1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * MinimiseConstrainedPotential.cpp
|
---|
10 | *
|
---|
11 | * Created on: Feb 23, 2011
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include <gsl/gsl_matrix.h>
|
---|
23 | #include <gsl/gsl_vector.h>
|
---|
24 | #include <gsl/gsl_linalg.h>
|
---|
25 |
|
---|
26 | #include "atom.hpp"
|
---|
27 | #include "config.hpp"
|
---|
28 | #include "element.hpp"
|
---|
29 | #include "CodePatterns/enumeration.hpp"
|
---|
30 | #include "CodePatterns/Info.hpp"
|
---|
31 | #include "CodePatterns/Verbose.hpp"
|
---|
32 | #include "CodePatterns/Log.hpp"
|
---|
33 | #include "Helpers/helpers.hpp"
|
---|
34 | #include "molecule.hpp"
|
---|
35 | #include "parser.hpp"
|
---|
36 | #include "LinearAlgebra/Plane.hpp"
|
---|
37 | #include "World.hpp"
|
---|
38 |
|
---|
39 | #include "Dynamics/MinimiseConstrainedPotential.hpp"
|
---|
40 |
|
---|
41 |
|
---|
42 | MinimiseConstrainedPotential::MinimiseConstrainedPotential(
|
---|
43 | molecule::atomSet &_atoms,
|
---|
44 | std::map<atom*, atom *> &_PermutationMap) :
|
---|
45 | atoms(_atoms),
|
---|
46 | PermutationMap(_PermutationMap)
|
---|
47 | {}
|
---|
48 |
|
---|
49 | MinimiseConstrainedPotential::~MinimiseConstrainedPotential()
|
---|
50 | {}
|
---|
51 |
|
---|
52 | double MinimiseConstrainedPotential::operator()(int _startstep, int _endstep, bool IsAngstroem)
|
---|
53 | {
|
---|
54 | double Potential, OldPotential, OlderPotential;
|
---|
55 | int round;
|
---|
56 | atom *Sprinter = NULL;
|
---|
57 | DistanceMap::iterator Rider, Strider;
|
---|
58 |
|
---|
59 | // set to zero
|
---|
60 | PermutationMap.clear();
|
---|
61 | DoubleList.clear();
|
---|
62 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
63 | DistanceList[*iter].clear();
|
---|
64 | }
|
---|
65 | DistanceList.clear();
|
---|
66 | DistanceIterators.clear();
|
---|
67 | DistanceIterators.clear();
|
---|
68 |
|
---|
69 | /// Minimise the potential
|
---|
70 | // set Lagrange multiplier constants
|
---|
71 | PenaltyConstants[0] = 10.;
|
---|
72 | PenaltyConstants[1] = 1.;
|
---|
73 | PenaltyConstants[2] = 1e+7; // just a huge penalty
|
---|
74 | // generate the distance list
|
---|
75 | DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
|
---|
76 | FillDistanceList();
|
---|
77 |
|
---|
78 | // create the initial PermutationMap (source -> target)
|
---|
79 | CreateInitialLists();
|
---|
80 |
|
---|
81 | // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
|
---|
82 | DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
|
---|
83 | MakeInjectivePermutation();
|
---|
84 | DoubleList.clear();
|
---|
85 |
|
---|
86 | // argument minimise the constrained potential in this injective PermutationMap
|
---|
87 | DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
|
---|
88 | OldPotential = 1e+10;
|
---|
89 | round = 0;
|
---|
90 | do {
|
---|
91 | DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
|
---|
92 | OlderPotential = OldPotential;
|
---|
93 | molecule::atomSet::const_iterator iter;
|
---|
94 | do {
|
---|
95 | iter = atoms.begin();
|
---|
96 | for (; iter != atoms.end(); ++iter) {
|
---|
97 | CalculateDoubleList();
|
---|
98 | PrintPermutationMap();
|
---|
99 | Sprinter = DistanceIterators[(*iter)]->second; // store initial partner
|
---|
100 | Strider = DistanceIterators[(*iter)]; //remember old iterator
|
---|
101 | DistanceIterators[(*iter)] = StepList[(*iter)];
|
---|
102 | if (DistanceIterators[(*iter)] == DistanceList[(*iter)].end()) {// stop, before we run through the list and still on
|
---|
103 | DistanceIterators[(*iter)] == DistanceList[(*iter)].begin();
|
---|
104 | break;
|
---|
105 | }
|
---|
106 | //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)]->second << "." << endl;
|
---|
107 | // find source of the new target
|
---|
108 | molecule::atomSet::const_iterator runner = atoms.begin();
|
---|
109 | for (; runner != atoms.end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
|
---|
110 | if (PermutationMap[(*runner)] == DistanceIterators[(*iter)]->second) {
