1 | /*
|
---|
2 | * ForceAnnealing.hpp
|
---|
3 | *
|
---|
4 | * Created on: Aug 02, 2014
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef FORCEANNEALING_HPP_
|
---|
9 | #define FORCEANNEALING_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include "Atom/atom.hpp"
|
---|
17 | #include "Atom/AtomSet.hpp"
|
---|
18 | #include "CodePatterns/Assert.hpp"
|
---|
19 | #include "CodePatterns/Info.hpp"
|
---|
20 | #include "CodePatterns/Log.hpp"
|
---|
21 | #include "CodePatterns/Verbose.hpp"
|
---|
22 | #include "Descriptors/AtomIdDescriptor.hpp"
|
---|
23 | #include "Dynamics/AtomicForceManipulator.hpp"
|
---|
24 | #include "Fragmentation/ForceMatrix.hpp"
|
---|
25 | #include "Graph/BoostGraphCreator.hpp"
|
---|
26 | #include "Graph/BoostGraphHelpers.hpp"
|
---|
27 | #include "Graph/BreadthFirstSearchGatherer.hpp"
|
---|
28 | #include "Helpers/helpers.hpp"
|
---|
29 | #include "Helpers/defs.hpp"
|
---|
30 | #include "LinearAlgebra/LinearSystemOfEquations.hpp"
|
---|
31 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
32 | #include "LinearAlgebra/Vector.hpp"
|
---|
33 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
34 | #include "Thermostats/ThermoStatContainer.hpp"
|
---|
35 | #include "Thermostats/Thermostat.hpp"
|
---|
36 | #include "World.hpp"
|
---|
37 |
|
---|
38 | /** This class is the essential build block for performing structural optimization.
|
---|
39 | *
|
---|
40 | * Sadly, we have to use some static instances as so far values cannot be passed
|
---|
41 | * between actions. Hence, we need to store the current step and the adaptive-
|
---|
42 | * step width (we cannot perform a line search, as we have no control over the
|
---|
43 | * calculation of the forces).
|
---|
44 | *
|
---|
45 | * However, we do use the bond graph, i.e. if a single atom needs to be shifted
|
---|
46 | * to the left, then the whole molecule left of it is shifted, too. This is
|
---|
47 | * controlled by the \a max_distance parameter.
|
---|
48 | */
|
---|
49 | template <class T>
|
---|
50 | class ForceAnnealing : public AtomicForceManipulator<T>
|
---|
51 | {
|
---|
52 | public:
|
---|
53 | /** Constructor of class ForceAnnealing.
|
---|
54 | *
|
---|
55 | * \note We use a fixed delta t of 1.
|
---|
56 | *
|
---|
57 | * \param _atoms set of atoms to integrate
|
---|
58 | * \param _Deltat time step width in atomic units
|
---|
59 | * \param _IsAngstroem whether length units are in angstroem or bohr radii
|
---|
60 | * \param _maxSteps number of optimization steps to perform
|
---|
61 | * \param _max_distance up to this bond order is bond graph taken into account.
|
---|
62 | */
|
---|
63 | ForceAnnealing(
|
---|
64 | AtomSetMixin<T> &_atoms,
|
---|
65 | const double _Deltat,
|
---|
66 | bool _IsAngstroem,
|
---|
67 | const size_t _maxSteps,
|
---|
68 | const int _max_distance,
|
---|
69 | const double _damping_factor) :
|
---|
70 | AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
|
---|
71 | maxSteps(_maxSteps),
|
---|
72 | max_distance(_max_distance),
|
---|
73 | damping_factor(_damping_factor)
|
---|
74 | {}
|
---|
75 |
|
---|
76 | /** Destructor of class ForceAnnealing.
|
---|
77 | *
|
---|
78 | */
|
---|
79 | ~ForceAnnealing()
|
---|
80 | {}
|
---|
81 |
|
---|
82 | /** Performs Gradient optimization.
|
---|
83 | *
|
---|
84 | * We assume that forces have just been calculated.
