiseConstrainedPotential.hpp"
40
41
42MinimiseConstrainedPotential::MinimiseConstrainedPotential(
43 molecule::atomSet &_atoms,
44 std::map<atom*, atom *> &_PermutationMap) :
45 atoms(_atoms),
46 PermutationMap(_PermutationMap)
47{}
48
49MinimiseConstrainedPotential::~MinimiseConstrainedPotential()
50{}
51
52double MinimiseConstrainedPotential::operator()(int _startstep, int _endstep, bool IsAngstroem)
53{
54 double Potential, OldPotential, OlderPotential;
55 int round;
56 atom *Sprinter = NULL;
57 DistanceMap::iterator Rider, Strider;
58
59 // set to zero
60 PermutationMap.clear();
61 DoubleList.clear();
62 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
63 DistanceList[*iter].clear();
64 }
65 DistanceList.clear();
66 DistanceIterators.clear();
67 DistanceIterators.clear();
68
69 /// Minimise the potential
70 // set Lagrange multiplier constants
71 PenaltyConstants[0] = 10.;
72 PenaltyConstants[1] = 1.;
73 PenaltyConstants[2] = 1e+7; // just a huge penalty
74 // generate the distance list
75 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
76 FillDistanceList();
77
78 // create the initial PermutationMap (source -> target)
79 CreateInitialLists();
80
81 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
82 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
83 MakeInjectivePermutation();
84 DoubleList.clear();
85
86 // argument minimise the constrained potential in this injective PermutationMap
87 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
88 OldPotential = 1e+10;
89 round = 0;
90 do {
91 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
92 OlderPotential = OldPotential;
93 molecule::atomSet::const_iterator iter;
94 do {
95 iter = atoms.begin();
96 for (; iter != atoms.end(); ++iter) {
97 CalculateDoubleList();
98 PrintPermutationMap();
99 Sprinter = DistanceIterators[(*iter)]->second; // store initial partner
100 Strider = DistanceIterators[(*iter)]; //remember old iterator
101 DistanceIterators[(*iter)] = StepList[(*iter)];
102 if (DistanceIterators[(*iter)] == DistanceList[(*iter)].end()) {// stop, before we run through the list and still on
103 DistanceIterators[(*iter)] == DistanceList[(*iter)].begin();
104 break;
105 }
106 //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)]->second << "." << endl;
107 // find source of the new target
108 molecule::atomSet::const_iterator runner = atoms.begin();
109 for (; runner != atoms.end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
110 if (PermutationMap[(*runner)] == DistanceIterators[(*iter)]->second) {
111 //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)] << "." << endl;
112 break;
113 }
114 }
115 if (runner != atoms.end()) { // we found the other source
116 // then look in its distance list for Sprinter
117 Rider = DistanceList[(*runner)].begin();
118 for (; Rider != DistanceList[(*runner)].end(); Rider++)
119 if (Rider->second == Sprinter)
120 break;
121 if (Rider != DistanceList[(*runner)].end()) { // if we have found one
122 //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)] << "/" << *Rider->second << "." << endl;
123 // exchange both
124 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // put next farther distance into PermutationMap
125 PermutationMap[(*runner)] = Sprinter; // and hand the old target to its respective owner
126 CalculateDoubleList();
127 PrintPermutationMap();
128 // calculate the new potential
129 //Log() << Verbose(2) << "Checking new potential ..." << endl;
130 Potential = ConstrainedPotential();
131 if (Potential > OldPotential) { // we made everything worse! Undo ...
132 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
133 //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *DistanceIterators[(*runner)]->second << "." << endl;
134 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
135 PermutationMap[(*runner)] = DistanceIterators[(*runner)]->second;
136 // Undo for Walker
137 DistanceIterators[(*iter)] = Strider; // take next farther distance target
138 //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *DistanceIterators[(*iter)]->second << "." << endl;
139 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second;
140 } else {
141 DistanceIterators[(*runner)] = Rider; // if successful also move the pointer in the iterator list
142 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
143 OldPotential = Potential;
144 }
145 if (Potential > PenaltyConstants[2]) {
146 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
147 exit(255);
148 }
149 //Log() << Verbose(0) << endl;
150 } else {
151 DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
152 exit(255);
153 }
154 } else {
155 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // new target has no source!
