/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * Please see the LICENSE file or "Copyright notice" in builder.cpp for details. */ /* * MinimiseConstrainedPotential.cpp * * Created on: Feb 23, 2011 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include #include #include #include "Atom/atom.hpp" #include "Element/element.hpp" #include "CodePatterns/enumeration.hpp" #include "CodePatterns/Info.hpp" #include "CodePatterns/Verbose.hpp" #include "CodePatterns/Log.hpp" #include "Fragmentation/ForceMatrix.hpp" #include "Helpers/helpers.hpp" #include "molecule.hpp" #include "LinearAlgebra/Plane.hpp" #include "World.hpp" #include "Dynamics/MinimiseConstrainedPotential.hpp" MinimiseConstrainedPotential::MinimiseConstrainedPotential( World::AtomComposite &_atoms, std::map &_PermutationMap) : atoms(_atoms), PermutationMap(_PermutationMap) {} MinimiseConstrainedPotential::~MinimiseConstrainedPotential() {} double MinimiseConstrainedPotential::operator()(int _startstep, int _endstep, bool IsAngstroem) { double Potential, OldPotential, OlderPotential; int round; atom *Sprinter = NULL; DistanceMap::iterator Rider, Strider; // set to zero PermutationMap.clear(); DoubleList.clear(); for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { DistanceList[*iter].clear(); } DistanceList.clear(); DistanceIterators.clear(); DistanceIterators.clear(); /// Minimise the potential // set Lagrange multiplier constants PenaltyConstants[0] = 10.; PenaltyConstants[1] = 1.; PenaltyConstants[2] = 1e+7; // just a huge penalty // generate the distance list LOG(1, "Allocating, initializting and filling the distance list ... "); FillDistanceList(); // create the initial PermutationMap (source -> target) CreateInitialLists(); // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it LOG(1, "Making the PermutationMap injective ... "); MakeInjectivePermutation(); DoubleList.clear(); // argument minimise the constrained potential in this injective PermutationMap LOG(1, "Argument minimising the PermutationMap."); OldPotential = 1e+10; round = 0; do { LOG(2, "Starting round " << ++round << ", at current potential " << OldPotential << " ... "); OlderPotential = OldPotential; World::AtomComposite::const_iterator iter; do { iter = atoms.begin(); for (; iter != atoms.end(); ++iter) { CalculateDoubleList(); PrintPermutationMap(); Sprinter = DistanceIterators[(*iter)]->second; // store initial partner Strider = DistanceIterators[(*iter)]; //remember old iterator DistanceIterators[(*iter)] = StepList[(*iter)]; if (DistanceIterators[(*iter)] == DistanceList[(*iter)].end()) {// stop, before we run through the list and still on DistanceIterators[(*iter)] == DistanceList[(*iter)].begin(); break; } //LOG(2, "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)]->second << "."); // find source of the new target World::AtomComposite::const_iterator runner = atoms.begin(); for (; runner != atoms.end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already) if (PermutationMap[(*runner)] == DistanceIterators[(*iter)]->second) { //LOG(2, "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)] << "."); break; } } if (runner != atoms.end()) { // we found the other source // then look in its distance list for Sprinter Rider = DistanceList[(*runner)].begin(); for (; Rider != DistanceList[(*runner)].end(); Rider++) if (Rider->second == Sprinter) break; if (Rider != DistanceList[(*runner)].end()) { // if we have found one //LOG(2, "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)] << "/" << *Rider->second << "."); // exchange both PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // put next farther distance into PermutationMap PermutationMap[(*runner)] = Sprinter; // and hand the old target to its respective owner CalculateDoubleList(); PrintPermutationMap(); // calculate the new potential //LOG(2, "Checking new potential ..."); Potential = ConstrainedPotential(); if (Potential > OldPotential) { // we made everything worse! Undo ... //LOG(3, "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!"); //LOG(3, "Setting " << *(*runner) << "'s source to " << *DistanceIterators[(*runner)]->second << "."); // Undo for Runner (note, we haven't moved the iteration yet, we may use this) PermutationMap[(*runner)] = DistanceIterators[(*runner)]->second; // Undo for Walker DistanceIterators[(*iter)] = Strider; // take next farther distance target //LOG(3, "Setting " << *(*iter) << "'s source to " << *DistanceIterators[(*iter)]->second << "."); PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; } else { DistanceIterators[(*runner)] = Rider; // if successful also move the pointer in the iterator list LOG(3, "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "."); OldPotential = Potential; } if (Potential > PenaltyConstants[2]) { ELOG(1, "The two-step permutation procedure did not maintain injectivity!"); exit(255); } } else { ELOG(1, **runner << " was not the owner of " << *Sprinter << "!"); exit(255); } } else { PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // new target has no source! } StepList[(*iter)]++; // take next farther distance target } } while (++iter != atoms.end()); } while ((OlderPotential - OldPotential) > 1e-3); LOG(1, "done."); return ConstrainedPotential(); }; void MinimiseConstrainedPotential::FillDistanceList() { for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { for (World::AtomComposite::const_iterator runner = atoms.begin(); runner != atoms.end(); ++runner) { DistanceList[(*iter)].insert( DistancePair((*iter)->getPositionAtStep(startstep).distance((*runner)->getPositionAtStep(endstep)), (*runner)) ); } } }; void MinimiseConstrainedPotential::CreateInitialLists() { for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { StepList[(*iter)] = DistanceList[(*iter)].begin(); // stores the step to the next iterator that could be a possible next target PermutationMap[(*iter)] = DistanceList[(*iter)].begin()->second; // always pick target with the smallest distance DoubleList[DistanceList[(*iter)].begin()->second]++; // increase this target's source count (>1? not injective) DistanceIterators[(*iter)] = DistanceList[(*iter)].begin(); // and remember which one we picked LOG(2, **iter << " starts with distance " << DistanceList[(*iter)].begin()->first << "."); } }; void MinimiseConstrainedPotential::MakeInjectivePermutation() { World::AtomComposite::const_iterator iter = atoms.begin(); DistanceMap::iterator NewBase; double Potential = fabs(ConstrainedPotential()); if (atoms.empty()) { ELOG(1, "Molecule is empty."); return; } while ((Potential) > PenaltyConstants[2]) { CalculateDoubleList(); PrintPermutationMap(); iter++; if (iter == atoms.end()) // round-robin at the end iter = atoms.begin(); if (DoubleList[DistanceIterators[(*iter)]->second] <= 1) // no need to make those injective that aren't continue; // now, try finding a new one Potential = TryNextNearestNeighbourForInjectivePermutation((*iter), Potential); } for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { // now each single entry in the DoubleList should be <=1 if (DoubleList[*iter] > 1) { ELOG(0, "Failed to create an injective PermutationMap!"); performCriticalExit(); } } LOG(1, "done."); }; unsigned int MinimiseConstrainedPotential::CalculateDoubleList() { for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) DoubleList[*iter] = 0; unsigned int doubles = 0; for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) DoubleList[ PermutationMap[*iter] ]++; for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) if (DoubleList[*iter] > 1) doubles++; if (doubles >0) LOG(2, "Found " << doubles << " Doubles."); return doubles; }; void MinimiseConstrainedPotential::PrintPermutationMap() const { stringstream zeile1, zeile2; int doubles = 0; zeile1 << "PermutationMap: "; zeile2 << " "; for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { zeile1 << (*iter)->getName() << " "; zeile2 << (PermutationMap[*iter])->getName() << " "; } for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { std::map::const_iterator value_iter = DoubleList.find(*iter); if (value_iter->second > (unsigned int)1) doubles++; } if (doubles >0) LOG(2, "Found " << doubles << " Doubles."); // LOG(2, zeile1.str() << endl << zeile2.str()); }; double MinimiseConstrainedPotential::ConstrainedPotential() { double tmp = 0.; double result = 0.; // go through every atom atom *Runner = NULL; for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { // first term: distance to target Runner = PermutationMap[(*iter)]; // find target point tmp = ((*iter)->getPositionAtStep(startstep).distance(Runner->getPositionAtStep(endstep))); tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; result += PenaltyConstants[0] * tmp; //LOG(4, "Adding " << tmp*constants[0] << "."); // second term: sum of distances to other trajectories result += SumDistanceOfTrajectories((*iter)); // third term: penalty for equal targets result += PenalizeEqualTargets((*iter)); } return result; }; double MinimiseConstrainedPotential::TryNextNearestNeighbourForInjectivePermutation(atom *Walker, double &OldPotential) { double Potential = 0; DistanceMap::iterator NewBase = DistanceIterators[Walker]; // store old base do { NewBase++; // take next further distance in distance to targets list that's a target of no one } while ((DoubleList[NewBase->second] != 0) && (NewBase != DistanceList[Walker].end())); if (NewBase != DistanceList[Walker].end()) { PermutationMap[Walker] = NewBase->second; Potential = fabs(ConstrainedPotential()); if (Potential > OldPotential) { // undo PermutationMap[Walker] = DistanceIterators[Walker]->second; } else { // do DoubleList[DistanceIterators[Walker]->second]--; // decrease the old entry in the doubles list DoubleList[NewBase->second]++; // increase the old entry in the