|
---|
85 | *
|
---|
86 | *
|
---|
87 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
88 | * \param offset offset in matrix file to the first force component
|
---|
89 | * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
|
---|
90 | */
|
---|
91 | void operator()(
|
---|
92 | const int _CurrentTimeStep,
|
---|
93 | const size_t _offset,
|
---|
94 | const bool _UseBondgraph)
|
---|
95 | {
|
---|
96 | // make sum of forces equal zero
|
---|
97 | AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(_offset, _CurrentTimeStep);
|
---|
98 |
|
---|
99 | // are we in initial step? Then set static entities
|
---|
100 | Vector maxComponents(zeroVec);
|
---|
101 | if (currentStep == 0) {
|
---|
102 | currentDeltat = AtomicForceManipulator<T>::Deltat;
|
---|
103 | currentStep = 1;
|
---|
104 | LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
|
---|
105 |
|
---|
106 | // always use atomic annealing on first step
|
---|
107 | anneal(_CurrentTimeStep, _offset, maxComponents);
|
---|
108 | } else {
|
---|
109 | ++currentStep;
|
---|
110 | LOG(2, "DEBUG: current step is #" << currentStep);
|
---|
111 |
|
---|
112 | if (_UseBondgraph)
|
---|
113 | annealWithBondGraph(_CurrentTimeStep, _offset, maxComponents);
|
---|
114 | else
|
---|
115 | anneal(_CurrentTimeStep, _offset, maxComponents);
|
---|
116 | }
|
---|
117 |
|
---|
118 | LOG(1, "STATUS: Largest remaining force components at step #"
|
---|
119 | << currentStep << " are " << maxComponents);
|
---|
120 |
|
---|
121 | // are we in final step? Remember to reset static entities
|
---|
122 | if (currentStep == maxSteps) {
|
---|
123 | LOG(2, "DEBUG: Final step, resetting values");
|
---|
124 | reset();
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | /** Helper function to calculate the Barzilai-Borwein stepwidth.
|
---|
129 | *
|
---|
130 | * \param _PositionDifference difference in position between current and last step
|
---|
131 | * \param _GradientDifference difference in gradient between current and last step
|
---|
132 | * \return step width according to Barzilai-Borwein
|
---|
133 | */
|
---|
134 | double getBarzilaiBorweinStepwidth(const Vector &_PositionDifference, const Vector &_GradientDifference)
|
---|
135 | {
|
---|
136 | double stepwidth = 0.;
|
---|
137 | if (_GradientDifference.NormSquared() > MYEPSILON)
|
---|
138 | stepwidth = fabs(_PositionDifference.ScalarProduct(_GradientDifference))/
|
---|
139 | _GradientDifference.NormSquared();
|
---|
140 | if (fabs(stepwidth) < 1e-10) {
|
---|
141 | // dont' warn in first step, deltat usage normal
|
---|
142 | if (currentStep != 1)
|
---|
143 | ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
144 | stepwidth = currentDeltat;
|
---|
145 | }
|
---|
146 | return stepwidth;
|
---|
147 | }
|
---|
148 |
|
---|
149 | /** Performs Gradient optimization on the atoms.
|
---|
150 | *
|
---|
151 | * We assume that forces have just been calculated.