|
---|
111 | //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)] << "." << endl;
|
---|
112 | break;
|
---|
113 | }
|
---|
114 | }
|
---|
115 | if (runner != atoms.end()) { // we found the other source
|
---|
116 | // then look in its distance list for Sprinter
|
---|
117 | Rider = DistanceList[(*runner)].begin();
|
---|
118 | for (; Rider != DistanceList[(*runner)].end(); Rider++)
|
---|
119 | if (Rider->second == Sprinter)
|
---|
120 | break;
|
---|
121 | if (Rider != DistanceList[(*runner)].end()) { // if we have found one
|
---|
122 | //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)] << "/" << *Rider->second << "." << endl;
|
---|
123 | // exchange both
|
---|
124 | PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // put next farther distance into PermutationMap
|
---|
125 | PermutationMap[(*runner)] = Sprinter; // and hand the old target to its respective owner
|
---|
126 | CalculateDoubleList();
|
---|
127 | PrintPermutationMap();
|
---|
128 | // calculate the new potential
|
---|
129 | //Log() << Verbose(2) << "Checking new potential ..." << endl;
|
---|
130 | Potential = ConstrainedPotential();
|
---|
131 | if (Potential > OldPotential) { // we made everything worse! Undo ...
|
---|
132 | //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
|
---|
133 | //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *DistanceIterators[(*runner)]->second << "." << endl;
|
---|
134 | // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
|
---|
135 | PermutationMap[(*runner)] = DistanceIterators[(*runner)]->second;
|
---|
136 | // Undo for Walker
|
---|
137 | DistanceIterators[(*iter)] = Strider; // take next farther distance target
|
---|
138 | //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *DistanceIterators[(*iter)]->second << "." << endl;
|
---|
139 | PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second;
|
---|
140 | } else {
|
---|
141 | DistanceIterators[(*runner)] = Rider; // if successful also move the pointer in the iterator list
|
---|
142 | DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
|
---|
143 | OldPotential = Potential;
|
---|
144 | }
|
---|
145 | if (Potential > PenaltyConstants[2]) {
|
---|
146 | DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
|
---|
147 | exit(255);
|
---|
148 | }
|
---|
149 | //Log() << Verbose(0) << endl;
|
---|
150 | } else {
|
---|
151 | DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
|
---|
152 | exit(255);
|
---|
153 | }
|
---|
154 | } else {
|
---|
155 | PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // new target has no source!
|
---|
156 | }
|
---|
157 | StepList[(*iter)]++; // take next farther distance target
|
---|
158 | }
|
---|
159 | } while (++iter != atoms.end());
|
---|
160 | } while ((OlderPotential - OldPotential) > 1e-3);
|
---|
161 | DoLog(1) && (Log() << Verbose(1) << "done." << endl);
|
---|
162 |
|
---|
163 |
|
---|
164 | return ConstrainedPotential();
|
---|
165 | };
|
---|
166 |
|
---|
167 | void MinimiseConstrainedPotential::FillDistanceList()
|
---|
168 | {
|
---|
169 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
170 | for (molecule::atomSet::const_iterator runner = atoms.begin(); runner != atoms.end(); ++runner) {
|
---|
171 | DistanceList[(*iter)].insert( DistancePair((*iter)->getPositionAtStep(startstep).distance((*runner)->getPositionAtStep(endstep)), (*runner)) );
|
---|
172 | }
|
---|
173 | }
|
---|
174 | };
|
---|
175 |
|
---|
176 | void MinimiseConstrainedPotential::CreateInitialLists()
|
---|
177 | {
|
---|
178 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
179 | StepList[(*iter)] = DistanceList[(*iter)].begin(); // stores the step to the next iterator that could be a possible next target
|
---|
180 | PermutationMap[(*iter)] = DistanceList[(*iter)].begin()->second; // always pick target with the smallest distance
|
---|
181 | DoubleList[DistanceList[(*iter)].begin()->second]++; // increase this target's source count (>1? not injective)