156 }
157 StepList[(*iter)]++; // take next farther distance target
158 }
159 } while (++iter != atoms.end());
160 } while ((OlderPotential - OldPotential) > 1e-3);
161 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
162
163
164 return ConstrainedPotential();
165};
166
167void MinimiseConstrainedPotential::FillDistanceList()
168{
169 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
170 for (molecule::atomSet::const_iterator runner = atoms.begin(); runner != atoms.end(); ++runner) {
171 DistanceList[(*iter)].insert( DistancePair((*iter)->getPositionAtStep(startstep).distance((*runner)->getPositionAtStep(endstep)), (*runner)) );
172 }
173 }
174};
175
176void MinimiseConstrainedPotential::CreateInitialLists()
177{
178 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
179 StepList[(*iter)] = DistanceList[(*iter)].begin(); // stores the step to the next iterator that could be a possible next target
180 PermutationMap[(*iter)] = DistanceList[(*iter)].begin()->second; // always pick target with the smallest distance
181 DoubleList[DistanceList[(*iter)].begin()->second]++; // increase this target's source count (>1? not injective)
182 DistanceIterators[(*iter)] = DistanceList[(*iter)].begin(); // and remember which one we picked
183 DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << DistanceList[(*iter)].begin()->first << "." << endl);
184 }
185};
186
187void MinimiseConstrainedPotential::MakeInjectivePermutation()
188{
189 molecule::atomSet::const_iterator iter = atoms.begin();
190 DistanceMap::iterator NewBase;
191 double Potential = fabs(ConstrainedPotential());
192
193 if (atoms.empty()) {
194 eLog() << Verbose(1) << "Molecule is empty." << endl;
195 return;
196 }
197 while ((Potential) > PenaltyConstants[2]) {
198 CalculateDoubleList();
199 PrintPermutationMap();
200 iter++;
201 if (iter == atoms.end()) // round-robin at the end
202 iter = atoms.begin();
203 if (DoubleList[DistanceIterators[(*iter)]->second] <= 1) // no need to make those injective that aren't
204 continue;
205 // now, try finding a new one
206 Potential = TryNextNearestNeighbourForInjectivePermutation((*iter), Potential);
207 }
208 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
209 // now each single entry in the DoubleList should be <=1
210 if (DoubleList[*iter] > 1) {
211 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
212 performCriticalExit();
213 }
214 }
215 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
216};
217
218unsigned int MinimiseConstrainedPotential::CalculateDoubleList()
219{
220 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
221 DoubleList[*iter] = 0;
222 unsigned int doubles = 0;
223 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
224 DoubleList[ PermutationMap[*iter] ]++;
225 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
226 if (DoubleList[*iter] > 1)
227 doubles++;
228 if (doubles >0)
229 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
230 return doubles;
231};
232
233void MinimiseConstrainedPotential::PrintPermutationMap() const
234{
235 stringstream zeile1, zeile2;
236 int doubles = 0;
237 zeile1 << "PermutationMap: ";
238 zeile2 << " ";
239 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
240 zeile1 << (*iter)->getName() << " ";
241 zeile2 << (PermutationMap[*iter])->getName() << " ";
242 }
243 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
244 std::map<atom *, unsigned int>::const_iterator value_iter = DoubleList.find(*iter);
245 if (value_iter->second > (unsigned int)1)
246 doubles++;
247 }
248 if (doubles >0)
249 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
250// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
251};
252
253double MinimiseConstrainedPotential::ConstrainedPotential()
254{
255 double tmp = 0.;
256 double result = 0.;
257 // go through every atom
258 atom *Runner = NULL;
259 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
260 // first term: distance to target
261 Runner = PermutationMap[(*iter)]; // find target point
262 tmp = ((*iter)->getPositionAtStep(startstep).distance(Runner->getPositionAtStep(endstep)));
263 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
264 result += PenaltyConstants[0] * tmp;
265 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
266
267 // second term: sum of distances to other trajectories
268 result += SumDistanceOfTrajectories((*iter));
269
270 // third term: penalty for equal targets
271 result += PenalizeEqualTargets((*iter));
272 }
273
274 return result;
275};
276
277double MinimiseConstrainedPotential::TryNextNearestNeighbourForInjectivePermutation(atom *Walker, double &OldPotential)
278{
279 double Potential = 0;
280 DistanceMap::iterator NewBase = DistanceIterators[Walker]; // store old base
281 do {
282 NewBase++; // take next further distance in distance to targets list that's a target of no one
283 } while ((DoubleList[NewBase->second] != 0) && (NewBase != DistanceList[Walker].end()));
284 if (NewBase != DistanceList[Walker].end()) {
285 PermutationMap[Walker] = NewBase->second;
286 Potential = fabs(ConstrainedPotential());
287 if (Potential > OldPotential) { // undo
288 PermutationMap[Walker] = DistanceIterators[Walker]->second;
289 } else { // do
290 DoubleList[DistanceIterators[Walker]->second]--; // decrease the old entry in the doubles list
291 DoubleList[NewBase->second]++; // increase the old entry in the doubles list
292 DistanceIterators[Walker] = NewBase;
293 OldPotential = Potential;
294 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