|
---|
152 | *
|
---|
153 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
154 | * \param offset offset in matrix file to the first force component
|
---|
155 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
156 | */
|
---|
157 | void anneal(
|
---|
158 | const int CurrentTimeStep,
|
---|
159 | const size_t offset,
|
---|
160 | Vector &maxComponents)
|
---|
161 | {
|
---|
162 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
163 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
164 | // atom's force vector gives steepest descent direction
|
---|
165 | const Vector oldPosition = (*iter)->getPositionAtStep(CurrentTimeStep-1 >= 0 ? CurrentTimeStep - 1 : 0);
|
---|
166 | const Vector currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
|
---|
167 | const Vector oldGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep-1 >= 0 ? CurrentTimeStep - 1 : 0);
|
---|
168 | const Vector currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
|
---|
169 | LOG(4, "DEBUG: oldPosition for atom " << **iter << " is " << oldPosition);
|
---|
170 | LOG(4, "DEBUG: currentPosition for atom " << **iter << " is " << currentPosition);
|
---|
171 | LOG(4, "DEBUG: oldGradient for atom " << **iter << " is " << oldGradient);
|
---|
172 | LOG(4, "DEBUG: currentGradient for atom " << **iter << " is " << currentGradient);
|
---|
173 | // LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
|
---|
174 |
|
---|
175 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
176 | const double stepwidth = getBarzilaiBorweinStepwidth(
|
---|
177 | currentPosition - oldPosition, currentGradient - oldGradient);
|
---|
178 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
179 | LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
|
---|
180 |
|
---|
181 | // extract largest components for showing progress of annealing
|
---|
182 | for(size_t i=0;i<NDIM;++i)
|
---|
183 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
184 |
|
---|
185 | // are we in initial step? Then don't check against velocity
|
---|
186 | if ((currentStep > 1) && (!(*iter)->getAtomicVelocity().IsZero()))
|
---|
187 | // update with currentDelta tells us how the current gradient relates to
|
---|
188 | // the last one: If it has become larger, reduce currentDelta
|
---|
189 | if ((PositionUpdate.ScalarProduct((*iter)->getAtomicVelocity()) < 0)
|
---|
190 | && (currentDeltat > MinimumDeltat)) {
|
---|
191 | currentDeltat = .5*currentDeltat;
|
---|
192 | LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate.NormSquared()
|
---|
193 | << " > " << (*iter)->getAtomicVelocity().NormSquared()
|
---|
194 | << ", decreasing deltat: " << currentDeltat);
|
---|
195 | PositionUpdate = currentDeltat * currentGradient;
|
---|
196 | }
|
---|
197 | // finally set new values
|
---|
198 | (*iter)->setPosition(currentPosition + PositionUpdate);
|
---|
199 | (*iter)->setAtomicVelocity(PositionUpdate);
|
---|
200 | //std::cout << "Id of atom is " << (*iter)->getId() << std::endl;
|
---|
201 | // (*iter)->VelocityVerletUpdateU((*iter)->getId(), CurrentTimeStep-1, Deltat, IsAngstroem);
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | /** Performs Gradient optimization on the bonds.
|
---|
206 | *
|
---|
207 | * We assume that forces have just been calculated. These forces are projected
|
---|
208 | * onto the bonds and these are annealed subsequently by moving atoms in the
|
---|
209 | * bond neighborhood on either side conjunctively.
|
---|
210 | *
|
---|
211 | *
|
---|
212 | * \param CurrentTimeStep current time step (i.e. t where \f$ t + \Delta t \f$ is in the sense of the velocity verlet)
|
---|
213 | * \param offset offset in matrix file to the first force component
|
---|
214 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
215 | */
|
---|
216 | void annealWithBondGraph(
|
---|
217 | const int CurrentTimeStep,
|
---|
218 | const size_t offset,
|
---|
219 | Vector &maxComponents)
|
---|
220 | {
|
---|
221 | // get nodes on either side of selected bond via BFS discovery
|
---|
222 | // std::vector<atomId_t> atomids;
|
---|
223 | // for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
224 | // iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
225 | // atomids.push_back((*iter)->getId());
|
---|
226 | // }
|
---|
227 | // ASSERT( atomids.size() == AtomicForceManipulator<T>::atoms.size(),
|
---|
228 | // "ForceAnnealing() - could not gather all atomic ids?");
|
---|
229 | BoostGraphCreator BGcreator;
|
---|
230 | BGcreator.createFromRange(
|
---|
231 | AtomicForceManipulator<T>::atoms.begin(),
|
---|
232 | AtomicForceManipulator<T>::atoms.end(),
|
---|
233 | AtomicForceManipulator<T>::atoms.size(),
|
---|
234 | BreadthFirstSearchGatherer::AlwaysTruePredicate);
|
---|
235 | BreadthFirstSearchGatherer NodeGatherer(BGcreator);
|
---|
236 |
|
---|
237 | /// We assume that a force is local, i.e. a bond is too short yet and hence
|
---|
238 | /// the atom needs to be moved. However, all the adjacent (bound) atoms might
|
---|
239 | /// already be at the perfect distance. If we just move the atom alone, we ruin
|
---|
240 | /// all the other bonds. Hence, it would be sensible to move every atom found
|
---|
241 | /// through the bond graph in the direction of the force as well by the same
|
---|
242 | /// PositionUpdate. This is almost what we are going to do.