|
---|
182 | DistanceIterators[(*iter)] = DistanceList[(*iter)].begin(); // and remember which one we picked
|
---|
183 | DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << DistanceList[(*iter)].begin()->first << "." << endl);
|
---|
184 | }
|
---|
185 | };
|
---|
186 |
|
---|
187 | void MinimiseConstrainedPotential::MakeInjectivePermutation()
|
---|
188 | {
|
---|
189 | molecule::atomSet::const_iterator iter = atoms.begin();
|
---|
190 | DistanceMap::iterator NewBase;
|
---|
191 | double Potential = fabs(ConstrainedPotential());
|
---|
192 |
|
---|
193 | if (atoms.empty()) {
|
---|
194 | eLog() << Verbose(1) << "Molecule is empty." << endl;
|
---|
195 | return;
|
---|
196 | }
|
---|
197 | while ((Potential) > PenaltyConstants[2]) {
|
---|
198 | CalculateDoubleList();
|
---|
199 | PrintPermutationMap();
|
---|
200 | iter++;
|
---|
201 | if (iter == atoms.end()) // round-robin at the end
|
---|
202 | iter = atoms.begin();
|
---|
203 | if (DoubleList[DistanceIterators[(*iter)]->second] <= 1) // no need to make those injective that aren't
|
---|
204 | continue;
|
---|
205 | // now, try finding a new one
|
---|
206 | Potential = TryNextNearestNeighbourForInjectivePermutation((*iter), Potential);
|
---|
207 | }
|
---|
208 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
209 | // now each single entry in the DoubleList should be <=1
|
---|
210 | if (DoubleList[*iter] > 1) {
|
---|
211 | DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
|
---|
212 | performCriticalExit();
|
---|
213 | }
|
---|
214 | }
|
---|
215 | DoLog(1) && (Log() << Verbose(1) << "done." << endl);
|
---|
216 | };
|
---|
217 |
|
---|
218 | unsigned int MinimiseConstrainedPotential::CalculateDoubleList()
|
---|
219 | {
|
---|
220 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
|
---|
221 | DoubleList[*iter] = 0;
|
---|
222 | unsigned int doubles = 0;
|
---|
223 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
|
---|
224 | DoubleList[ PermutationMap[*iter] ]++;
|
---|
225 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
|
---|
226 | if (DoubleList[*iter] > 1)
|
---|
227 | doubles++;
|
---|
228 | if (doubles >0)
|
---|
229 | DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
|
---|
230 | return doubles;
|
---|
231 | };
|
---|
232 |
|
---|
233 | void MinimiseConstrainedPotential::PrintPermutationMap() const
|
---|
234 | {
|
---|
235 | stringstream zeile1, zeile2;
|
---|
236 | int doubles = 0;
|
---|
237 | zeile1 << "PermutationMap: ";
|
---|
238 | zeile2 << " ";
|
---|
239 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
240 | zeile1 << (*iter)->getName() << " ";
|
---|
241 | zeile2 << (PermutationMap[*iter])->getName() << " ";
|
---|
242 | }
|
---|
243 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
244 | std::map<atom *, unsigned int>::const_iterator value_iter = DoubleList.find(*iter);
|
---|
245 | if (value_iter->second > (unsigned int)1)
|
---|
246 | doubles++;
|
---|
247 | }
|
---|
248 | if (doubles >0)
|
---|
249 | DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
|
---|
250 | // Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
|
---|
251 | };
|
---|
252 |
|
---|
253 | double MinimiseConstrainedPotential::ConstrainedPotential()
|
---|
254 | {
|
---|
255 | double tmp = 0.;
|
---|
256 | double result = 0.;
|
---|
257 | // go through every atom
|
---|
258 | atom *Runner = NULL;
|
---|
259 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
260 | // first term: distance to target
|
---|
261 | Runner = PermutationMap[(*iter)]; // find target point
|
---|
262 | tmp = ((*iter)->getPositionAtStep(startstep).distance(Runner->getPositionAtStep(endstep)));
|
---|
263 | tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
|
---|
264 | result += PenaltyConstants[0] * tmp;
|
---|
265 | //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
|
---|
266 |
|
---|
267 | // second term: sum of distances to other trajectories
|
---|
268 | result += SumDistanceOfTrajectories((*iter));
|
---|
269 |
|
---|