295 }
296 }
297 return Potential;
298};
299
300double MinimiseConstrainedPotential::PenalizeEqualTargets(atom *Walker)
301{
302 double result = 0.;
303 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
304 if ((PermutationMap[Walker] == PermutationMap[(*iter)]) && (Walker < (*iter))) {
305 // atom *Sprinter = PermutationMap[Walker->nr];
306 // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
307 // Log() << Verbose(0) << Sprinter->getPosition(endstep);
308 // Log() << Verbose(0) << ", penalting." << endl;
309 result += PenaltyConstants[2];
310 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
311 }
312 }
313 return result;
314};
315
316double MinimiseConstrainedPotential::SumDistanceOfTrajectories(atom *Walker)
317{
318 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
319 gsl_vector *x = gsl_vector_alloc(NDIM);
320 atom *Sprinter = NULL;
321 Vector trajectory1, trajectory2, normal, TestVector;
322 double Norm1, Norm2, tmp, result = 0.;
323
324 for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
325 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
326 break;
327 // determine normalized trajectories direction vector (n1, n2)
328 Sprinter = PermutationMap[Walker]; // find first target point
329 trajectory1 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep);
330 trajectory1.Normalize();
331 Norm1 = trajectory1.Norm();
332 Sprinter = PermutationMap[(*iter)]; // find second target point
333 trajectory2 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
334 trajectory2.Normalize();
335 Norm2 = trajectory1.Norm();
336 // check whether either is zero()
337 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
338 tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
339 } else if (Norm1 < MYEPSILON) {
340 Sprinter = PermutationMap[Walker]; // find first target point
341 trajectory1 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
342 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
343 trajectory1 -= trajectory2; // project the part in norm direction away
344 tmp = trajectory1.Norm(); // remaining norm is distance
345 } else if (Norm2 < MYEPSILON) {
346 Sprinter = PermutationMap[(*iter)]; // find second target point
347 trajectory2 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep); // copy second offset
348 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
349 trajectory2 -= trajectory1; // project the part in norm direction away
350 tmp = trajectory2.Norm(); // remaining norm is distance
351 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
352 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
353 // Log() << Verbose(0) << trajectory1;
354 // Log() << Verbose(0) << " and ";
355 // Log() << Verbose(0) << trajectory2;
356 tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
357 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
358 } else { // determine distance by finding minimum distance
359 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
360 // Log() << Verbose(0) << endl;
361 // Log() << Verbose(0) << "First Trajectory: ";
362 // Log() << Verbose(0) << trajectory1 << endl;
363 // Log() << Verbose(0) << "Second Trajectory: ";
364 // Log() << Verbose(0) << trajectory2 << endl;
365 // determine normal vector for both
366 normal = Plane(trajectory1, trajectory2,0).getNormal();
367 // print all vectors for debugging
368 // Log() << Verbose(0) << "Normal vector in between: ";
369 // Log() << Verbose(0) << normal << endl;
370 // setup matrix
371 for (int i=NDIM;i--;) {
372 gsl_matrix_set(A, 0, i, trajectory1[i]);
373 gsl_matrix_set(A, 1, i, trajectory2[i]);
374 gsl_matrix_set(A, 2, i, normal[i]);
375 gsl_vector_set(x,i, (Walker->getPositionAtStep(startstep)[i] - (*iter)->getPositionAtStep(startstep)[i]));
376 }
377 // solve the linear system by Householder transformations
378 gsl_linalg_HH_svx(A, x);
379 // distance from last component
380 tmp = gsl_vector_get(x,2);
381 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
382 // test whether we really have the intersection (by checking on c_1 and c_2)
383 trajectory1.Scale(gsl_vector_get(x,0));
384 trajectory2.Scale(gsl_vector_get(x,1));
385 normal.Scale(gsl_vector_get(x,2));
386 TestVector = (*iter)->getPositionAtStep(startstep) + trajectory2 + normal
387 - (Walker->getPositionAtStep(startstep) + trajectory1);
388 if (TestVector.Norm() < MYEPSILON) {
389 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
390 } else {
391 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
392 // Log() << Verbose(0) << TestVector;
393 // Log() << Verbose(0) << "." << endl;
394 }
395 }
396 // add up
397 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
398 if (fabs(tmp) > MYEPSILON) {
399 result += PenaltyConstants[1] * 1./tmp;
400 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
401 }
402 }
403 return result;
404};
405
406void MinimiseConstrainedPotential::EvaluateConstrainedForces(ForceMatrix *Force)
407{
408 double constant = 10.;
409
410 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
411 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
412 for(molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
413 atom *Sprinter = PermutationMap[(*iter)];
414 // set forces
415 for (int i=NDIM;i++;)
416 Force->Matrix[0][(*iter)->getNr()][5+i] += 2.*constant*sqrt((*iter)->getPositionAtStep(startstep).distance(Sprinter->getPositionAtStep(endstep)));
417 }
418 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
419};
420
Note: See TracBrowser for help on using the repository browser.