|
---|
243 |
|
---|
244 | /// One more issue is: If we need to shorten bond, then we use the PositionUpdate
|
---|
245 | /// also on the the other bond partner already. This is because it is in the
|
---|
246 | /// direction of the bond. Therefore, the update is actually performed twice on
|
---|
247 | /// each bond partner, i.e. the step size is twice as large as it should be.
|
---|
248 | /// This problem only occurs when bonds need to be shortened, not when they
|
---|
249 | /// need to be made longer (then the force vector is facing the other
|
---|
250 | /// direction than the bond vector).
|
---|
251 | /// As a remedy we need to know the forces "per bond" and not per atom.
|
---|
252 | /// In effect, the gradient is the error per atom. However, we need an
|
---|
253 | /// error per bond. To this end, we set up a matrix A that translate the
|
---|
254 | /// vector of bond energies into a vector of atomic force component and
|
---|
255 | /// then we simply solve the linear system (inverse problem) via an SVD
|
---|
256 | /// and use the bond gradients to get the PositionUpdate for both bond
|
---|
257 | /// partners at the same time when we go through all bonds.
|
---|
258 |
|
---|
259 | // gather/enumerate all bonds
|
---|
260 | std::set<bond::ptr> allbonds;
|
---|
261 | std::vector<atomId_t> allatomids;
|
---|
262 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
263 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
264 | const atom &walker = *(*iter);
|
---|
265 | allatomids.push_back(walker.getId());
|
---|
266 | const BondList& ListOfBonds = walker.getListOfBonds();
|
---|
267 | for(BondList::const_iterator bonditer = ListOfBonds.begin();
|
---|
268 | bonditer != ListOfBonds.end(); ++bonditer) {
|
---|
269 | const bond::ptr ¤t_bond = *bonditer;
|
---|
270 | allbonds.insert(current_bond);
|
---|
271 | }
|
---|
272 |
|
---|
273 | // extract largest components for showing progress of annealing
|
---|
274 | const Vector currentGradient = (*iter)->getAtomicForce();
|
---|
275 | for(size_t i=0;i<NDIM;++i)
|
---|
276 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
277 |
|
---|
278 | // reset force vector for next step except on final one
|
---|
279 | if (currentStep != maxSteps)
|
---|
280 | (*iter)->setAtomicForce(zeroVec);
|
---|
281 | }
|
---|
282 | std::sort(allatomids.begin(), allatomids.end());
|
---|
283 | // converting set back to vector is fastest when requiring sorted and unique,
|
---|
284 | // see https://stackoverflow.com/questions/1041620/whats-the-most-efficient-way-to-erase-duplicates-and-sort-a-vector
|
---|
285 | typedef std::vector<bond::ptr> bondvector_t;
|
---|
286 | bondvector_t bondvector( allbonds.begin(), allbonds.end() );
|
---|
287 |
|
---|
288 | // setup matrix A given the enumerated bonds
|
---|
289 | LinearSystemOfEquations lseq(AtomicForceManipulator<T>::atoms.size(), bondvector.size());
|
---|
290 | for (size_t i = 0;i<bondvector.size();++i) {
|
---|
291 | const atom* bondatom[2] = {
|
---|
292 | bondvector[i]->leftatom,
|
---|
293 | bondvector[i]->rightatom
|
---|
294 | };
|
---|
295 | size_t index[2];
|
---|
296 | for (size_t n=0;n<2;++n) {
|
---|
297 | const std::pair<std::vector<atomId_t>::iterator, std::vector<atomId_t>::iterator> atomiditer =
|
---|
298 | std::equal_range(allatomids.begin(), allatomids.end(), bondatom[n]->getId());
|
---|
299 | index[n] = std::distance(allatomids.begin(), atomiditer.first);
|
---|
300 | (*lseq.A).at(index[0],index[1]) = 1.;
|
---|
301 | (*lseq.A).at(index[1],index[0]) = 1.;