270 | // third term: penalty for equal targets
|
---|
271 | result += PenalizeEqualTargets((*iter));
|
---|
272 | }
|
---|
273 |
|
---|
274 | return result;
|
---|
275 | };
|
---|
276 |
|
---|
277 | double MinimiseConstrainedPotential::TryNextNearestNeighbourForInjectivePermutation(atom *Walker, double &OldPotential)
|
---|
278 | {
|
---|
279 | double Potential = 0;
|
---|
280 | DistanceMap::iterator NewBase = DistanceIterators[Walker]; // store old base
|
---|
281 | do {
|
---|
282 | NewBase++; // take next further distance in distance to targets list that's a target of no one
|
---|
283 | } while ((DoubleList[NewBase->second] != 0) && (NewBase != DistanceList[Walker].end()));
|
---|
284 | if (NewBase != DistanceList[Walker].end()) {
|
---|
285 | PermutationMap[Walker] = NewBase->second;
|
---|
286 | Potential = fabs(ConstrainedPotential());
|
---|
287 | if (Potential > OldPotential) { // undo
|
---|
288 | PermutationMap[Walker] = DistanceIterators[Walker]->second;
|
---|
289 | } else { // do
|
---|
290 | DoubleList[DistanceIterators[Walker]->second]--; // decrease the old entry in the doubles list
|
---|
291 | DoubleList[NewBase->second]++; // increase the old entry in the doubles list
|
---|
292 | DistanceIterators[Walker] = NewBase;
|
---|
293 | OldPotential = Potential;
|
---|
294 | DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
|
---|
295 | }
|
---|
296 | }
|
---|
297 | return Potential;
|
---|
298 | };
|
---|
299 |
|
---|
300 | double MinimiseConstrainedPotential::PenalizeEqualTargets(atom *Walker)
|
---|
301 | {
|
---|
302 | double result = 0.;
|
---|
303 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
304 | if ((PermutationMap[Walker] == PermutationMap[(*iter)]) && (Walker < (*iter))) {
|
---|
305 | // atom *Sprinter = PermutationMap[Walker->nr];
|
---|
306 | // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
|
---|
307 | // Log() << Verbose(0) << Sprinter->getPosition(endstep);
|
---|
308 | // Log() << Verbose(0) << ", penalting." << endl;
|
---|
309 | result += PenaltyConstants[2];
|
---|
310 | //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
|
---|
311 | }
|
---|
312 | }
|
---|
313 | return result;
|
---|
314 | };
|
---|
315 |
|
---|
316 | double MinimiseConstrainedPotential::SumDistanceOfTrajectories(atom *Walker)
|
---|
317 | {
|
---|
318 | gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
|
---|
319 | gsl_vector *x = gsl_vector_alloc(NDIM);
|
---|
320 | atom *Sprinter = NULL;
|
---|
321 | Vector trajectory1, trajectory2, normal, TestVector;
|
---|
322 | double Norm1, Norm2, tmp, result = 0.;
|
---|
323 |
|
---|
324 | for (molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
325 | if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
|
---|
326 | break;
|
---|
327 | // determine normalized trajectories direction vector (n1, n2)
|
---|
328 | Sprinter = PermutationMap[Walker]; // find first target point
|
---|
329 | trajectory1 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep);
|
---|
330 | trajectory1.Normalize();
|
---|
331 | Norm1 = trajectory1.Norm();
|
---|
332 | Sprinter = PermutationMap[(*iter)]; // find second target point
|
---|
333 | trajectory2 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
|
---|
334 | trajectory2.Normalize();
|
---|
335 | Norm2 = trajectory1.Norm();
|
---|
336 | // check whether either is zero()
|
---|
337 | if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
|
---|
338 | tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
|
---|
339 | } else if (Norm1 < MYEPSILON) {
|
---|
340 | Sprinter = PermutationMap[Walker]; // find first target point
|
---|
341 | trajectory1 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
|
---|
342 | trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
|
---|
343 | trajectory1 -= trajectory2; // project the part in norm direction away
|
---|
344 | tmp = trajectory1.Norm(); // remaining norm is distance
|
---|
345 | } else if (Norm2 < MYEPSILON) {
|
---|
346 | Sprinter = PermutationMap[(*iter)]; // find second target point