doubles list DistanceIterators[Walker] = NewBase; OldPotential = Potential; LOG(3, "Found a new permutation, new potential is " << OldPotential << "."); } } return Potential; }; double MinimiseConstrainedPotential::PenalizeEqualTargets(atom *Walker) { double result = 0.; for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { if ((PermutationMap[Walker] == PermutationMap[(*iter)]) && (Walker < (*iter))) { // atom *Sprinter = PermutationMap[Walker->nr]; // if (DoLog(0)) { // std::stringstream output; // output << *Walker << " and " << *(*iter) << " are heading to the same target at "; // output << Sprinter->getPosition(endstep); // output << ", penalting."; // LOG(0, output.str()); // } result += PenaltyConstants[2]; //LOG(4, "INFO: Adding " << constants[2] << "."); } } return result; }; double MinimiseConstrainedPotential::SumDistanceOfTrajectories(atom *Walker) { gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM); gsl_vector *x = gsl_vector_alloc(NDIM); atom *Sprinter = NULL; Vector trajectory1, trajectory2, normal, TestVector; double Norm1, Norm2, tmp, result = 0.; for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; igetPositionAtStep(endstep) - Walker->getPositionAtStep(startstep); trajectory1.Normalize(); Norm1 = trajectory1.Norm(); Sprinter = PermutationMap[(*iter)]; // find second target point trajectory2 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep); trajectory2.Normalize(); Norm2 = trajectory1.Norm(); // check whether either is zero() if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) { tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep)); } else if (Norm1 < MYEPSILON) { Sprinter = PermutationMap[Walker]; // find first target point trajectory1 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep); trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything trajectory1 -= trajectory2; // project the part in norm direction away tmp = trajectory1.Norm(); // remaining norm is distance } else if (Norm2 < MYEPSILON) { Sprinter = PermutationMap[(*iter)]; // find second target point trajectory2 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep); // copy second offset trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything trajectory2 -= trajectory1; // project the part in norm direction away tmp = trajectory2.Norm(); // remaining norm is distance } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent // std::stringstream output; // output << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: "; // output << trajectory1 << " and " << trajectory2; // LOG(3, output.str()); tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep)); // LOG(0, " with distance " << tmp << "."); } else { // determine distance by finding minimum distance // std::stringstream output; // output "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent -- "; // output "First Trajectory: " << trajectory1 << ". Second Trajectory: " << trajectory2); // LOG(3, output.str()); // determine normal vector for both normal = Plane(trajectory1, trajectory2,0).getNormal(); // print all vectors for debugging // LOG(3, "INFO: Normal vector in between: " << normal); // setup matrix for (int i=NDIM;i--;) { gsl_matrix_set(A, 0, i, trajectory1[i]); gsl_matrix_set(A, 1, i, trajectory2[i]); gsl_matrix_set(A, 2, i, normal[i]); gsl_vector_set(x,i, (Walker->getPositionAtStep(startstep)[i] - (*iter)->getPositionAtStep(startstep)[i])); } // solve the linear system by Householder transformations gsl_linalg_HH_svx(A, x); // distance from last component tmp = gsl_vector_get(x,2); // LOG(0, " with distance " << tmp << "."); // test whether we really have the intersection (by checking on c_1 and c_2) trajectory1.Scale(gsl_vector_get(x,0)); trajectory2.Scale(gsl_vector_get(x,1)); normal.Scale(gsl_vector_get(x,2)); TestVector = (*iter)->getPositionAtStep(startstep) + trajectory2 + normal - (Walker->getPositionAtStep(startstep) + trajectory1); if (TestVector.Norm() < MYEPSILON) { // LOG(2, "Test: ok.\tDistance of " << tmp << " is correct."); } else { // LOG(2, "Test: failed.\tIntersection is off by " << TestVector << "."); } } // add up tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; if (fabs(tmp) > MYEPSILON) { result += PenaltyConstants[1] * 1./tmp; //LOG(4, "Adding " << 1./tmp*constants[1] << "."); } } return result; }; void MinimiseConstrainedPotential::EvaluateConstrainedForces(ForceMatrix *Force) { double constant = 10.; /// evaluate forces (only the distance to target dependent part) with the final PermutationMap LOG(1, "Calculating forces and adding onto ForceMatrix ... "); for(World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) { atom *Sprinter = PermutationMap[(*iter)]; // set forces for (int i=NDIM;i++;) Force->Matrix[0][(*iter)->getNr()][5+i] += 2.*constant*sqrt((*iter)->getPositionAtStep(startstep).distance(Sprinter->getPositionAtStep(endstep))); } LOG(1, "done."); };