|
---|
302 | }
|
---|
303 | }
|
---|
304 | lseq.SetSymmetric(true);
|
---|
305 |
|
---|
306 | // for each component and for current and last time step
|
---|
307 | // solve Ax=y with given A and y being the vectorized atomic force
|
---|
308 | double *tmpforces = new double[bondvector.size()];
|
---|
309 | double *bondforces = new double[bondvector.size()];
|
---|
310 | double *oldbondforces = new double[bondvector.size()];
|
---|
311 | double *bondforceref[2] = {
|
---|
312 | bondforces,
|
---|
313 | oldbondforces
|
---|
314 | };
|
---|
315 | for (size_t n=0;n<bondvector.size();++n) {
|
---|
316 | bondforces[n] = 0.;
|
---|
317 | oldbondforces[n] = 0.;
|
---|
318 | }
|
---|
319 | for (size_t timestep = 0; timestep <= 1; ++timestep) {
|
---|
320 | for (size_t component = 0; component < NDIM; ++component) {
|
---|
321 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
322 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
323 | const atom &walker = *(*iter);
|
---|
324 | const std::pair<std::vector<atomId_t>::iterator, std::vector<atomId_t>::iterator> atomiditer =
|
---|
325 | std::equal_range(allatomids.begin(), allatomids.end(), walker.getId());
|
---|
326 | const size_t i = std::distance(allatomids.begin(), atomiditer.first);
|
---|
327 | (*lseq.b).at(i) = timestep == 0 ?
|
---|
328 | walker.getAtomicForce()[component] :
|
---|
329 | walker.getAtomicForceAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0)[component];
|
---|
330 | }
|
---|
331 | lseq.GetSolutionAsArray(tmpforces);
|
---|
332 | for (size_t i = 0;i<bondvector.size();++i)
|
---|
333 | bondforceref[timestep][i] += tmpforces[i];
|
---|
334 | }
|
---|
335 | }
|
---|
336 |
|
---|
337 | // step through each bond and shift the atoms
|
---|
338 | std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
|
---|
339 | for (size_t i = 0;i<bondvector.size();++i) {
|
---|
340 | const atom* bondatom[2] = {
|
---|
341 | bondvector[i]->leftatom,
|
---|
342 | bondvector[i]->rightatom};
|
---|
343 | const double &bondforce = bondforces[i];
|
---|
344 | const double &oldbondforce = oldbondforces[i];
|
---|
345 | const double bondforcedifference = (bondforce - oldbondforce);
|
---|
346 | Vector BondVector = (bondatom[0]->getPosition() - bondatom[1]->getPosition());
|
---|
347 | BondVector.Normalize();
|
---|
348 | double stepwidth = 0.;
|
---|
349 | for (size_t n=0;n<2;++n) {
|
---|
350 | const Vector oldPosition = bondatom[n]->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
|
---|
351 | const Vector currentPosition = bondatom[n]->getPosition();
|
---|
352 | stepwidth += fabs((currentPosition - oldPosition).ScalarProduct(BondVector))/bondforcedifference;
|
---|
353 | }
|
---|
354 | stepwidth = stepwidth/2;
|
---|
355 | Vector PositionUpdate = stepwidth * BondVector;
|
---|
356 | if (fabs(stepwidth) < 1e-10) {
|
---|
357 | // dont' warn in first step, deltat usage normal
|
---|
358 | if (currentStep != 1)
|
---|
359 | ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
360 | PositionUpdate = currentDeltat * BondVector;
|
---|
361 | }
|
---|
362 | LOG(3, "DEBUG: Update would be " << PositionUpdate);
|
---|
363 |
|
---|
364 | // remove the edge
|
---|
365 | #ifndef NDEBUG
|
---|
366 | const bool status =
|
---|
367 | #endif
|
---|
368 | BGcreator.removeEdge(bondatom[0]->getId(), bondatom[1]->getId());
|
---|
369 | ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
|
---|
370 |
|
---|
371 | // gather nodes for either atom
|
---|
372 | BoostGraphHelpers::Nodeset_t bondside_set[2];