|
---|
347 | trajectory2 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep); // copy second offset
|
---|
348 | trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
|
---|
349 | trajectory2 -= trajectory1; // project the part in norm direction away
|
---|
350 | tmp = trajectory2.Norm(); // remaining norm is distance
|
---|
351 | } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
|
---|
352 | // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
|
---|
353 | // Log() << Verbose(0) << trajectory1;
|
---|
354 | // Log() << Verbose(0) << " and ";
|
---|
355 | // Log() << Verbose(0) << trajectory2;
|
---|
356 | tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
|
---|
357 | // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
|
---|
358 | } else { // determine distance by finding minimum distance
|
---|
359 | // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
|
---|
360 | // Log() << Verbose(0) << endl;
|
---|
361 | // Log() << Verbose(0) << "First Trajectory: ";
|
---|
362 | // Log() << Verbose(0) << trajectory1 << endl;
|
---|
363 | // Log() << Verbose(0) << "Second Trajectory: ";
|
---|
364 | // Log() << Verbose(0) << trajectory2 << endl;
|
---|
365 | // determine normal vector for both
|
---|
366 | normal = Plane(trajectory1, trajectory2,0).getNormal();
|
---|
367 | // print all vectors for debugging
|
---|
368 | // Log() << Verbose(0) << "Normal vector in between: ";
|
---|
369 | // Log() << Verbose(0) << normal << endl;
|
---|
370 | // setup matrix
|
---|
371 | for (int i=NDIM;i--;) {
|
---|
372 | gsl_matrix_set(A, 0, i, trajectory1[i]);
|
---|
373 | gsl_matrix_set(A, 1, i, trajectory2[i]);
|
---|
374 | gsl_matrix_set(A, 2, i, normal[i]);
|
---|
375 | gsl_vector_set(x,i, (Walker->getPositionAtStep(startstep)[i] - (*iter)->getPositionAtStep(startstep)[i]));
|
---|
376 | }
|
---|
377 | // solve the linear system by Householder transformations
|
---|
378 | gsl_linalg_HH_svx(A, x);
|
---|
379 | // distance from last component
|
---|
380 | tmp = gsl_vector_get(x,2);
|
---|
381 | // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
|
---|
382 | // test whether we really have the intersection (by checking on c_1 and c_2)
|
---|
383 | trajectory1.Scale(gsl_vector_get(x,0));
|
---|
384 | trajectory2.Scale(gsl_vector_get(x,1));
|
---|
385 | normal.Scale(gsl_vector_get(x,2));
|
---|
386 | TestVector = (*iter)->getPositionAtStep(startstep) + trajectory2 + normal
|
---|
387 | - (Walker->getPositionAtStep(startstep) + trajectory1);
|
---|
388 | if (TestVector.Norm() < MYEPSILON) {
|
---|
389 | // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
|
---|
390 | } else {
|
---|
391 | // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
|
---|
392 | // Log() << Verbose(0) << TestVector;
|
---|
393 | // Log() << Verbose(0) << "." << endl;
|
---|
394 | }
|
---|
395 | }
|
---|
396 | // add up
|
---|
397 | tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
|
---|
398 | if (fabs(tmp) > MYEPSILON) {
|
---|
399 | result += PenaltyConstants[1] * 1./tmp;
|
---|
400 | //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
|
---|
401 | }
|
---|
402 | }
|
---|
403 | return result;
|
---|
404 | };
|
---|
405 |
|
---|
406 | void MinimiseConstrainedPotential::EvaluateConstrainedForces(ForceMatrix *Force)
|
---|
407 | {
|
---|
408 | double constant = 10.;
|
---|
409 |
|
---|
410 | /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
|
---|
411 | DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
|
---|
412 | for(molecule::atomSet::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
|
---|
413 | atom *Sprinter = PermutationMap[(*iter)];
|
---|
414 | // set forces
|
---|
415 | for (int i=NDIM;i++;)
|
---|
416 | Force->Matrix[0][(*iter)->getNr()][5+i] += 2.*constant*sqrt((*iter)->getPositionAtStep(startstep).distance(Sprinter->getPositionAtStep(endstep)));
|
---|
417 | }
|
---|
418 | DoLog(1) && (Log() << Verbose(1) << "done." << endl);
|
---|
419 | };
|
---|
420 |
|
---|