|
---|
373 | BreadthFirstSearchGatherer::distance_map_t distance_map[2];
|
---|
374 | for (size_t n=0;n<2;++n) {
|
---|
375 | bondside_set[n] = NodeGatherer(bondatom[n]->getId(), max_distance);
|
---|
376 | distance_map[n] = NodeGatherer.getDistances();
|
---|
377 | std::sort(bondside_set[n].begin(), bondside_set[n].end());
|
---|
378 | }
|
---|
379 |
|
---|
380 | // re-add edge
|
---|
381 | BGcreator.addEdge(bondatom[0]->getId(), bondatom[1]->getId());
|
---|
382 |
|
---|
383 | // add PositionUpdate for all nodes in the bondside_set
|
---|
384 | for (size_t n=0;n<2;++n) {
|
---|
385 | for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set[n].begin();
|
---|
386 | setiter != bondside_set[n].end(); ++setiter) {
|
---|
387 | const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
|
---|
388 | = distance_map[n].find(*setiter);
|
---|
389 | ASSERT( diter != distance_map[n].end(),
|
---|
390 | "ForceAnnealing() - could not find distance to an atom.");
|
---|
391 | const double factor = pow(damping_factor, diter->second);
|
---|
392 | LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
|
---|
393 | << factor << "*" << PositionUpdate);
|
---|
394 | if (GatheredUpdates.count((*setiter))) {
|
---|
395 | GatheredUpdates[(*setiter)] += factor*PositionUpdate;
|
---|
396 | } else {
|
---|
397 | GatheredUpdates.insert(
|
---|
398 | std::make_pair(
|
---|
399 | (*setiter),
|
---|
400 | factor*PositionUpdate) );
|
---|
401 | }
|
---|
402 | }
|
---|
403 | // invert for other atom
|
---|
404 | PositionUpdate *= -1;
|
---|
405 | }
|
---|
406 | }
|
---|
407 |
|
---|
408 | // apply the gathered updates
|
---|
409 | for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
|
---|
410 | iter != GatheredUpdates.end(); ++iter) {
|
---|
411 | const atomId_t &atomid = iter->first;
|
---|
412 | const Vector &update = iter->second;
|
---|
413 | atom* const walker = World::getInstance().getAtom(AtomById(atomid));
|
---|
414 | ASSERT( walker != NULL,
|
---|
415 | "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
|
---|
416 | LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
|
---|
417 | << ", namely " << *walker);
|
---|
418 | walker->setPosition( walker->getPosition() + update );
|
---|
419 | }
|
---|
420 | }
|
---|
421 |
|
---|
422 | /** Reset function to unset static entities and artificial velocities.
|
---|
423 | *
|
---|
424 | */
|
---|
425 | void reset()
|
---|
426 | {
|
---|
427 | currentDeltat = 0.;
|
---|
428 | currentStep = 0;
|
---|
429 | }
|
---|
430 |
|
---|
431 | private:
|
---|
432 | //!> contains the current step in relation to maxsteps
|
---|
433 | static size_t currentStep;
|
---|
434 | //!> contains the maximum number of steps, determines initial and final step with currentStep
|
---|
435 | size_t maxSteps;
|
---|
436 | static double currentDeltat;
|
---|
437 | //!> minimum deltat for internal while loop (adaptive step width)
|
---|
438 | static double MinimumDeltat;
|
---|
439 | //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
|
---|
440 | const int max_distance;
|
---|
441 | //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
|
---|
442 | const double damping_factor;
|
---|
443 | };
|
---|
444 |
|
---|
445 | template <class T>
|
---|
446 | double ForceAnnealing<T>::currentDeltat = 0.;
|
---|
447 | template <class T>
|
---|
448 | size_t ForceAnnealing<T>::currentStep = 0;
|
---|
449 | template <class T>
|
---|
450 | double ForceAnnealing<T>::MinimumDeltat = 1e-8;
|
---|
451 |
|
---|
452 | #endif /* FORCEANNEALING_HPP_ */
|
---|